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Preface

The Third SKLOIS Conference on Information Security and Cryptology (In-
scrypt 2007) was organized by the State Key Laboratory of Information Security
of the Chinese Academy of Sciences in cooperation with Qinhai University for
Nationalities. This international conference was held in Xining, Qinhai Province
of China, and was sponsored by the Institute of Software, the Chinese Academy
of Sciences, the Graduate University of the Chinese Academy of Sciences and
the National Natural Science Foundations of China.

By now, Inscrypt (the International SKLOIS Conference on Information Se-
curity and Cryptology) has become a tradition, and it is, in fact, a leading
event in this area, which takes place annually in China. We are pleased with the
continuous support by authors, committee members, reviewers, sponsors and
organizers. Indeed, the research areas covered by Inscrypt are important, since
modern computing (including communication infrastructures and applications)
requires increased security, trust, safety and reliability. This need has motivated
the research community worldwide to produce important fundamental, exper-
imental and applied work in the wide areas of cryptography and information
security research in recent years. Accordingly, the program of Inscrypt 2007 cov-
ered numerous fields of research within these general areas.

The international Program Committee of the conference received a total of
167 submissions from 21 countries and regions, from which only 43 submissions
were selected for presentation, 33 of which in the regular papers track and 10
submissions in the short papers track. All anonymous submissions were reviewed
by experts in the relevant areas, and based on their ranking, technical remarks
and strict selection criteria the papers were chosen for the various tracks. We
note also that reviews of submissions by committee members were hidden from
their authors throughout the entire review process. We also note that due to the
conference format, many good papers were regrettably not accepted.

Many people and organizations helped in making the conference a reality. We
would like to take this opportunity to thank the Program Committee members
and the external experts for their invaluable help in producing the conference
program. We thank the conference Organizing Committee, the various sponsors
and the conference attendees. Last but not least, we also express our thanks to
all the authors who submitted papers to the conference, the invited speakers and
the session Chairs.

August/September 2007 Dingyi Pei
Moti Yung
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Cryptanalysis of the SFLASH Signature Scheme�

(Extended Abstract)

Vivien Dubois1, Pierre-Alain Fouque1,
Adi Shamir1,2, and Jacques Stern1

1 École normale supérieure,
45 rue d’Ulm, 75005 Paris, France

{vivien.dubois,pierre-alain.fouque,jacques.stern}@ens.fr
2 Weizmann Institute of Science, Israel

adi.shamir@weizmann.ac.il

Abstract. SFLASH is a signature scheme proposed by Patarin, Goubin
and Courtois in 2001 [9,7] following a design they had introduced in
1998 [8]. SFLASH is reputed for being very fast and has been recom-
mended by the NESSIE European Consortium since 2003 as the best
known solution for implementation on low cost smart cards [5]. In this
abstract, we present new attacks on the general design proposed by
Patarin et al. [8] which allows to forge signatures in a few minutes for
practical instantiations including the SFLASH scheme recommended by
NESSIE [5].

Keywords: multivariate cryptography, signature, SFLASH, differential
cryptanalysis.

Multivariate Cryptography is an area of research which attempts to build asym-
metric primitives, based on hard computational problems related to multivariate
quadratic polynomials over a finite field. Multivariate schemes have recently re-
ceived much attention, for several reasons. First, the hard problems of reference
are not known to be polynomial in the quantum model, unlike integer factoriza-
tion and the discrete logarithm problems. More importantly, Multivariate Cryp-
tography offers a large collection of primitives and problems of a new flavor.
In general, multivariate schemes require modest computational resources and
can be implemented on low cost smart cards. Moreover, these schemes benefit
from several nice properties such as providing very short or very fast signatures.
Also, they are quite versatile: a number of generic non-exclusive variations can
be derived from a few basic schemes. Even when the original schemes are weak,
variations are often considered to avoid structural attacks.

� This abstract compiles the results of two papers appearing in the proceedings of
EUROCRYPT 2007 and CRYPTO 2007. Part of this work is supported by the
Commission of the European Communities through the IST program under contract
IST-2002-507932 ECRYPT.

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 1–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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One of the more elaborate outcomes of Multivariate Cryptography is probably
the SFLASH signature scheme. Designed by Patarin, Goubin and Courtois [9,7],
the scheme is among the fastest signatures schemes known, with NTRUSign
and TTS [3,10]. Although initial tweaks in the first version of SFLASH were
shown inappropriate [2], the current version of SFLASH is considered secure, as
testified from the recent acceptance of this primitive by the NESSIE European
Consortium [5].

The structure of SFLASH is among the simplest in Multivariate Cryptogra-
phy. Roughly speaking, SFLASH is a truncated C∗ scheme. The C∗ scheme was
invented by Matsumoto and Imai in 1988 [4], and was shown to be insecure by
Patarin in 1995 [6]. Later, Patarin, Goubin and Courtois considered the simple
variation of C∗ consisting in deleting from the public key a large number of co-
ordinates [8]. Schemes derived from C∗ by this principle are called C∗− schemes;
they are well suited for signature. As soon as the number of deleted coordinates
is large enough, C∗− schemes are considered secure. SFLASH belongs to the
C∗− family and has been chosen as a candidate for the NESSIE selection, and
finally accepted.

Our Results. Despite this success, it might be argued that the security of C∗−

schemes remains insufficiently understood. In particular, one may rightfully ques-
tion the reasons for the particular choice of parameters opted for in SFLASH.
Might other parameters yield the same security?

In this abstract, we report on new insights in the security of C∗− schemes
whose main result is that most practical instantiations of C∗− schemes, including
the SFLASH scheme recommended by NESSIE, are insecure. We indeed show
that when the number of coordinates that have been deleted from the original
C∗ public key is less than one half, as appearing in all proposed realizations of
C∗− schemes, the remaining coordinates can be used to recover a full C∗ public
key in polynomial time; this C∗ public key can then be inverted using Patarin’s
attack [6] to forge a signature for an arbitrary message. For SFLASH, recovering
a full C∗ public key takes only a few minutes, and then a signature can be forged
for an arbitrary message within a few seconds.

Our method to recover additional coordinates of the public key is through
the composition by specific linear maps, which are related to some commutation
property with the internal function. The definition of these maps depends on
the secret key but we show that they can be identified by an attacker as they
satisfy specific properties with respect to the differential of the public key. The
differential, as introduced in [1], is a bilinear symmetric function defined from a
quadratic function. Considering the differential is natural in hope of capturing
properties of quadratic functions under concepts from linear algebra, which can
be easily computed.

A first attack on C∗− schemes comes from considering skew-symmetric linear
maps with respect to the differential of the public key. We show that the linear
maps which are skew-symmetric with respect to the differential of a C∗ public
key do satisfy the commutation property that makes the attack possible. More-
over, the characteristic equation satisfied by these maps is linear and massively
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overdefined, which makes the vector space formed by these maps easy to recover
through linear algebra even when the number of available public coordinates
is very small (asymptotically a constant). The dimension of the space of skew-
symmetric maps exactly corresponds to the gcd, denoted d, of the internal C∗

parameter and the number of variables. However, when d = 1, this space only
contains some trivial elements which are useless for the attack. In all other cases,
when d > 1, the skew-symmetric maps can be used to recompose the C∗− public
key into a full C∗ public key, up to as few coordinates as a proportion 1/d of
the original ones. The SFLASH scheme escapes this attack since its parameters
were chosen prime numbers and therefore satisfy the complementary condition
d = 1.

A second attack on C∗− schemes is obtained by relaxing the condition of skew-
symmetry. We indeed consider the skew-symmetric action on the differential of a
wider class of commuting maps and show a specific property of these maps which
is to keep the differential into a small dimensional subspace. Alternatively, the
considered maps are skew-symmetric with respect to the differential modulo this
small subspace. This condition, as a refinement of the global skew-symmetry
condition, is of course satisfied by the skew-symmetric maps but it also admits
many more solutions which can also be used for the purpose of the attack and
whose existence is independent of the parameter d. We then show that such
maps can be recovered from a C∗− public key provided it features more than
the half of the original coordinates and when d = 1. The SFLASH scheme, as
well as other proposed instantiations, falls under this attack. On the other side,
for C∗− schemes with d > 1, this attack is not interesting since the first attack
achieves a better bound in this case.

The figure below summarizes the scope of the two attacks, separated by a
dotted line, where r is the number of deleted coordinates and n is their initial
number.

2 31 4 5 6

INSECURE

UNKNOWN SECURITY

r

n

n/2

SFLASH
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On the Evolution of User Authentication:

Non-bilateral Factors

Moti Yung1,2

1 Google Inc.
2 Columbia University

Abstract. In this position note we review the notion of “User Authen-
tication,” i.e., the idea of a person facing the computer and in need of
authenticating herself to the system in order to get access to her account.
We analyze the state of the art of user authentication and that of “Au-
thentication Factors,” i.e., the techniques and instruments the user can
present to the computer. We compare the state of the art of these factors
with the acceptable textbook view.

1 Introduction

Authentication factors are the basic instruments available to a human user to
authenticate herself in order, e.g., to convince a computing system of her true
“identity” as is known or registered in the system. These factors, presented by
a human claiming to be a specific user (and get access to that specific user’s
account), are passed to elements of the system (e.g., a software program in
a server) which, in turn, make a decision whether the human is the claimed
specific user. Determination is based on registered information that the elements
hold about the actual specific user. The accepted classification of authentication
factors, as expressed in numerous textbooks, distinguishes three basic types of
factors:

1. “Something You Know” (e.g., a password);
2. “Something You Have” (e.g., a device generating one-time passwords); and
3. “Something You Are” (e.g., biometrics information).

Given the current state of the art and the fact that nowadays, Internet Com-
puting is based on human interaction with the computing infrastructure, this
works re-examines the notion of authentication factors. Based on the evolution
of computing systems and modern computing in general, the work reviews the
parallel evolution of authentication factors and explains it and its impact on user
security.

2 The Traditional Characteristics Vs. Non-bilateral
Factors

The above three characteristics of the nature of authentication factors is very
natural, since a user facing a system indeed can present to it evidence of the three
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basic characteristics. However, these characteristics were made in the setting of
a basic model of a user facing a machine or an operating system , which was a
good view of a traditional time-sharing stand-alone system. what we note is that
modern computing environment is much different, and we claim that in modern
environments it is rarely the case that a user faces “alone” a single system. In
fact, nowadays there are various system elements that are present in modern
infrastructure. Elements can be part of the computing components, networking
infrastructure components, or other aspects of the entire system. Today, when a
user presents the factors, they may be directly given to the system or there may
be a sequence of transfers. Even if virtually, the user believes he has interacted
with “the system,” the infrastructure behind this interaction is complex.

A first demonstrative example consider the case where the user first presents
a password to a smart card which activates the smartcard to produce an authen-
ticator string; the card then authenticates on behalf of the user to a local system
by presenting the string, that, in turn, validates the authenticator, and presents
a credential that authenticates itself with an assertion about the authenticity of
this user in this connection. The assertion may be a digitally signed statement
accompanied by a certificate. The credential and assertion, in turn, are presented
to a remote server or a member of a federation of server that mediates the au-
thentication; this results in the connection to the user being validated as coming
from the actual user and may allow this connecting user access the resources
associated with this actual user. In fact, in this example we see how the user’s
initial authentication is “carried through” the system via a chain of trust among
system elements. The involvement of human players and system elements in the
process led to calling this protocol that involves users, factors and machines, “a
ceremony” [2].

The fact that modern environments include more than merely the user and a
single system element gives the opportunity to extend the possible characteristics
of user authentication factors. The participants do not even have to be a chain
of system elements along a linear flow of a message. This basic issue can be
summarized as following:

– The traditional characteristics assume a Bilateral Relation between the user
and the system; modern environments include additional elements and com-
ponents.

The above observation implies that we can now consider factors that involve
additional parties, channels, computing elements and pieces of information avail-
able to the system. Thus, side parties and components can take part in the
authentication ceremony, and we can use factors such as:

1. The mobile phone line of the user or of an e-mail account belonging to the
user which generate an independent channel to the user; this is an indepen-
dent validation channel (“Something Registered About the User”);

2. The IP address or the laptop computer mac address of the user’s computer,
(“Something Embedded in the User’s Computing Environment”);
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3. A remote server associated with the user that the user already logged into
and expressed the intention to further authenticate with another system
element (“Some Support Tools the Computing Environment Has”);.

The above are examples of factors based on the user’s computing environment:
knowledge about it, its physical characteristics and available elements and chan-
nels in it. They can be used and are, indeed, used in identifying the likelihood
of the claimed user being the specific authentic one. In some abstract general
sense the user environment may be thought to be part of the user and these
factors can all be thought of as “something the user has.” But, in reality these
are not something the user possesses, but rather something in the environment
associated with the user. They may be associated with the user at some time
(when the user is at home) but not at other times (when the user is at a cyber
cafe, say), and may change as the user re-configures parts of her environment
(e.g., buys a new computer).

The independence of the factors that belong to the infrastructure is important
in order for the system to use them as factors supporting the user’s identity. For
example, the mobile phone platform and the computer platform may be the
same, and a phone call over the wire and over wireless LAN may get mixed
as the infrastructure gets more complicated. The relation and independence of
infrastructure components has to be analyzed and the system has to be aware
of the source of the various factors.

We note that the more the factor known by the infrastructure is actually a
factor that is essential part of the infrastructure the stronger it is. If a factor
gives some physical meaning to the computing, e.g., an IP address is hard to
spoof as a factor if used for routing the communication of the interaction itself.
The more the factor is part of the correctly completion of the overall interaction
in this physical sense, the better it seems to be.

Beyond Technical Components: Factors do not have to be part of the com-
puting and communication elements. It was pointed out [1] that human compo-
nents have to be considered and can, in fact, help in the authentication process.
Indeed, social relationships to which the user belongs and organizational struc-
ture in which the user takes place can serve as additional factors. Relying on
already authenticated users in some formal and careful way amounts to “Some-
one You Know” factor.

Keep New Technologies in Mind: It is important to remember that as tech-
nologies change one may attempt to employ them in the area of authentication
factors. One such technology is “Internet Search Technology”. It can be used to
find facts that the claimed user needs to know and use for extension of “some-
thing you know” (or perhaps “something you (virtually) are”) to “something the
infrastructure as a whole knows about you.” The idea here is that the specialized
search engine knows where to look for details about a user fast, while generic
search is still slow when personal information of specific nature is involved. This
example is an interesting twist on privacy on the web, where relative loss of pri-
vacy is exploited to secure the authentication process! With lack of privacy the
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available details on the web may replace some of the registration process where
users give personal details to be used as “something you know” factor.

3 How Are Factors Employed Nowadays?

Enterprise User vs. Consumer User: There are a number of different set-
tings where authentication factors are used, which determines the possibility of
usage and effectiveness of the factors. The enterprise setting where a user is an
employee is much different from the e-commerce user which typifies the consumer
case. It may be easier to provide devices to employees than to end consumers
(who may be casual), which has been the case in reality. The participation of
non-bilateral factors and mechanisms may depend on the setting as well, for
example, vouching by a third party requires a well established social structure,
typical inside enterprises.

Absolute Reliance vs. statistical Reliance: The level of reliance on factors
is another issue. Authentication factors traditionally have been used to ensure
the system with close to absolute certainty of the identity of the user. In modern
systems the factors may be treated as providing some probability of assurance
and by gathering enough factors (possibly incrementally), the probability of an
identity can be calculated. In fact, at the end of a possibly lengthy session with
many checks, the system can concludes that the user “has passed” the authenti-
cation protocol, based on statistics (i.e., some confidence level). The involvement
of factors can be done adaptively based on assessment of the success so far in
the process. It seems that absolute reliance (a factor that gives a yes/no answer)
was the traditional method, where as the Internet evolves and the level of threat
increases it makes sense to rely on factors statistically, and to collect multi-factor
input. In this mode, not any single source of authentication needs to be perfect.
(We note that engineering wise, it is often easier to build a system that is made
out of imperfect components, and use multiplicity of such components to create a
more reliable system. The “statistical confidence based factors” are mechanisms
that possess this nature of relatively and possibly imperfect components).

Changing the Task of Authentication: As can be seen over the years, in-
deed, the use and purpose of authentication factors can be changed as systems
evolve. One important issue in the context of Internet access and services is the
fact that the server (e.g., of a bank or a merchant) has to prove its authen-
ticity to the user as well (i.e., authentication in the reverse direction). Since
the factors presented to the user have to be interpreted by a user looking at
her browser, the security of user interfaces, human factors in user interfaces
and defining end-to-end two way authentication to a browser user are impor-
tant. The notions of how to prevent the user from getting into a wrong web
page is especially important. User friendliness of interfaces and usability issues
in general play now an important part in achieving the tasks of authentication.
(Note that the extended nature and requirement of user authentication in various
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web-based scenarios is beyond the scope of the current note; here it serves only
to demonstrate the current issues with authentication factors).

4 Ask: Who Activates the Factors?

As noted above, lack of robust two-way authentication factors has opened the
door for attacks that attempt social engineering en masse, namely trying to
direct users to a fake web cite where the user inserts her authentication creden-
tials. This type of attacks called phishing attacks are common place nowadays.
Besides social engineering via faked sites and tempting email, the attack of di-
recting users to wrong sites that are faked can be done by contaminating the
resolve infrastructure or by malware on the user computer.

In phishing attacks users give their factors such as answers to questions and
passwords to the site, which may use them elsewhere. Thus an important issue is
how limited in time the credentials are and whether they are limited and bound
to the current site and cannot be used by attackers who may attempt to contact
the real site and, say, extract money from the user account employing the stolen
credentials. Credentials that are bound and are non-reusable are preferable, as
they limit the opportunity of the attackers.

The user may give away credentials like passwords, account number, account
name, answers to questions in the knowledge base, etc. These credentials can be
used by the attackers. However, new factors like mac address of a computer, a
cookie inserted in the user’s browser, or a call to a mobile phone line owned by
the user, do not change ownership by the user even if she becomes a victim of a
social engineering attack and the attacker cannot “demand” to get them. Thus,
the last type of credentials have been known as passive factors, whereas the first
type of factors are activated by the user.

In the view of the multi-lateral nature of modern factors, to our belief, we
can analyze the difference between the various credential types. We believe that
the basic difference is the underlying fact of who activates the factor. If the
user herself activates them and they are reusable within some time and space
limitations, they can be re-used by attackers (in off-line or on-line attacks, de-
pending on the “validity window” for the credential). If, on the other hand, the
credentials are factors that are activated by third parties: the communication
infrastructure, independent elements of the computing base and other parties,
then the user is in no position to give it away. In fact, the advantage of some
of the modern factors is due to the non-bilateral nature of these factor and the
fact that the user does not possess them, even though the factors are employed
to authenticate the user. Thus, one has to pay attention to analyze separately
and carefully “User-Activated” vs. “Third-Party Activated” factors.

In order to attack the third party activation of factors (as opposed to the user
self-activation), different methods are needed then merely attacking the user.
One needs to pay attention to potential attacks on these new factors and to
classify the parties that are involved: i.e., a cookie may be stolen more easily
than a mobile phone owned by a user that is used to call the user back during
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authentication. Factors related to the functioning of the interaction (IP address,
say) are harder to change as was already mentioned. In any event, the involve-
ment of multi-party in the new authentication game changes its nature as it is
not bi-lateral anymore. Involving these new multi-lateral factors enhances the
notion of user authentication and allows prevention of attacks that isolate the
user. Granted, to be used successfully the new game may require further analy-
sis of all parties involved, since an extended game with extra parties also means
extra security analysis is required.

Future Factors: The computing infrastructure is evolving rapidly and infor-
mation technology and physical aspects of the wold are merging and computers
are embedded in many new places. Given this trend , the above issues should be
kept in mind. We expect to view ubiquitous computing as a new wave of oppor-
tunities for future user authentication by enabling new factors and new parties
to take place in the process (e.g., physical location based factors, gadgets ori-
ented factors, involvement of consumer electronic devices, ability to probe user
familiarities with certain knowledge bases based on issues such as current loca-
tion, background and recent interactions, and so on). We expect that the mixing
of physical security, procedural security and information security is likely to
increase the variability of authentication factors.

5 Conclusions

One important lesson of the above analysis and the position this note takes, is
the fact that the notion of computer user authentication is deeply connected
to the infrastructure of computing. As the latter evolves so does the former.
Furthermore, technological changes should be considered and off the book tra-
ditional assumptions regarding security measures be updated appropriately (in
the security area “following the book” and “ignoring the book” are equally im-
portant!).
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Abstract. In this paper, we propose a signcryption scheme which pro-
vides all the following properties at the same time. (1) forward security:
the private key of a sender does not help any attack to break the confiden-
tiality of any signcrypted message generated by the sender. (2) signature
verification on the signcrypted message: this is done without revealing
the original message. (3) a standardized signature mechanism: in our
scheme, both the non-repudiation of the message and the signcrypted
message can be done using the standardized digital signature algorithm;
ECDSA. The efficiency and features of our scheme are compared with
other schemes and the security is proved in the random oracle model.

Keywords: ECDL problem, ECDSA, GDH problem, signcryption.

1 Introduction

Confidentiality and authenticity are two of the most important goals in setting a
cryptographic system. Until recently, these two goals are considered separately.
In the case of public-key cryptography, confidentiality is provided by encryption
schemes and authenticity is provided by signature schemes. To achieve both con-
fidentiality and authenticity in one logical step, a traditional way is to perform
the sign-then-encrypt (StE) approach. The cost of StE is equal to the total cost
of signature and encryption.

In 1997, Zheng [17] introduced the first cryptographic primitive that combines
encrypting and signing in one step at a lower communication and computational
cost, which is called signcryption. Zhang’s idea opened a new research era and,
following his pioneering work, a lot of new signcryption schemes or improvements
have been proposed (e.g., [1,2,12,16]).

Contributed by a large quantity of investigation, nowadays, except the proper-
ties of confidentiality and authenticity, proper signcryption schemes should also
provide (at least) the following properties:

- Non-repudiation of the message: The receiver of a message should have
the ability to prove to a third party that the sender indeed sent the message.

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 11–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



12 R. Tso, T. Okamoto, and E. Okamoto

This ability ensures that the sender of a message cannot later deny having
sent this message.

- Public verifiability: A signcryption scheme is publicly verifiable if, without
the knowledge of the receiver’s private key, a third party can efficiently verify
that a signcrypted message ξ is a valid signature on m signed by a sender.

- Forward security: A signcryption scheme provides forward-secure encryp-
tion if knowing the private key of a sender cannot reveal the plaintext from
any signcrypted message generated by the sender.

On the other hand, to achieve simple and secure non-repudiation using a
standard signature scheme, several research has been done [12,16]. In Yum and
Lee’s scheme [16], the non-repudiation of the message can be verified using the
standardized Korea Certificate-Based Digital Signature Algorithm, KCDSA [14],
and in Shin et. al. ’s scheme [12], the non-repudiation of the message can be
done using one of the most widely used standardized signature schemes, Digital
Signature Algorithm (DSA) [8]. However, scheme in [16] does not secure even in
the sense of semantic security and schemes in [12] use a modified DSA instead of
using DSA directly. Furthermore, these schemes [12,16] as well as other discrete-
logarithm (DL) based signcrytion schemes up to now are not forward secure.

We notice that most of the recent signcryption schemes (eg., [3,6]) providing
forward security are based on the property of bilinear pairing [4,5]. In this case,
no standardized signature scheme can be used for the verification phase. In
addition, pairing based signcryption schemes are usually less efficient than those
non-pairing-based schemes.

1.1 Our Contributions

The main contribution of this paper is to propose signcryption scheme which
not only provides the above mentioned properties but also the following two
additional properties:

- Signature verification on the signcrypted message: In a signcryption
scheme, a receiver should have the ability to prove the identity of the sender
who generated the signcrypted message while to keep the confidentiality of
the original plaintext to any third party.

- Standardized verification mechanism: It is a desirable property if, in a
signcryption scheme, the non-repudiation of a sender can be verified using
some standardized verification algorithms such as DSA or ECDSA. This
property makes the non-repudiation more simple since the existing infra-
structure for these standardized schemes can be used without modification.

Signature verification on the signcrypted message is required in some situ-
ations when the identity of a sender has to be verified but the content of the
message must be kept secret to the verifier. It is obvious that StE does not
provide signature verification on the signcrypted message (without revealing the
content of the message). On the other hand, this property has been investigated
in some literatures such as [6,7]. In [6,7], they allow the origin of a signcrypted
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message to be verified publicly without any assistance from the receiver. This
kind of constructions may be useful against the firewall systems, but, their con-
structions make problems when a receiver who wants to convince a third party
that the plaintext actually comes from the sender. This is because that in their
schemes, there is no guarantee on the unique pair of a signcrypted message and
the corresponding plaintext.

In our scheme, the non-repudiation of the message and the signature verifica-
tion on the signcrypted message are done by the widely used standard signature
algorithm, the Elliptic Curve Digital Signature Algorithm (ECDSA) [15] which
is the elliptic curve analogue of the DSA and is the only signature standard based
on the elliptic curve. It has been accepted as an ISO standard (ISO 14888-3),
an ANSI standard (ANSI X9.62), an IEEE standard (IEEE P1363) and a FIPS
standard (FIPS 186-2).

We emphasize that this is the first work which provides all the above men-
tioned properties in one signcryption scheme at the same time. Moreover, this is
the first work on signcryption schemes where both the signature on ciphertext
and on plaintext can be verified and the correctness between the ciphertext and
the corresponding plaintext can be assured.

2 Preliminaries

This section gives some cryptographic primitives and definitions required for our
construction.

2.1 Security Assumptions

Definition 1. Discrete Logarithm (DL) Problem: Let G be a cyclic group
of prime order p and g be a generator of G. The DL problem to the base g means
the following problem:

Given g, h ∈ G, find an integer x such that gx = h.

Definition 2. Elliptic Curve Discrete Logarithm (ECDL) Problem: The
DL problem in the elliptic curve setting is defined as follows: Let E(Fq) denote
an elliptic curve E defined over a finite field Fq. Given a point P ∈ E(Fq) of
order n, and a point Q = lP where 0 ≤ l ≤ n − 1, determine l.

The DL problem as well as ECDL problem are believed to be difficult and also
to be the hard direction of a one-way function.

Definition 3. Computational Diffie-Hellman (CDH) Assumption: Let
G be a cyclic group of prime order p and g be a generator of G, the CDH
assumption states that given (g, ga, gb) for randomly picked a, b ∈ Z∗

p , there
exists no polynomial time algorithm which can find an element C ∈ G such that
C = gab mod p with non-negligible probability.
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Definition 4. Decisional Diffie-Hellman (DDH) Assumption: Let G be
a cyclic group of prime order p and g be a generator of G. The DDH problem is
to distinguish ab from c by given (g, ga, gb, gc), where a, b, c are random elements
of Z∗

p .

The CDH assumption and the GDH assumption in the EC setting can also be
defined accordingly.

Definition 5. Gap Diffie-Hellman (GDH) Assumption: The assumption
that in a group where the CDH problem is hard but the DDH problem is easy
is called the GDH assumption.

2.2 Notations

Throughout this paper, we will assume that Alice A is a sender and Bob B is a
receiver. The following notations will be used in this paper.

- a||b: a concatenation of two strings a and b.
- E/D: a symmetric key cryptosystem based encryption/decryption algorithm

secure against chosen plaintext attacks. By Ek(m), we mean a message m
is encrypted using a key k and the encryption algorithm E. By Dk(c), we
mean a ciphertext c is decrypted using a key k and the decryption algorithm
D.

- H : a cryptographic one-way hash function.
- T : a secure hash function.
- bindA,B: the concatenation of two identities of A and B.
- PointComp()1: point compress function.
- PointDecomp(): point decompress function.

3 Proposed Scheme

In some applications, it is desired that the sender’s identity can be identified
while the content of the message can be kept secret to a third party. In this
section, we propose an ECDSA-verifiable signcyrption scheme with signature
verification on the signcrypted message. The signature verification on the sign-
crypted message and the non-repudiation of the original message both require
some information opened by the recipient. But, this scheme assures to the third
party that c is really the ciphertext of the unique message m.
System Setting: Let q be a large prime greater than 2160, E(Fq) be an elliptic
curve defined over the finite field Fq , G be a point on E(Fq) such that the ECDL
problem in the subgroup < G > generated by G is infeasible and n be the prime
order of G. The system parameters are (q, G, n, E, D, H, T ).

1 See Section 6.5.4 of [13]. The communication cost required for points on elliptic
curves can be reduced by (almost) 50%.
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Key Generation: For each entity i, the private/public key-pair for i is (di, Qi),
where di ←R {1, · · · , n − 1}, and Qi ← diG.
Signcrypting: Suppose Alice wants to signcrypt a message m ∈ {0, 1}∗ to Bob,
she does the following steps:

1. Pick k ←R {1, · · · , n − 1} and compute R ← (x1, y1) = kG.
2. Compute (x1, α ∈ {0, 1}) ← PointComp(E(Fq), R).
3. Compute r ← x1 mod n and go to step 1 if r = 0.
4. Compute K ← (x2, y2) = kQB and K ← H(x2).
5. Compute (KEnc, u) ← T (K), where u ∈ {1, · · · , n − 1}.
6. Compute U ← uR, ĉ ← EKEnc(m), and c ← ĉ||α.
7. Compute h ← H(c||bindA,B||x1||U) and s ← (ku)−1(h + dAr) mod n.

The signcrypted message is ξ ← (c, x1, s) and Alice sends ξ to Bob.
Unsigncrypting: To Unsigncrypt ξ, Bob does the following steps:

1. Recover R = (x1, y1) ← PointDecomp(E(Fq), x1, α).
2. Compute K ← (x2, y2) = dBR and K ← H(x2).
3. Compute (KEnc, u) ← T (K).
4. Compute U ← uR, h ← H(c||bindA,B||x1||U), and r ← x1 mod n.
5. Compute e′1 ← h/s mod n and e1 ← u−1e′1 mod n.
6. Compute e′2 ← r/s mod n and e2 ← u−1e′2 mod n.
7. Compute R′ = (x′

1, y
′
1) ← e1G + e2QA.

8. Accept ξ as a valid signcrypted message if and only if x′
1 ≡ x1 (ie., x′

1 mod
n = r), otherwise, reject ξ and stop.

9. Recover the message as m ← DKEnc(ĉ).

Signature verification on the signcrypted message: The receiver, Bob,
opens h with the original signcrypted message ξ = (c, x1, s) to a third party.
The third party then do the following steps:

• Compute r ← x1 mod n, e′1 ← h/s mod n and e′2 ← r/s mod n.
• Compute U ′ ← e′1G + e′2QA.

He then accepts ξ as a valid signcrypted message if and only if h =
H(c||bindA,B||x1||U ′).

Non-repudiation of the message: By opening K together with the sign-
crypted message ξ, anyone can check the origin of ξ and recover the original
message m according to the unsigncrypt algorithm.

Consistency of the unique pair of (m, c): If U ′ obtained from the sig-
nature verification on the ciphertext phase is equal to uR computed in the
non-repudiation of the message phase, then a verifier can conclude that KEnc

(computed from T (K) with K obtained in the non-repudiation of the message
phase) is really the encryption key so m is really the plaintext with regard to
the ciphertext c.
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4 Discussion

In the above scheme, signature verification on the signcrypted message is done
using the technique similar to ECDSA but checking the validity of h instead
of r. In this case, (x1, h, s) is the signature on the message c||bindA,B||x1||U ′.
Therefore, when U ′ opened, any one can verify the sender’s identity.

To see that the forward security is preserved even when U ′ opened, we see
that r, s are public and h can be computed by H(c||bindA,B||x1||U ′), therefore,
when a sender Alice’s private key dA is revealed, one can compute ku ← s−1(h+
dAr) mod n. But, k is masked by u so cannot be computed. On the other hand,
to compute u from U = uR or from e′1G + e′2QA is intractable because of the
ECDL problem. The attempt to find k directly from R is also impossible because
of the ECDL problem. Therefore, even when dA revealed, k is still kept secret
and K = kQB is kept secret to any third party whenever the receiver’s private
key is not disclosed.

Since the non-repudiation of the message is based on ECDSA, the unforgeabil-
ity of the scheme is based on the unforgeability of ECDSA. On the other hand,
the confidentiality of the scheme is depended on the the secrecy of the session
key K and the security of the symmetric encryption/decryption algorithm.

5 Efficiency and Features Comparison

In Table 1, the efficiency and security features of our scheme is compared with
other DL-problem based signcryption schemes and the Sign-then-Encrypt (StE)
scheme. In the DL-problem based signcryption schemes, since exponentiation is
the most costly computation comparing to other operations, we only consider
the total number of exponentiations (denoted by Exp.) required by a sender and
a receiver. Our scheme is also DL-problem based but in an elliptic curve setting,
so the most costly computation is the elliptic curve multiplicative computation
(denoted by EC.).

Table 1. Efficiency and Features Comparison

Scheme
Efficiency Features

Commun. Compu. Semantic Forward Public Cipher Standard
Cost Cost Security Security Veri. Veri. Sign.

Zheng[17] 2|q| 3Exp Yes \ \ \ \
Bao&Deng[2] 2|q| 5Exp \ \ Yes \ \
Yum&Lee[16] 2|q| 5Exp \ \ Yes \ KCDSA

SC-DSA+[12] 2|q| 5Exp Yes \ Yes \ DSA

StE† |p| + 2|q| 6Exp Yes Yes Yes \ DSA

Ours |q| + |n| 7EC Yes Yes Yes Yes ECDSA

|p| ≈ 21024, |q| ≈ 2160, q ≈ n.
† DSA + ElGamal public key cryptosystem.
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In DL-problem based signcryption schemes without using the bilinear pair-
ing (see [4,5] for details), our scheme is the only scheme providing both non-
repudiation of the signcrypted message and forward security.

To compare with StE , we know that in StE , to provide the IND-CCA2 se-
cure, the encryption scheme must be IND-CCA2 secure, while in our scheme,
a IND-CPA secure symmetric scheme is enough to provide the same security
(see Theorem 1 in the next section). In addition, StE is more secure than other
DL-based signcryption schemes but our scheme provides more security features
than StE since StE does not provide any method for a third party to verify
the origin of the signcrypted message. Furthermore, our scheme is much more
efficient than StE in communication cost since |n| ≈ |q| but |p| >> |q|.

6 Security Results

This section discusses the security of our schemes in the random oracle model.
We first discuss the EUF-ACMA security of our schemes.

Definition 6. A signcryption scheme is said to be EUF-ACMA secure if, for
any polynomial-time adversary F , the advantage defined by

Adv
euf−
acma
F

�
= Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V eri(m∗, ξ∗, pk∗
i , sk∗

j ) = 1
(pk∗

i , pk∗
j , m∗, ξ∗) /∈ SClist

(pk∗
i , pk∗

j , m∗, ξ∗) /∈ USClist

∣∣∣∣∣∣∣∣∣∣∣∣∣

para ← Setup(1λ)
ski ← Ex(pki, para)
ξi ← SC(m, pki, pkj , para)
m ← USC(ξi, pki, pkj , para)
(m∗, ξ∗) �

F
SC,USC,

T,H (pk∗
i , pk∗

j , para)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is negligible, where

• SC is the signcryption oracle which takes any message m, a sender’s pub-
lic key pki and a receiver’s public key pkj as input, the output is a valid
signcrypted message ξi.

• USC is the unsigncryption oracle which unsigncrypt any ξi and outputs the
plaintext m from any input (ξi, yi, yj , para).

In addition, SClist and USClist are the query/answer lists coming from Sign-
cryption oracle SC, and Unsigncryption oracle USC respectively during the
attack. In the random oracle model, the attacker can also access to the random
oracles T and H . The probability is taken over the coin tosses of the algorithms,
of the oracles, and of the forger.

In our schemes, the unforgeable property has to be considered in two differ-
ent cases: the unforgeability of the signature on the signcrypted message (ie.,
ciphertext) and the unforgeability of the signature on the original message (ie.,
plaintext).

Unforgeability of the signature on the original message: In this case, an
attacker tries to forge a new signcrypted message (c, x1, s) which can pass the
unsigncrypting algorithm.
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In our scheme, if we ignore the encryption phase, then, it is easy to see that
the signature generation phase and the signature verification phase are both
following the procedure of ECDSA. Therefore, it can be concluded that the
unforgeability of the scheme is based on the unforgeability of ECDSA. To explain
more precisely, if there exists an adversary who can break the EUF-ACMA of
our scheme by a forgery (c, x1, s), then, (r′, s′) with r′ = x1 mod n and s′ =
su mod n is a valid ECDSA signature on the message c||bindi,j||x1||U . Here
i, j represents the sender and the receiver ’s identities and u is computed by the
receiver according to the unsigncryption protocol without using a signer’s private
key. Consequently, breaking the unforgeability of our scheme means breaking the
unforgeability of ECDSA.

Although the security of ECDSA has not been proven yet, it is widely used
in practise and is believed to be EUF-ACMA secure. Up to now, no significant
security flaws on ECDSA are know. �

Unforgeability of the signature on the signcrypted message: In this
case, an attacker tries to forge a new signature (x1, h, s) on c (ie., ciphertext)
which can pass the verification algorithm at the signature verification on the
signcrypted message phase.

In our scheme, the unforgeability of the signature (ie. (x1, h, s)) on c is similar
but different to a ECDSA signature. In this case, to prove the unforgeability, we
first prove the unforgeability of the following signature scheme. In the following
scheme, the system setting and key generation are the same as the proposed
scheme.
Signing: To sign a message m ∈ {0, 1}∗, Alice with key-pair (dA, QA) does the
following steps:

1. Pick k ←R {1, · · · , n − 1} and compute R ← (x1, y1) = kG.
2. Pick u ←R {1, · · · , n − 1} and compute U ← uR.
3. Compute r ← x1 mod n and go to step 1 if r = 0.
4. Compute h ← H(m||x1||U) and s ← (ku)−1(h + dAr) mod n.

The signature on m is σ ← (x1, h, s).
Verification:

1. Compute r ← x1 mod n, e1 ← h/s mod n and e2 ← r/s mod n.
2. Compute U ← e1G + e2QA.
3. Accept σ if and only if h = H(m||x1||U).

It is easy to see that this is the underlying signature scheme used in our scheme
for the signature verification on the signcrypted message. Specifically, they are
identical when we set m of the signature scheme to be equal to c||bindA,B of the
proposed signcryption scheme. Consequently, the unforgeability of the signature
scheme implies the unforgeability of the signature on the signcrypted message
of the proposed signcryption scheme The security proof of the signature scheme
requires the following lemma.
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Lemma 1. (The Forking Lemma).[10] Let (K, S, V) be a digital signature
scheme with security parameter k, with a signature of the form (m, σ1, h, σ2),
where h = H(m, σ1) and σ2 depends on σ1 and h only. Let A be a probabilistic
polynomial time Turing machine whose input only consists of public data and
which can ask qh queries to the random oracle, with qh > 0. Assume that,
within the time bound T , A produces, with probability ε ≥ 7qh/2k, a valid
signature (m, σ1, h, σ2). Then there is another machine which has control over
A and produces two valid signatures (m, σ1, h, σ2) and (m, σ1, h

′, σ′
2) such that

h �= h′, in expected time T ′ ≤ 84480Tqh/ε.

Let σ1 = (x1, U), h = H(m||x1||U) and σ2 = s. In the above signature scheme,
if an attacker A who can produce a valid signature (m, σ1, h, σ2) without Alice’s
private key dA, then, according to the Forking Lemma, we can use A to obtain
two signatures (σ1 = (x1, U), h, σ2 = s) and (σ′

1 = (x′
1, U

′), h′, σ′
2 = s′) of an

identical message m such that σ1 = σ′
1, but h �= h′. Note that σ1 = σ′

1 implies
that k = k′, u = u′, and r = r′ which are used in the signing phase of both
signatures. Thereafter, we can easily extract dA which is the solution to the
discrete logarithm problem of QA to the basis G:

s = (ku)−1(h + dAr)
s′ = (ku)−1(h′ + dAr)

}
⇒ sdAr − s′dAr = s′h − sh′,

which leads to dA = (r(s− s′))−1(s′h− sh′) mod n. Since the discrete logarithm
problem is believed to be hard, we found a contradiction. This ends the proof for
the unforgeability of the signature on the signcrypted message of our scheme. �

To prove the confidentiality of the proposed scheme, we first consider the security
in the outsider security model. That is, we first assume that the attacker cannot
ask the private keys of the sender Alice and the receiver Bob. The confidentiality
of the proposed signcryption scheme is IND-CCA2 in Flexible Un-signcryption
Orale model (FUO-IND-CCA2) defined in [1].

Definition 7. FUO-IND-CCA2[1]: Let SC = (KG, SC, USC) be a signcryp-
tion scheme where KG is a public/private key generation algorithm, SC is a
signcryption algorithm, and USC is a unsigncryption algorithm. Let A be an
adversary that conduct adaptive chosen ciphertext attack. Then SC is FUO-
IND-CCA2 secure if for all polynomial time adversary A

Pr

⎡
⎢⎢⎢⎢⎢⎣
A

SCO,

USCO(guess, c, z) = b

∣∣∣∣∣∣∣∣∣∣∣

(pkA, skA) ←R KG(1k)
(pkB , skB) ←R KG(1k)

(m0, m1, z) ← A
SCO,

USCO(find, pkA, pkB)
b ←R {0, 1}
c ← SCskA,pkB (mb)

⎤
⎥⎥⎥⎥⎥⎦

≤ 1
2 + neg(k).

where SCO is a signcryption oracle that signcrypt a message with access to skA

and pkB, USCO is an unsigncryption oracle that unsigncrypts a ciphertext with
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access to skB. neg() means a negligible function. In the random oracle model,
A can also access to the random hash function H .

Baek et al. [1] showed that the modified Zheng’s scheme (MZ Scheme) is FUO-
IND-CCA2 secure if the GDH problem is hard and the symmetric encryption
scheme in Zheng’s scheme is IND-CPA secure. Based on this idea, Shin et al [12]
proved that their SC-DSA+ provides the same security. Similar to the idea in
[12], we reduce the security of our scheme to the security of SC-DSA+ in the
elliptic curve setting and show that our scheme is FUO-IND-CCA2 secure.

Setting:
system-parameters: params = {q, G, n, E, D, H, hash}
private/public key-pair (Alice): (dA, QA), dA ←R {1, · · · , n − 1}, QA ← dAG
private/public key-pair (Bob) :(dB , QB), dB ←R {1, · · · , n − 1}, QB ← dBG

Signcrypting: to signcrypt a message m ∈ {0, 1}∗:
(1) Pick k ←R {1, · · · , n − 1}, and compute K ← kQB

(2) Compute (Kenc, Kmac) ← hash(K), and c ← EKenc(m)
(3) Compute R ← kG = (x1, y1) ∈ Zq × Zq

(4) Compute r ← x1 mod n, h ← H(m||bindA,B ||Kmac), s = k−1(h + dAr) mod n
(5) Compute e1 ← h/s mod n and e2 ← r/s mod n
(6) Out the signcrypted message ξ ← (c, e1, e2)

Unsigncrypting: Bob does the following steps:
(1) R ← e1G + e2QA = (x1, y1)
(2) Compute K ← dBR, and (Kenc, Kmac) ← hash(K)
(3) Recover m ← DKenc(c)
(4) Compute r ← x1 mod n, s ← r/e2 mod n, h ← H(m||bindA,B ||Kmac)
(5) Accept m if and only if e1s ≡ h mod n

Fig. 1. SC-DSA+ (Modified in Elliptic Curve Setting)

Theorem 1. If the GDH problem is hard and the ECDSA is EUF-ACMA se-
cure, moreover, if the symmetric encryption scheme provides indistinguishability
against chosen plaintext attack (IND-CPA secure), then the proposed signcryp-
tion scheme is FUO-IND-CCA2 secure in the random oracle model.

Proof: Shin et. al.’s scheme (SC-DSA+) (see Figure 1) is proved to be FUO-
IND-CCA2 secure in the outsider security model. Since our scheme can be re-
garded as a modification of SC-DSA+, we reduce the security of our scheme to
the security of SC-DSA+.

In our scheme, since U = uR is used for the purpose of verifying the signature
on the ciphertext and u is used for the forward security purpose while these
properties do not exist in Shin et. al.’s SC-DSA+ scheme, we first modify our
scheme, say Scheme II, into Scheme II’ so as to omit the effect of U and u. Scheme
II’ is essentially the same as Scheme II but, for any message m, the signcrypted
message is ξ = (c, x1, s, u) (cf. ξ = (c, x1, s) in Scheme II). The unsigncrypting
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phase is the same as Scheme II and there is no signature verification on the
signcrypted message phase.

It is obvious that Scheme II’ is a weak version of Scheme II. Therefore, any
attacker who can break the FUO-IND-CCA2 security of Scheme II can also break
the UFO-IND-CCA2 security of Scheme II’. Now, assume that there exists an
attacker F who can break the FUO-IND-CCA2 security of Scheme II’, then
we show that the attacker F can also break the FUO-IND-CCA2 of SC-DSA+
Scheme (in the elliptic curve setting) in the same way. At first, notice that
in SC-DSA+ scheme, a signcrypted message ξ on a message m is of the form
ξ = (c, e1, e2) while from (e1, e2), R and s can be computed publicly via the
following computations:

R = e1G + e2QA = (x, y),
r = x mod n,
s = r/e2 mod n.

Therefore, for a message m, no security flaw should occur concerning to the
confidentiality (not concerning to the unforgeability in this proof) if we use
(c, R, s) as the signcrypted message instead of using (c, e1, e2). Also note that,
according to the unsigncrypting protocol, this change makes no difference form
the receiver Bob’s viewpoint. In the remains of the proof, we use (c, R, s) as
the signcrypted message on a message m in SC-DSA+ Scheme instead of using
(c, e1, e2).

To prove the security of Scheme II’, it is sufficient to show that the output of
Scheme II’ is (publicly) convertable to the output of SC-DSA+ Scheme and vice
versa. Let ξ = (c′, x1, s

′, u) be the output (ie. signcrypted message) of Scheme
II’, then we can derive a new output (c, R, s) using conversion algorithm C:

Algorithm C(q, G, n, QA, QB, c′, x1, s
′, u)

c||α Parsing←− c′

R ← PointDecom(E(Fq), x1, α)
s ← us′ mod n
return (c, R, s)

On the other hand, there exists an algorithm C−1 and (c′, x1, s
′, u) =

C−1(q, G, n, QA, QB, c, R, s).

Algorithm C−1(q, G, n, QA, QB, c, R, s)
(x1, α) ← PointComp(E(Fq), R)
c′ ← c||α
u ←R {1, · · · , n − 1}
s′ ← su−1

return (c′, x1, s
′, u)

Note that the conversion is done using publicly known information only. There
remains one problem. That is, the message hash’s input of Scheme II’ is differ-
ent from the message hash’s input of SC-DSA+. In order to solve the difference of
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message hash’s input, we first give the modified hash called hash′ defined in [12]
for SC-DSA+ which is defined as follows:

hash′(m, bindA,B, K, R)
(Kenc, Kmac) ← hash(K)
h ← hash(m||bindA,B||Kmac)
return h

hash′ is another representation of original

hash used in SC-DSA+ since each operation of hash′ already exists in SC-
DSA+ signcrypt and unsigncrypt algorithm. Therefore, according to the proof
of Theorem 3 in [12], it can be considered that hash′ is used in SC-DSA+ instead
of hash. The input R has no meaning here but it is required in order to make
the input of hash′ to be consistent with the input of our scheme.

Using the same idea, now we define a new message hash H ′ for our Scheme
II’ as follows:

H ′(m, bindA,B, K, R)
(x1, α) ← PointComp(E(Fq), R)

(x2, y2)
Parsing←− K

K ← H(x2)
(KEnc, u) ← T (K)
ĉ ← EKEnc(m)
c ← ĉ||α
U ← uR
h ← H(c||bindA,B||x1||U)
return h

Since each operation of H ′ is already existed in Scheme II’ signcrypt and un-
signcrypt algorithm, the same explanation says that H ′ is another representation
of H and we can also use H ′ for computing h instead of using H in our scheme.

In Scheme II’ and SC-DSA+, the output form one scheme is convertable to
the other and vice versa. Moreover, the problem of having different message
hash’s input can be solved by using the modified hash functions hash′ and
H ′, respectively. This implies that both scheme have the same security and, by
properly simulate the random oracles, breaking one scheme means breaking the
other.

From Scheme II, we can construct Scheme II’ which is a weak version of
Scheme II. On the other hand, Scheme II’ has the same security with SC-DSA+
2. Therefore, if there exists an adversary A who can break the FUO-IND-CCA2
security of our Scheme II, then, by properly simulates our schemes using SC-
DSA+ scheme, we can utilize A to break the FUO-IND-CCA2 security of SC-
DSA+ scheme. This ends the proof. �

Forward security: Theorem 1 is proved in the outsider security model. To show
the insider security, that is, to show the forward security of the proposed schemes,

2 In case if the signcrypted message is of the form (c, R, s) since we have shown that
no security flaw concerning to the confidentiality will occur by this modification.
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we can see that in Scheme II, the encryption key is kQB = dBR while k is a ran-
dom number and kQB = dBR is irrelevant to the sender’s private key. Since dB

is the receiver’s private key which is unknown to the third party 3, the only way
to find the encryption key is to compute k from s = (ku)−1(h + dAr) mod n in
Scheme II. In our schem (Scheme II), even if h can be computed when U opened,
u is still unknown so k cannot be computed from s = (ku)−1(h + dAr) mod n
even when dA is known (ie., k cannot be uniquely determined from the equation
with two unknowns). Therefore, a sender’s private key has no concern to the
confidentiality of our signcryption so we conclude that our scheme is forward
secure.
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Abstract. In this paper, we present the first concrete example of
identity-based undeniable signature with selective and universal convert-
ibility, where the signer can release a selective proof to make a single
undeniable signature publicly verifiable, or publish a universal proof to
convert all his undeniable signatures into ordinary digital signatures.
Furthermore, we also formalized the security models of identity-based
convertible undeniable signatures. The new models capture more essence
of the property “convertibility” of identity-based undeniable signatures,
compared with other known security models. Our scheme can be re-
garded as an improvement of Libert and Quisquater’s identity-based un-
deniable signature scheme published in CT-RSA 2004. The security of
our scheme is formally proven in the random oracle model under some
well-known complexity assumptions. Its unforgeability relies on the hard-
ness of the Computational Diffie-Hellman problem, while the invisibility
(and anonymity) is based on the hardness of Decisional Bilinear Diffie-
Hellman problem.

Keywords: Undeniable Signatures, Convertible, Identity-based, Prov-
able Security.

1 Introduction

Undeniable signature is a notion introduced by Chaum and van Antwerpen in
Cypto’89 [4] to allow the verifier to attest the validity or invalidity of a sig-
nature only with the help of the signer. Formally, the validity or invalidity of
an undeniable signature can only be verified via the Confirmation/Disavowal
protocol with the help of the signer. They are useful in the situations where
the validity of a signature must not be publicly verifiable. For example, a soft-
ware vendor might want to embed signatures into his products and allow only
those customers who have paid to check the authenticity of these products.
If the vendor actually signed the message, he must be able to convince the
customer of this fact using a confirmation protocol. If he did not sign it, he
� Supported by ARC Discovery Grant DP0557493 and DP0663306.
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must also be able to convince the customer that he is not the signer via a dis-
avowal protocol. These proofs have to be non-transferable: once a verifier is
convinced that the vendor did or did not sign a message, he should be unable
to transmit the proof to another third party. Since the introduction of unde-
niable signatures, there have been several proposed schemes in the literature
[1,7,8,9,10,11,15,16,18,22].

The concept of convertible undeniable signatures was introduced by Boyar,
Chaum, Damg̊ard and Pedersen [1] in Crypto’90. This concept offers more flex-
ibility than its original version in the sense that the signer has the ability to
convert one or more undeniable signatures into publicly verifiable. “Convert”
in the undeniable signatures has two types: Selectively Convert and Uni-
versally Convert. Selectively Convert refers to the case that the signer
can make one of his/her undeniable signatures publicly verifiable by releasing
a selective proof. Then, one can verify the validity of a converted undeniable
signature using the corresponding selective proof and signer’s public key. How-
ever, the validity of other undeniable signatures that have not been converted
still remains unknown and can only be verified via the confirmation/disavowal
protocol with the help of the signer. The signer can also run the Universally
Convert algorithm to generate a universal proof which can convert all his unde-
niable signatures into publicly verifiable ones. Thus, one can check the validity of
any undeniable signature without the help of the signer. A concrete application
of convertible undeniable signatures is the problem of keeping digital records of
political decisions [7]. Those decisions are sensitive when they are generated, but
usually become publicly accessible after some years. This can be solved by con-
vertible undeniable signatures: the signer could release the selective/universal
proof whenever required, or give them initially to a trusted third party who will
release it later.

Most of the known undeniable signature schemes are designed in the tradi-
tional public key system where a public key infrastructure (PKI) is requires to
certify public keys for users. PKI has a number of drawbacks since it requires a
trusted third party. Identity-based (or ID-based) cryptography, as proposed by
Shamir in [21], was introduced to provide an alternative to public key systems. In
the new setting, a user’s public key is the identity of the corresponding user. In
the real world, an identity can be email address, IP address or telephone number,
etc. Therefore, the need of certification can be eliminated. There is a full-trusted
third party, Private Key Generator (PKG), in the ID-based system which gen-
erates all users’ private keys. The PKG first publishes a “master” public key,
and keeps the corresponding master secret key for himself. To obtain a private
key, one should contact PKG, which uses the master secret key to generate the
corresponding private key and sends it to the user by a secure channel. Since its
introduction in [21], many identity based schemes have been proposed and the
most notable one is the identity-based encryption scheme proposed by Boneh
and Franklin in [2] that takes advantage of the properties of suitable bilinear
maps (the Weil or Tate pairing) over supersingular elliptic curves.
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1.1 Previous Works

In [14], Han, Yeung and Wang proposed the first ID-based undeniable signature
scheme1. However, Zhang, Safavi-Naini and Susilo showed that this scheme is
insecure against the denial attack and the forge attack [22]. Chow introduced a
new scheme [5] to fix the flaw in Han-Yeung-Wang’s scheme but unfortunately,
there is no a formal proof provided, and therefore the security of the scheme
is questionable. A new construction of the ID-based undeniable signature was
given by Libert and Quisquater in CT-RSA 2004 [15]. Its security is proven
in the random oracle model under the assumption that both Bilinear Compu-
tational Diffie-Hellman problem and Decisional Bilinear Diffie-Hellman problem
are hard. Libert and Quisquater also mentioned in [15] that their scheme has the
property of selectively convertibility. In addition to those concrete constructions,
Galindo, Herranz and Kiltz [13] showed a generic way to obtain an ID-based un-
deniable signature scheme from a PKI-based undeniable signature scheme. The
following table summarizes the known ID-based undeniable signature schemes
in the literature.

Table 1. ID-based Undeniable Signature Scheme in the Literature

Scheme S-Convert U-Convert Security
Han-Yeung-Wang’s [14] broken[22]

Chow’s [5] � No Proof Provided

Libert and Quisquater’s [15] � Pairing Related Assumptions

Galindo-Herranz-Kiltz’s [13] � � Generic Construction

1.2 Our Motivations

In CT-RSA 2004, the security models of ID-based undeniable signatures were
formalized by Libert and Quisquater [15]. However, the security of convertible
ID-based undeniable signature has not been formally defined yet. In an unde-
niable signature with convertibility, the universal proof or some selective proofs
could be published by the signer, which can help others to check the validity of
the undeniable signatures by themselves. On the other hand, those proofs also
“leak” some additional information to the adversaries and might help the later
to break the schemes. Taking Boyar-Chaum-Damg̊ard-Pedersen’s scheme [1] as
an example, their scheme is secure if the signer does not publish the univer-
sal proof. As long as the universal proof is published, a key-only adversary can
forge a valid signature on any message [18]. Thus, the security models in the ID-
based undeniable signature cannot precisely define the security of its convertible
version. It is worthwhile to formally define the security of ID-based undeniable
signatures with selectively and universally convertibility.
1 The authors claimed that the scheme is a confirmer signature scheme, but it is

actually an undeniable signature scheme which has been pointed out by Zhang,
Safavi-Naini and Susilo in [22].
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Additionally, we are also motivated to construct an ID-based universally-
convertible undeniable signature scheme whose security can be formally proved
with some well-studied security problems. According to the summary given in
Table 1, the only way to obtain an ID-based undeniable signature scheme with
universal convertibility is the generic construction given in [13]. To date, there
exists no concrete scheme which satisfies this property. Galindo-Herranz-Kiltz’s
construction uses the PKI-based undeniable signature scheme as the building
block. That is, if the underlying PKI-based scheme is universally convertible,
then its ID-based version will have this property as well. Therefore, the security of
the resulting ID-based scheme also relies on its PKI-based version. The following
table shows the known PKI-based undeniable signature schemes with universal
convertibility:

Table 2. PKI-based Undeniable Signature Schemes with Universal Convertibility

Scheme Security
Boyar-Chaum-Damg̊ard-Pedersen’s [1] broken[18]

Damg̊ard-Pedersen’s [7] DL related assumptions

Michels-Petersen-Horster’s [18] no proof provided

Michels-Stadler’s [19] sketchy proof provided

Gennaro-Rabin-Krawczyk’s [11] RSA related assumptions

Miyazaki’s [17] sketchy proof provided

Laguillaumie-Vergnaud’s [16] pairing related assumptions

As we can see in Table 2, Boyar-Chaum-Damg̊ard-Pedersen’s scheme has been
broken, and can not be used to construct the ID-based scheme. Other schemes
[17,18,19] only have sketchy proofs, and therefore the security of their schemes
are only heuristic. There are three schemes [7,11,16] which have formal proofs.
However, the proofs in the first two schemes [7,11] only analyze the security of
the basic undeniable signature schemes. Here, the “basic” refers to the scheme
where the property convertibility is not considered in the security analysis and
the adversary is not allowed to obtain any selective or universal proof. It is
only mentioned in [7,11] that their basic schemes could be extended to have the
property convertibility, without proving whether the schemes in [7,11] are still
secure when the selective and universal proofs are published. The only known
universally convertible undeniable signature scheme with formally proof was pro-
posed by Laguillaumie and Vergnaud [16]. The unforgeability of their scheme is
based on the hardness of a well known problem: Computational Diffie-Hellman
problem. However, the invisibility of their scheme is based on (�, 1)-xyz-DCAA
assumption. As pointed out by the authors in [16], this assumption is a non-
standard decisional assumption. Therefore, there is no suitable PKI-based uni-
versally convertible undeniable signature scheme which can serve as the building
block in Galindo-Herranz-Kiltz’s generic construction [13] and obtain a prov-
ably secure ID-based universally-convertible undeniable signature scheme under
well-known security assumptions.
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1.3 Contributions of This Paper

In this paper, we first formalize the security models of the identity-based con-
vertible undeniable signatures. We clearly define the properties that an identity-
based convertible undeniable signature scheme should satisfy. These properties
are defined by the game between the oracles and the adversaries defined in our
paper. Compared with the other model in [15], our new model reflects more
essence of the identity-based undeniable signature with convertibility.

We then give the first concrete example of both selectively and universally-
convertible undeniable signature in the identity-based system. In the new
scheme, the signatures can only be verified with the help of the signer when
they are generated. The signer himself can decide when and how to convert his
signatures into universally verifiable signatures. He can release a selective proof
to make a single undeniable signature publicly verifiable, or publish a univer-
sal proof to convert all his undeniable signatures into ordinary signatures. The
security of the new scheme is formally analyzed in the random oracle model.
Its unforgeability relies on the hardness of the Computational Diffie-Hellman
problem, while the invisibility (and anonymity) is based on the hardness of the
Decisional Bilinear Diffie-Hellman problem. All the security assumptions have
been widely accepted and used in the cryptology research field.

1.4 Organization

This paper is organized as follows. In the next section, we will describe the de-
finition and security models of ID-based convertible undeniable signature. Our
concrete ID-based convertible undeniable signature scheme is presented in Sec-
tion 3. In the same section, we also give the formal security analysis of our
scheme. Finally, Section 4 concludes this paper.

2 Definitions and Security Models of Identity-Based
Convertible Undeniable Signature

2.1 Outline of Identity-Based Convertible Undeniable Signatures

Our ID-based convertible undeniable signature scheme consists of the following
algorithms:

Common Parameter Generation: A probabilistic algorithm that on input
a security parameter k, outputs the system’s master key s and a string cp
which denotes the common scheme parameters including the message space
M and the signature space S. cp is shared among all the users in the system.

Key Extraction: A deterministic algorithm that on input system’s parameter
cp, the master secret key s and an identity IDi of the user, outputs the
secret key SKIDi of the user.

Undeniable Sign: A probabilistic (or deterministic) algorithm that on input
the common parameter cp, the signer S’s secret key SKIDs and the message
m to be signed, outputs S’s convertible undeniable signature σ.
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Undeniable Verify: A deterministic algorithm that on input the common
parameter cp, S’s secret key SKIDs and a message-signature pair (m, σ),
outputs 1 if it is a valid message-signature pair. Otherwise, outputs 0.

Confirmation Protocol: An interactive (or non-interactive) algorithm that
on input the common parameter cp, S’s secret key SKIDs , (possibly) a
Verifier V ’s identity IDv and a message-signature pair (m, σ), outputs a
non-transferable transcript Trans which can convince V about the validity
of σ.

Disavowal Protocol: An interactive (non-interactive) algorithm that on input
the common parameter cp, S’s secret key SKIDs , (possibly) V ’s identity IDv

and a message-signature pair (m, σ), outputs a non-transferable transcript
Trans that shows the invalidity of σ to V .

Selectively Convert: A probabilistic (or deterministic) algorithm that on
input the common parameter cp, S’s secret key SKIDs and the message-
signature pair (m, σ), outputs a selective proof ΠIDs

(m,σ).
Selectively Verify: A deterministic algorithm that on input the common pa-

rameter cp, S’s identity IDs, message-signature pair (m, σ) and its selective
proof ΠIDs

(m,σ), outputs the verification decision d ∈ {Acc, Rej}.
Universally Convert: A deterministic algorithm that on input the common

parameter cp and S’s secret key SKIDs , outputs the universal proof ΠIDs .
Universally Verify: A deterministic algorithm that on input the common

parameter cp, S’s identity IDs, any message-signature pair (m, σ) and the
universal proof ΠIDs , outputs the verification decision d ∈ {Acc, Rej}.

We allow the adversary to access the following oracles and submit their queries
adaptively:

– OSign: On an undeniable sign query (m, IDs), this oracle runs the Unde-
niable Sign algorithm to generate the undeniable signature σ and returns
it to the adversary.

– OV er: On a verify query (m, σ, IDs) (and possibly IDv), this oracle first
runs the Undeniable Verify algorithm to decide whether (m, σ) is a valid
message-signature pair under the public key IDs and outputs the decision
result d ∈ {0, 1}. According to the decision result d, the oracle responds based
on whether a passive attack or an active/concurrent attack is mounted.
1. Active/Concurrent attack: The oracle OV er executes the confirmation/

disavowal protocol with adversary (acting as a cheating verifier) depend-
ing on the verification result d ∈ {0, 1}.

2. Passive attack: The oracle OV er returns a transcript of confirmation pro-
tocol if d = 1. Otherwise, a transcript of disavowal protocol is returned.

– OSCon: On a selectively convert query (m, σ, IDs), this oracle runs the Se-
lectively Convert algorithm to generate the selective proof ΠIDs

(m,σ) and
returns it to the adversary.

– OUCon: On a universally convert query IDs, this oracle runs Universally
Convert algorithm to generate the universal proof ΠIDs and returns it to
the adversary.
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– OCorrupt: On a corruption query ID, this oracle returns the corresponding
secret key to the adversary.

The security of our ID-based convertible undeniable signature will be defined
using the game between these oracles and the adversary. We will focus on the
case when the Confirmation/Disavowal protocol is non-interactive for the rest
of the paper2. The security when confirmation/disavowal protocol is interactive
can be defined analogously.

Notation: In the definition of the security models, we will use the notation:

{Q1, Q2, · · · , Qn} � {O1,O2, · · · ,On}

which denotes that “No query Q ∈ {Q1, Q2, · · · , Qn} is allowed to submit to
any oracle O ∈ {O1,O2, · · · ,On}. Using this notation, the security models can
be described by just pointing out its aim while hiding all details.

2.2 Unforgeability

As the security model defined in [15], the forger F has access to the oracle OSign

and OV er. In addition, we also allow the adversary to submit queries to OSCon

and OUCon adaptively. This is to ensure that the knowledge of the selective or
universal proof does not help the adversary to forge a new valid message signa-
ture pair. The unforgeability of our ID-based convertible undeniable signature
is formally defined as:

Queries: F can submit queries to all the oracles defined in Section 2.1
Output: (m∗, σ∗, ID∗).
Restrictions: (1). (m∗, ID∗) � OSign and ID∗

� OCorrupt (2). (m∗, σ∗) is
valid under the identity ID∗.

The success probability of an adaptively chosen message and chosen identity
forger F wins the above game is defined as Succ FCMA, CIDA

EUF, IDCUS .

Definition 1. We say an identity based convertible undeniable signature scheme
is unforgeable against a (t, qUS , qV , qSC , qUC , qC) forger FCMA, CIDA

EUF, IDCUS, if
FCMA, CIDA

EUF, IDCUS runs in time at most t, makes at most qUS queries to OSign, qV
queries to OV er, qSC queries to OSCon, qUC queries to the OUCon, qC queries
to OCorrupt and Succ FCMA, CIDA

EUF, IDCUS is negligible.

2.3 Invisibility

Given a message-signature pair (m,σ) and the identity IDs of the signer S, the
invisibility property requires that it is difficult to decide whether it is a valid
message-signature pair without the help of the signer, the knowledge of selective
2 If the Confirmation/Disavowal protocol is non-interactive, there is no need to con-

sider the active/concurrent attack [20].
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proof ΠIDs

(m,σ) or universal proof ΠIDs . It is defined using the game between
the oracles in Section 2.1 and an adaptively chosen message and chosen identity
distinguisher DCMA, CIDA

INV, IDCUS . The whole game is divided into two phases.

Phase 1: The distinguisher D can adaptively access all the Oracles.
Output: (m∗, ID∗

s)
Restrictions: (1). ID∗

s � {OUCon, OCorrupt} (2). (m∗, ID∗
s) � OSign.

As a response, OSign chooses a random bit γ ∈ {0, 1}. If γ = 1, this oracle will
run Undeniable Sign algorithm to generate the undeniable signature σ and
sets σ∗ = σ. Otherwise, this oracle chooses a random element σ∗ in the signature
space S. Then, it returns the challenging signature σ∗ to D.

Phase 2: The distinguisher D can still access all the oracles adaptively.
Restrictions: (1). ID∗

s � {OUCon, OCorrupt}. (2). (m∗, ID∗
s) � OSign (3).

(m∗, σ∗, ID∗
s) � {OV er, OSCon}.

Output: γ′ ∈ {0, 1}.

The distinguisher wins the game if γ = γ′. The advantage of the distinguisher
DCMA, CIDA

INV, IDCUS has in the above game is defined as Adv DCMA, CIDA
INV, IDCUS = | Pr[γ =

γ′] − 1/2|.
Definition 2. We say an identity based convertible undeniable signature scheme
is invisible against a (t, qUS, qV , qSC , qUC , qC)-distinguisher DCMA, CIDA

INV, IDCUS, if
DCMA, CIDA

INV, IDCUS runs in time at most t, makes at most qUS queries to OSign, qV

queries to OV er, qSC queries to OSCon, qUC queries to the OUCon, qC queries
to OCorrupt and Adv DCMA, CIDA

INV, IDCUS is negligible.

2.4 Anonymity

Essentially, the anonymity property requires that given a valid message-signature
pair (m, σ) and two possible signers’ identities ID0, ID1, it is computationally
impossible to decide who generated this signature. This property was introduced
to the undeniable signature by Galbraith and Mao [9]. The authors suggested
that anonymity is the most relevant security property for undeniable signatures.
In our ID-based convertible undeniable signatures, this property is defined using
the game between the oracles in Section 2.1 and an adaptively chosen message
and chosen identity distinguisher DCMA, CIDA

ANONY, IDCUS . Similarly to the models de-
fined in Section 2.3, the whole game is divided into two phases.

Phase 1: The distinguisher D can adaptively access all the Oracles.
Output: (m∗, ID∗

0 , ID∗
1).

Restrictions:
(1).{ID∗

0 , ID∗
1}�{OUCon, OCorrupt}. (2). {(m∗, ID∗

0), (m
∗, ID∗

1)}�OSign.

As a response, OSign chooses a random bit γ ∈ {0, 1}. If γ = 0, this oracle will
run Undeniable Sign algorithm to generate the undeniable signature σ under
the secret key SK∗

ID0
. Otherwise, it will run Undeniable Sign algorithm to

generate the undeniable signature σ under the secret key SK∗
ID1

. Then, it returns
the challenging signature to D.
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Phase 2: The distinguisher D can adaptively access all the Oracles.
Restrictions:

(1).{ID∗
0 , ID∗

1}�{OUCon, OCorrupt}. (2). {(m∗, ID∗
0), (m

∗, ID∗
1)}�OSign.

(3). {(m∗, σ∗, ID∗
0), (m∗, σ∗, ID∗

1)}�{OSCon, OV er}.
Output: γ′ ∈ {0, 1}.

The adversary wins the game if γ = γ′. The advantage of the distinguisher
DCMA, CIDA

ANONY, IDCUS has in the above game is defined as Adv DCMA, CIDA
ANONY, IDCUS =

| Pr[γ′ = γ] − 1/2|.

Definition 3. We say an identity based convertible undeniable signature scheme
is anonymous against a (t, qUS , qV , qSC , qUC ,qC)-distinguisher DCMA, CIDA

ANONY, IDCUS,
if DCMA, CIDA

ANONY, IDCUS runs in time at most t, makes at most qUS queries to OSign,
qV queries to OV er, qSC queries to OSCon, qUC queries to the OUCon, qC queries
to OCorrupt and Adv DCMA, CIDA

ANONY, IDCUS is negligible.

According to the analysis in [9] and [15], the property anonymity and invisibility
are equivalent in the ID-based system.

2.5 Non-impersonation

The Non-Impersonation requires that only the signer has the ability to convince
or disavowal an undeniable signature. It can be further divided by the following
three types:

1. Type1: Impersonation of Selectively Convert Algorithm
In this case, the impersonator I can adaptively access all the Oracles. After
all the queries, I outputs a valid selective proof Π

ID∗
s

(m∗,σ∗) with the restrictions
that (m∗, σ∗, ID∗

s) � OSCon and ID∗
s � {OUCon, OCorrupt}.

2. Type2: Impersonation of Universally Convert algorithm
In this case, the impersonator I can adaptively access all the Oracles. After
all the queries, I outputs a universal proof ΠID∗

s
with the restriction that

ID∗
s � {OUCon, OCorrupt}.

3. Type3: Impersonation of Confirmation/Disavowal protocol
In this case, the impersonator I can adaptively access all the Oracles. After
all the queries, I can output (m∗, σ∗, T rans∗, ID∗

s , ID∗
v) such that Trans∗

can confirm or deny the undeniable signature σ∗. The only restrictions are
that {ID∗

s , ID∗
v} � OCorrupt and (m∗, σ∗, ID∗

s , ID∗
v) � OV er.

The success probability of an adaptively chosen message and chosen identity im-
personator I wins the above game is defined as Succ ICMA, CIDA

Typei, IDCUS , i ∈ {1, 2, 3}.

Definition 4. We say an identity based convertible undeniable signature scheme
is non-impersonated against a (t, qUS , qV , qSC, qUC , qC)-adversary ICMA, CIDA

IDCUS ,
if ICMA, CIDA

IDCUS runs in time at most t, makes at most qUS queries to OSign, qV

queries to OV er, qSC queries to OSCon, qUC queries to the OUCon, qC queries
to OCorrupt and Succ ICMA, CIDA

Typei, IDCUS(i = 1, 2, 3) is negligible.
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3 Proposed Scheme

In this section, we will first review some fundamental backgrounds which are re-
lated to our schemes. Then we will describe our ID-based convertible undeniable
signature with a security and efficiency analysis.

3.1 Bilinear Maps

Let G1 and GT be two groups of prime order p and let g be a generator of G1.
The map e : G1 × G1 → GT is said to be an admissible bilinear map if the
following three conditions hold true: (i) e is bilinear, i.e. e(aP, bP ) = e(P, P )ab

for all a, b ∈ ZZp. (ii) e is non-degenerate, i.e. e(P, P ) �= 1GT . (iii) e is efficiently
computable. We say that (G1, GT ) are bilinear groups if there exists the bilinear
maps e : G1 × G1 → GT as above, and e, and the group action in G1 and GT

can be computed efficiently. See [3] for more details on the construction of such
pairings.

Computational Diffie-Hellman Problem (CDH) in G1: Given a triple G1

elements (P, aP, bP ), find the element C = abP .

Decisional Bilinear Diffie-Hellman Problem (DBDH) in G1: Given a
5-triple G1 elements (P, aP, bP, cP, H), decide whether H = e(P, P )abc.

3.2 Concrete Scheme

In this section, we will describe our construction of ID-based convertible unde-
niable signature scheme. It consists of the following algorithms:

Common Parameter Generation: Let (G1, GT ) be the bilinear groups and
e be the pairing G1 × G1 → GT . The order of G1 is p where p ≥ 2k, k
is the system’s security number. The generator of G1 is P . The Private
Key Generator (PKG) chooses a random number s ∈ ZZp which is set as
the master secret key. The system’s master public key is set as Ppub = sP .
There are four cryptographic hash functions: H1, H2 : {0, 1}∗ → G1, H3 :
G1 × GT → G1 and H4 : {0, 1}∗ → ZZp.

Key Extraction: In our scheme, each user ID has two private keys SKID and
V KID. SKID can be regarded as the signing key and V KID is the verifying
key. At the beginning, both of them are kept as secrets but V KID can be
published later when ID wants to convert all his undeniable signatures into
publicly verifiable ones. Similarly to the traditional ID-based system, both
two keys are generated by PKG where SKID = sH1(ID) and V KID =
sH1(ID‖Undeniable).

Undeniable Sign: The signer S generates a convertible undeniable signature
for message m as follows:
– Uses his private key V KIDs to compute U = e(V KIDs , H2(m)),
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– Chooses a random number v ∈ ZZp and sets V = vP , W = SKIDs +
vH3(U‖V ).

The undeniable signature of the message m is set to be σ = (U, V, W ).

Undeniable Verify: For a message/signature pair (m, σ) where σ is (U, V, W ),
– The signer S firstly checks whether e(W, P ) ?= e(H1(IDs), Ppub)e(H3(U‖

V ), V ). If the equation does not hold, output 0. Otherwise,
– S checks whether U = e(H2(m), V KIDs). If the equation holds, output

1. Otherwise, output 0.

Confirmation Protocol: Given the verifier V ’s identity IDv and a valid
message-signature pair (m, σ) to be confirmed, the signer S will use the
designated verifier techniques [12] to prove its validity.
– S chooses r, cv ∈R ZZp, Cv ∈R G1, then computes

1. R1 = e(P, P )r , R2 = e(P, H2(m))r and R3 = e(Cv, P )e(H1(IDv),
Ppub)cv ,

2. c = H4(IDs‖IDv‖R1‖R2‖R3‖m‖σ), cs = c−cv (mod p), Cs = rP −
csV KIDs .

S then sends (cs, cv, Cs, Cv) to the verifier V as the transcript of Con-
firmation Protocol.

– On receiving (cs, cv, Cs, Cv) and the message-signature pair (m, σ) where
σ is (U, V, W ), the verifier
1. checks whether e(W, P ) ?= e(H1(IDs), Ppub)e(H3(U‖V ), V ). If the

equality holds, then
2. computes R′

1 = e(Cs, P )e(H1(IDs‖Undeniable), Ppub)cs , R′
2 =e(Cs,

H2(m))U cs , R′
3 = e(Cv, P ) e(H1(IDv), Ppub)cv and

3. checks whether cs + cv
?= H4(IDs‖IDv‖R′

1‖R′
2‖R′

3‖m‖σ). If the
equality holds as well, V will accept σ as a valid undeniable sig-
nature of message m.

Disavowal Protocol: Given the verifier V ’s identity IDv and a message-
signature pair (m, σ) where σ is (U, V, W ) to be denied,
– signer S firstly chooses z, dv, α, β ∈R ZZp, Dv ∈R G1 and computes:

1. A = [ e(V KIDs ,H2(m))
U ]z �= 1, B = [e(P,H2(m))]α

Uβ ,
C = e(P,P )α

e(H1(IDs‖Undeniable),Ppub)β andD =e(Dv, P )e(H1(IDv), Ppub)dv ,
2. d = H4(IDs‖IDv‖A‖B‖C‖D‖m‖σ), ds = d − dv (mod p),
3. Ds = αP + dszV KIDs , d̂s = β + dsz (mod p),

S then sends (A, ds, dv, d̂s, Ds, Dv) to the verifier V .
– On receiving (A, ds, dv, d̂s, Ds, Dv) and the message-signature pair (m, σ)

where σ = (U, V, W ), the verifier V

1. checks whether e(W, P ) ?= e(H1(IDs), Ppub)e(H3(U‖V ), V ). If the
equality does not hold, A will believe that σ is not a valid undeniable
signature.

2. computes B′ = e(Ds,H2(m))

U�ds ·Ads
, C′ = e(Ds,P )

e(H1(IDs‖Undeniable),Ppub)
�ds

, D′ =

e(Dv, P )e(H1(IDv), Ppub)dv .
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If A �= 1 and ds + dv = H4(IDs‖IDv‖A‖B′‖C′‖D′‖m‖σ) holds, V will
believe that σ is an invalid undeniable signature of message m.

Selectively Convert: Given a message/signature pair (m, σ) where σ =
(U, V, W ),
1. If e(W, P )=e(H1(IDs), Ppub)e(H3(U‖V ), V ) and U= e(H2(m), V KIDs),

S will generate the selective proof as follows: he firstly chooses a random
number r ∈ ZZp and computes R1 = e(P, P )r, R2 = e(P, H2(m))r and
computes c = H4(IDs‖R1‖R2‖m‖σ), C = rP − cV KIDs . The selective
proof is ΠIDs

(m,σ) = (c, C) which will prove that σ is a valid undeniable
signature of the message m.

2. Else, if e(W, P ) = e(H1(IDs), Ppub)e(H3(U‖V ), V ) but U �= e(H2(m),
V KIDs), the proof is generated as follows: The signer S firstly chooses
z, α, β ∈R ZZP and computes:
(a) A = [ e(V KIDs ,H2(m))

U ]z �= 1, B = [e(P,H2(m))]α

Uβ ,
C = e(P,P )α

e(H1(IDs‖Undeniable),Ppub)β ,

(b) d = H4(IDs‖A‖B‖C‖m‖σ), Ds = αP + dzV KIDs , d̂s = β + dz
(mod p),

The selective proof is ΠIDs

(m,σ) = (A, d, Ds, d̂s) which will prove that σ is
an invalid undeniable signature of the message m.

3. Otherwise, e(W, P ) �= e(H1(IDs), Ppub)e(H3(U‖V ), V ), signer S does
not need to do anything since anyone can find that σ is not valid.

Selectively Verify: Given the selective proof ΠIDs

(m,σ) of the message-signature

pair (m, σ) where σ = (U, V, W ), anyone can check whether e(W, P ) ?=
e(H1(IDs), Ppub)e(H3(U‖V ), V ).
– If the equality does not hold, output Rej which means the signature σ

is not valid.
– Else, if ΠIDs

(m,σ) = (c, C), then check whether

c
?= H4(IDs‖e(C, P )e(H1(IDs‖Undeniable), Ppub)c‖e(C, H2(m))U c‖m‖σ).

If it holds, one will accept σ as a valid signature and output Acc.
– Otherwise, ΠIDs

(m,σ) = (A, d, Ds, d̂s), then one continues to compute B′ =
e(Ds,H2(m))

U�ds ·Ad
and C′= e(Ds,P )

e(H1(IDs‖Undeniable),Ppub)
�ds

. Then, he checks whether

d
?= H4(IDs‖A‖B′‖C′‖m‖σ). If A �= 1 and the equation holds, one will

reject σ as an invalid signature and output Rej.

Universally Convert: In order to convert all the undeniable signatures into
publicly verifiable ones, the signer IDs publishes his verify key V KIDs as
the universal proof ΠIDs .

Universally Verify: Given a message/signature pair (m, σ) where σ =
(U, V, W ) and V KIDs ,
– Anyone can check whether e(V KIDs , P )=e(H1(IDs‖Undeniable), Ppub).

If the equation does not hold, which means V KIDs is not valid and the
verification halts. Otherwise,
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– one continues to check whether e(W, P )=e(H1(IDs), Ppub)e(H3(U‖V),V).
If the equation does not hold, output Rej. Otherwise,

– check whether U = e(V KIDs , H2(m)). If the equation holds as well,
output Acc. Otherwise, output Rej.

3.3 Security Analysis

In this section, we will formally prove the security of the proposed scheme.

Analysis of the Confirmation and Disavowal Protocols
Our confirmation protocol is inspired from a designated verifier proof [12] pro-
posed by Jakobsson, Sako and Impagliazzo that allows a prover to convince a
designated verifier of the equality of two discrete logarithms. The denial pro-
tocol is an adaptation of a protocol proposed by Camenisch and Shoup [6] to
prove the inequality of two discrete logarithms. The Confirmation and Disavowal
protocols in our scheme have also been used in [15]. According to the analysis
given in [15], both of the two protocols satisfy the completeness, soundness and
non-transferability. Therefore, we will not show the detail here and please refer
to [15] for the detail of the analysis.

Theorem 1. If there exists a (t, qUS , qV , qSC , qUC , qC)-forger FCMA, CIDA
EUF, IDCUS

who can additionally submit qHi queries to the random oracle Hi for i ∈{1, 2, 3, 4}
and win the game defined in Section 2.2 with non-negligible success probability
Succ FCMA, CIDA

EUF, IDCUS, then there exists an algorithm A who can use F to solve
a random instance of Computational Diffie-Hellman problem with probability
SuccCDH

A,G1
≥ 1

qH1
(1 − 1

qH1
)qC Succ FCMA,CIDA

EUF,IDCUS in polynomial time.

Theorem 2. If there exists a (t, qUS , qV , qSC , qUC , qC)-distinguisher
DCMA, CIDA

INV, IDCUS who can additionally submit qHi queries to the random oracle Hi

for i ∈ {1, 2, 3, 4} and win the game defined in Section 2.3 with non-negligible
advantage Adv DCMA, CIDA

INV, IDCUS , then there exists an algorithm A who can use D to
solve a random instance of Decisional Bilinear Diffie-Hellman problem with the
advantage Adv DBDH

A,G1
≥ 1

qH1qH2
(1− 1

qH1 qH2
)qUS (1− 1

qH1
)qUC+qC Adv DCMA, CIDA

INV, IDCUS

in polynomial time.

Theorem 3. Our proposed scheme is secure against the impersonator defined in
Section 2.5 under the assumption that the Computational Diffie-Hellman problem
is hard in G1.

Due to the page limitation, we omit the proofs of the above three theorems.
Please refer to the full version for the details.

4 Conclusion

We presented a first concrete example of identity-based convertible undeniable
signature scheme with selective and universal convertibility with provable secu-
rity. The signatures of our scheme are not publicly verifiable at the time they are
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generated, while the signer has the choice to decide when and how to make his
signatures publicly verifiable, by releasing a selective proof or universal proof.
Compared with generic construction of identity-based undeniable signature, our
concrete scheme is based on standard security assumptions.

Acknowledgement. The authors would like to thank the anonymous referees of
the 3rd SKLOIS Conference on Information Security and Cryptology (Inscrypt
2007) for the suggestions to improve this paper.
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Abstract. This paper proposes a new ID-based proxy signature scheme
based on the bilinear pairings. The number of paring operation involved
in the verification procedure of our scheme is only one, so our scheme
is more efficient comparatively. The new scheme can be proved secure
with the hardness assumption of the k-Bilinear Diffie-Hellman Inverse
problem, in the random oracle model.

Keywords: ID-based cryptography, proxy signatures, bilinear pairings.

1 Introduction

In 1984, Shamir [1] first proposed the idea of ID-based public key cryptography
(ID-PKC) to simplify key management procedure of traditional certificate-based
PKI. In ID-PKC, an entity’s public key is directly derived from certain aspects
of its identity, such as an IP address belonging to a network host or an e-mail ad-
dress associated with a user. Private keys are generated for entities by a trusted
third party called a private key generator (PKG). The direct derivation of public
keys in ID-PKC eliminates the need for certificates and some of the problems as-
sociated with them. Recently, due to the contribution of Boneh and Franklin [2],
a rapid development of ID-PKC has taken place. Using bilinear pairings, people
proposed many new ID-based signature schemes [3,4,5]. With these ID-based
signature schemes, a lot of new extensions, such as ID-based proxy signature
scheme, ID-based ring signature scheme, etc.[6,7], have also been proposed.

A proxy signature scheme allows one entity, called original signer, to dele-
gate her signing capability to one or more entities, called proxy signers. Then
the proxy signer can generate proxy signatures, which are signatures of some
messages on behalf of the original signer. Upon receiving a proxy signature, a
verifier can validate its correctness by the given verification procedure, and then
is convinced of the original signer’s agreement on the signed message.

Since Mambo, Usuda and Okamoto [8] first introduced the proxy signature
scheme, many new constructions have been proposed. Based on the delegation
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type, proxy signatures can be classified as full delegation, partial delegation and
delegation by warrant. In [9], Kim et al provided a new type of delegation called
partial delegation with warrant, which can be considered as the combination of
partial delegation and delegation by warrant. Depending on whether the original
signer can generate the same proxy signatures as the proxy signers do, there are
two kinds of proxy signature schemes: proxy-unprotected and proxy-protected.
In practice, the proxy-protected partial delegation by warrant schemes have at-
tracted much more investigations than others, because they clearly distinguish
the rights and responsibilities between the original signer and the proxy signer.
In this paper, we will also focus on this kind of schemes. In fact, for simplicity,
this special kind of schemes are often called proxy signature schemes.

In [6], Zhang and Kim provided an ID-based proxy signature scheme based
on pairings. The scheme is similar to Kim et al.’s scheme [9] which is based on
certificate-based public key setting. There are no security proof in their original
work. Later, Gu and Zhu [10] gave a formal security model for ID-based proxy
signature schemes and provided a security proof for the scheme of Zhang and
Kim in the random oracle model.

In this paper, we provide a more efficient ID-based proxy signature scheme
from pairings. The new scheme can be proved secure in the random oracle model.
The rest of this paper is organized as follows: In Section 2, we recall some
preliminary works. In Section 3, we present a new ID-based proxy signature
scheme with a correctness and efficiency analysis. In Section 4, we offer a formal
security proof in the random orale model. Finally, we conclude in Section 5.

2 Preliminaries

2.1 Bilinear Pairings

Let (G1, +) and (G2, ·) be two cyclic groups of prime order q. ê : G1 × G1 → G2

be a map which satisfies the following properties.

1. Bilinear: ∀P, Q ∈ G1, ∀α, β ∈ Zq, ê(αP, βQ) = ê(P, Q)αβ ;
2. Non-degenerate: If P is a generator of G1, then ê(P, P ) is a generator of G2;
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

Such an bilinear map is called an admissible bilinear pairing [2]. The Weil pair-
ings and the Tate pairings of elliptic curves can be used to construct efficient
admissible bilinear pairings.

We review a complexity problem related to bilinear pairings: the Bilinear
Diffie-Hellman Inverse (BDHI) problem [11]. Let P be a generator of G1, and
a ∈ Z∗

q .

– k-BDHI problem: given (P, aP, a2P, ...akP ) ∈ (G∗
1)

k+1, output ê(P, P )a−1
.

An algorithm A solves k-BDHI problem with the probability ε if

Pr[A(P, aP, a2P, ...akP ) = ê(P, P )a−1
] ≥ ε,
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where the probability is over the random choice of generator P ∈ G∗
1, the

random choice of a ∈ Z∗
q and random coins consumed by A.

We assume through this paper that the k-BDHI problem is intractable, which
means that there is no polynomial time algorithm to solve k-BDHI problem with
non-negligible probability.

2.2 ID-Based Proxy Signatures

In this paper, unless stated otherwise, let A be the original signer with identity
IDA and private key DA. He delegates his signing rights to a proxy signer B with
identity IDB and private key DB. A warrant is used to delegate signing right.
In [10], Gu and Zhu gave a formal security model for ID-based proxy signature
schemes.

Definition 1. [10] An ID-based proxy signature scheme is specified by eight
polynomial-time algorithms with the following functionalities.

– Setup: The parameters generation algorithm, takes as input a security pa-
rameter k ∈ N (given as 1k ), and returns a master secret key s and system
parameters Ω. This algorithm is performed by PKG.

– Extract: The private key generation algorithm, takes as input an identity
IDU ∈ {0, 1}∗, and outputs the secret key DU corresponding to IDU . PKG
uses this algorithm to extract the users’ secret keys.

– Delegate: The proxy-designation algorithm, takes as input A’s secret key
DA and a warrant mω, and outputs the delegation WA→B .

– DVerify:The designation-verification algorithm, takes as input IDA, WA→B

and verifies whether WA→B is a valid delegation come from A.
– PKgen: The proxy key generation algorithm, takes as input WA→B and

some other secret information z (for example, the secret key of the executor),
and outputs a signing key Dp for proxy signature.

– PSign: The proxy signing algorithm, takes as input a proxy signing key Dp

and a message m ∈ {0, 1}∗, and outputs a proxy signature (m, δ).
– PVerify: The proxy verification algorithm, takes as input IDA, IDB and a

proxy signature (m, δ), and outputs 0 or 1. In the later case, (m, δ) is a valid
proxy signature of A.

– ID: The proxy identification algorithm, takes as input a valid proxy signature
(m, δ), and outputs the identity IDB of the proxy signer.

An ID-based proxy signature scheme should first be correct. That is, ∀ m, mω

∈ {0, 1}∗, it should have the following properties:

1. DV erify(Delegate(mω, DA), IDA) = 1
2. For WA→B = Delegate(mω, DA), let DP ← PKgen(WA→B, DB), then

PV erify(PSign(m, DP ), IDA, IDB) = 1, and ID(PSign(m, DP )) = IDB.

We consider an adversary A which is assumed to be a probabilistic Turing
machine which takes as input the global scheme parameters and a random tape.
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Definition 2. [10] For an ID-based proxy signature scheme ID PS. We define
an experiment ExpID PS

A (k) of adversary A and security parameter k as follows:

1. A challenger C runs Setup and gives the system parameters Ω to A.
2. Clist ← ∅, Dlist ← ∅, Glist ← ∅, Slist ← ∅. (∅ means NULL.)
3. Adversary A can make the following requests or queries adaptively.

– Extract(.): This oracle takes as input a user’s IDi, and returns the
corresponding private key Di. If A gets Di ← Extract(IDi), let Clist ←
Clist ∪ {(IDi, Di)}.

– Delegate(.): This oracle takes as input the designator’s identity ID and
a warrant mω, and outputs a delegation W . If A gets W ← Delegate
(ID, mω), let Dlist ← Dlist ∪ {(ID, mω, W )}.

– PKgen(.): This oracle takes as input the proxy signer’s ID and a
delegation W , and outputs a proxy signing key Dp. If A gets Dp ←
PKgen(ID, W ), let Glist ← Glist ∪ {(ID, W, Dp)}.

– PSign(.): This oracle takes as input the delegation W and message m ∈
{0, 1}∗, and outputs a proxy signature created by the proxy signer. If A
gets (m, τ) ← PSign(W, m), let Slist ← Slist ∪ {(W, m, τ)}.

4. A outputs (ID, mω, W ) or (W, m, τ).
5. If A’s output satisfies one of the following terms, A’s attack is successful.

– The output is (ID, mω, W ), and satisfies: DV erify(W, ID) = 1,
(ID, .) /∈ Clist, (ID, ., .) /∈ Glist and (ID, mω , .) /∈ Dlist. ExpID PS

A (k)
returns 1.

– The output is (W, m, τ), and satisfies PV erify((m, τ), IDi, IDj) = 1,
(W, m, .) /∈ Slist, and (IDj , .) /∈ Clist, (IDj , W, .) /∈ Glist, where IDi and
IDj are the identities of the designator and the proxy signer defined by
W , respectively. ExpID PS

A (k) returns 2.
Otherwise, ExpID PS

A (k) returns 0.

Definition 3. [10] An ID-based proxy digital signature scheme ID PS is said
to be existential delegation and signature unforgeable under adaptive chosen mes-
sage and ID attacks (DS-EUF-ACMIA), if for any polynomial time adversary
A, any polynomial p(.) and big enough k,

Pr[ExpID PS
A (k) = 1] <

1
p(k)

and Pr[ExpID PS
A (k) = 2] <

1
p(k)

3 A New Efficient ID-Based Proxy Signature Scheme

In this section, we present a new efficient ID-based proxy signature scheme. Our
scheme is based on a variation of the ID-based signature scheme proposed by
Barreto et.al [5] in Asiacrypt’05. The method for obtaining private keys from
identities is a simplification of a method suggested by Sakai and Kasahara [12].
This leads to a more efficient performance.
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3.1 Description of the Scheme

The new scheme can be described as follows:

– Setup: Takes as input a security parameter k, and returns a master key
s and system parameters Ω = (G1, G2, q, ê, P, Ps, Pss, g, gs, H1, H2), where
(G1, +) and (G2, ·) are two cyclic groups of order q, ê : G1 × G1 → G2 is an
admissible bilinear map, Ps = sP , Pss = s2P , g = ê(P, P ), gs = ê(Ps, P ),
H1 : {0, 1}∗ → Z∗

q and H2 : {0, 1}∗ × G1 → Zq are hash functions.
– Extract: Takes as input an identity IDX ∈ {0, 1}∗, computes DX =

(H1(IDX) + s)−1P , and lets DX be the user’s secret key.
– Delegate: Takes as input the secret key DA, the proxy signer’s identity

IDB and a warrant mω, selects a random x ∈ Z∗
q , computes qB = H1(IDB),

rA = gx
s · gqBx, hA = H2(mω, rA), VA = (x + hA)DA, and outputs the

delegation WA→B = (mω, rA, VA).
– DVerify: Once B receives WA→B = (mω, rA, VA), he computes hA =

H2(mω , rA), qA = H1(IDA), qB = H1(IDB), and accepts the delegation
only if

ê((qA + qB)Ps + qAqBP + Pss, VA) = rA · ghA
s · gqBhA .

– PKgen: If B accepts the delegation WA→B = (mω, rA, VA), he computes
the proxy signing key DP as DP = hA · DB − VA, where hA = H2(mω, rA).

– PSign: The proxy signer can pre-compute ξ = ghA(qA−qB)/rA, where qA =
H1(IDA), qB = H1(IDB) and rA is from WA→B . Let DP be the proxy
signing key, for a message m, the proxy signer chooses y ∈ Z∗

q at random
and computes rP = ξy, hP = H2(m, rP ), VP = (y+hP )DP , and lets (m, τ) =
(m, rP , VP , mω, rA) be the proxy signature for m.

– PVerify: For a proxy signature (m, rP , VP , mω, rA), a recipient first checks
if the proxy signer and the message conform to mω. Then he computes
hP = H2(m, rP ), qA = H1(IDA), qB = H1(IDB) and verifies whether

ê((qA + qB)Ps + qAqBP + Pss, VP ) = rP · ghAhP (qA−qB) · r−hP

A .

If both steps succeed, the proxy signature on behalf of A is valid.
– ID: The proxy signer’s identity IDB can be revealed by mω.

3.2 Correctness and Efficiency

Set Q = (qA + qB)Ps + qAqBP + Pss. Consistency of the scheme is easily proved
as follows: For any mω ∈ {0, 1}∗, Delegate(mω, DA) = (mω, rA, VA), hA =
H2(mω, rA). Then,

ê(Q, VA) = ê((qA + s)(Ps + qBP ), (x + hA)(qA + s)−1P )
= ê(Ps + qBP, (x + hA)P )
= rA · (gs · gqB )hA

That is, DV erify(Delegate(mω, DA), IDA) = 1. On the other hand,

DP = PKgen((mω, rA, VA), DB) = hA · DB − VA =
hA(qA − qB) − x(s + qB)

(s + qA)(s + qB)
P.
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For any m ∈ {0, 1}∗, PSign(m, DP ) = (m, rP , VP , mω, rA), hP =
H2(mω, rP ). Then,

ê(Q, VP ) = ê((qA + s)(s + qB)P, (y + hP )
hA(qA − qB) − x(s + qB)

(s + qA)(s + qB)
P )

= ê(P, (hA(qA − qB) − x(s + qB))P )(y+hP )

= (ghA(qA−qB)/gx(s+qB))(y+hP )

= (ghA(qA−qB)/rA)(y+hP )

= rP · (ghA(qA−qB)/rA)hP

Hence, PV erify(PSign(m, DP ), IDA, IDB) = 1. mω designates the identity
of the proxy signer, and it is a part of the signature. So it is easy to see that
ID(PSign(m, DP )) = IDB.

Denote by M an ordinary scalar multiplication in (G1, +), by E an Exp.
operation in (G2, .), and by ê a computation of the pairing. The hash function
maps an identity to an element in G1 used by the scheme in [6] usually requires a
”Maptopoint operation” [2]. As discussed in [2], Maptopoint operation (denoted
by H) is so inefficient that we can’t neglect it. Do not take other operations into
account. We compare our new scheme to the ID-based proxy signature scheme
of Zhang and Kim [6] in the following table.

schemes Delgate DVerify PKgen PSign PVerify
Zhang-Kim [6] 2M + 1E 2ê + 1E + 1H 1M 2M + 1E 2ê + 2E + 2H

proposed 1M + 2E 1ê + 2M + 2E 1M 1M + 1E 1ê + 2M + 2E

Note: The hash function used in our scheme which maps an identity to an
element in Z∗

q is so efficient that we usually can neglect it.
Some general performance enhancements can be applied to our schemes. For

pre-selected P ∈ G1 and μ ∈ G2, there are efficient algorithms [13] to compute
kP and μl for random k, l ∈ Zq by pre-computing and storing. In our scheme,
P , Ps and g, gs are fixed system parameters. And for the signer and the proxy
signer, their secret keys are also fixed.

4 Security Proof

In this section, we reduce the security of our scheme to the hardness assumption
of k-BDHI problem in the random oracle model.

Assume there is an adversary F0 who can break the ID-based proxy signature
scheme. We will construct a polynomial time algorithm F1 that, by simulating
the challenger and interacting with F0, solves (n1 +1)-BDHI problem, where n1

is the number of queries that F0 can ask to the random oracle H1(.).

Lemma 1. Given system parameters Ω = (G1, G2, q, ê, P, Ps, Pss, g, gs, H1, H2)
and identities IDA, IDB ∈ {0, 1}∗, let qA = H1(IDA), qB = H1(IDB), DA =
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(s + qA)−1P , and T = (qA + qB)Ps + qAqBP + Pss, the following distributions
are the same.

δ=

⎧
⎪⎪⎨
⎪⎪⎩

(r, h, V )

∣∣∣∣∣∣∣∣

x ∈R Z∗
q

h ∈R Zq

r = gx
s · gxqB

V = (x + h)DA

⎫
⎪⎪⎬
⎪⎪⎭

and δ′=

⎧
⎪⎪⎨
⎪⎪⎩

(r, h, V )

∣∣∣∣∣∣∣∣

V ∈R G1

h ∈R Zq

r = ê(T, V ) · g−h
s · g−qBh

r 	= 1

⎫
⎪⎪⎬
⎪⎪⎭

Proof: First we choose a triple (α, β, γ) such that α ∈ G∗
2,β ∈ Zq,γ ∈ G1

and satisfying α = ê(T, γ) · g−β
s · g−βqB . We then compute the probability of

appearance of this triple following each distribution of probabilities:

Prδ[(r, h, V ) = (α, β, γ)] = Prx �=0

⎡
⎣

α = gx
s · gxqB

h = β
(x + h)DA = γ

⎤
⎦ =

1
q(q − 1)

.

P rδ′ [(r, h, V ) = (α, β, γ)] = Prr �=1

⎡
⎣

h = β
V = γ
α = r = ê(T, V ) · g−h

s · g−qBh

⎤
⎦ =

1
q(q − 1)

.

Hence, we can simulate the Delegate(.) oracle for input (IDA, IDB, mω) with-
out the secret key DA indistinguishably from the real one as following:

– SD(IDA, IDB, mω):
• Pick randomly VA ∈ G1, hA ∈ Zq.
• Compute rA = ê((qA + qB)Ps + qAqBP + Pss, VA) · g−hA

s · g−qBhA , where
qA = H1(IDA), qB = H1(IDB),

• If H2(mω , rA) has been defined, then abort (a collision appears). Other-
wise, set H2(mω , rA) = hA.

• Set W = (mω, rA, VA).

Lemma 2. Given system parameters Ω =(G1, G2, q, ê, P, Ps, Pss, g, gs, H1, H2),
identities IDA, IDB ∈ {0, 1}∗ and WA→B = (mω, rA, VA), let qA = H1(IDA),
qB = H1(IDB), hA = H2(mω , rA), DB = (s + qB)−1P , DP = hADB − VA, ξ =
ghA(qA−qB)/rA and T = (qA + qB)Ps + qAqBP + Pss, the following distributions
are the same.

δ =

⎧
⎪⎪⎨
⎪⎪⎩

(rP , hP , VP )

∣∣∣∣∣∣∣∣

y ∈R Z∗
q

hP ∈R Zq

rP = ξy

VP = (y + hP )DP

⎫
⎪⎪⎬
⎪⎪⎭

and

δ′ =

⎧
⎪⎪⎨
⎪⎪⎩

(rP , hP , VP )

∣∣∣∣∣∣∣∣

VP ∈R G1

hP ∈R Zq

rP = ê(T, VP ) · (g−hA(qA−qB) · rA)hP

r 	= 1

⎫
⎪⎪⎬
⎪⎪⎭

Proof: Readers can see that the proof is almost the same as that of Lemma 1.
We omit it in this paper.

That is, we can simulate the PSign(.) oracle for input (WA→B =
(mω, rA, VA), m) without the secret proxy key DP indistinguishably from the
real one as following:
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– SPS(WA→B , m):
• Pick randomly VP ∈ G1, hP ∈ Zq.
• Check whether H2(mω, rA) is defined. If not, request oracle H2(.) with

(mω, rA). Let H2(mω, rA) = e.
• Compute rP = ê((qA + qB)Ps + qAqBP + Pss, VP ) · (g−e(qA−qB) · rA)hP ,

where qA = H1(IDA), qB = H1(IDB).
• If H2(m, rP ) has been defined, then abort(a collision appears). Other-

wise, set H2(m, rP ) = hP .
• Let (m, τ) = (m, rP , VP , mω, rA) be the reply.

Theorem 1. In the random oracle mode, let F0 be a polynomial-time adversary
who manages an ExpID PS

A (k) within a time bound T (k), and gets return 1 or
2 by non-negligible probability ε(k). We denote respectively by n1,n2 and n3 the
number of queries that F0 can ask to the random oracle H1(.), H2(.) and the
proxy singing oracle PSign(.). Assume that ε(k) ≥ 10(n3+1)(n2+n3)n1/q, then
there is an adversary F1 who can solve (n1 + 1)-BDHI problem within expected
time less than 120686 · n2 · n1 · T (k)/ε(k).

Proof: Without any loss of generality, we may assume that for any ID, F0

queries H1(.) with ID before ID is used as (part of) an input of any query to
Extract(.), Delegate(.), PKgen(.) and PSign(.), by using a simple wrapper of
F0.

F1 is given input parameters of pairing (q, G1, G2, ê) and a random instance
(P, aP, a2P, ..., an1P, an1+1P ) of the (n1 +1)-BDHI problem, where P is random
in G∗

1 and a is a random in Z∗
q . F1 simulates the challenger and interacts with

F0 as follows:

1. F1 randomly chooses different h0, h1, ...hn1−1 ∈ Z∗
q , and computes f(x) =∏n1−1

i=1 (x + hi) =
∑n1−1

i=0 cix
i.

2. F1 computes Q =
∑n1−1

i=0 cia
iP = f(a)P , aQ =

∑n1−1
i=0 cia

i+1P , a2Q =∑n1−1
i=0 cia

i+2P , and Q′ =
∑n1−1

i=1 cia
i−1P . In the (unlikely) situation where

Q = 1G1 , there exists an hi = −a, hence, F1 can solve the (n1 + 1)-BDHI
problem directly and abort.

3. F1 computes fi(x) = f(x)/(x+hi) =
∑n1−2

j=0 djx
j . Obviously, (a+hi)−1Q =

(a + hi)−1f(a)P = fi(a)P =
∑n1−2

j=0 dja
jP for 1 ≤ i ≤ n1.

4. F1 randomly chooses an index t with 1 ≤ t ≤ n1, sets v = 0.
5. F1 computes g = ê(Q, Q), gs = ê(aQ, Q), sets the system parameters

Ω = (G1, G2, q, ê, Q, aQ, a2Q, g, gs, H1, H2), where H1, H2 are random or-
acles controlled by F1.

6. F1 sets Clist = ∅, Dlist = ∅, Glist = ∅, Slist = ∅, and starts ExpID PS
F0

(k)
by giving F0 the system parameters Ω. During the execution, F1 emulates
F0’s oracles as follows:
– H1(.): F1 maintains a H1 list, initially empty. For a query ID, if ID

already appears on the H1 list in a tuple (ID, l, D), F1 responds with l.
Otherwise, sets v = v + 1, IDv = ID, if v = t, F1 sets lv = h0, Dv = ⊥;
otherwise, F1 selects a random n1 ≥ ϑ > 0 which has not been chosen
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and sets lv = hϑ + h0, Dv = (a + hϑ)−1Q. In both case, adds the tuple
(IDv, lv, Dv) to H1 list and responds with lv.

– H2(.): For a query (m, r), F1 checks if H2(m, r) is defined. If not, F1

picks a random c ∈ Z∗
q and defines H2(m, r) = c. F1 returns H2(m, r)

to F0.
– Extract(.): For input IDi, F1 searches in H1 list for (IDi, li, Di). If

Di = ⊥ then F1 aborts. Otherwise, F1 responds with Di. Set Clist ←
Clist ∪ {(IDi, Di)}.

– Delegate(.): For input IDi and warrant mω (we assume the identity of
the proxy signer’s is IDj), if i 	= t, F1 computes W = Delegate(Di, mω).
Otherwise, F1 runs the simulator SD(IDt, IDj , mω) and gets the reply
W . Let W be the reply to F0, and set Dlist ← Dlist ∪ {(IDi, mω, W )}.

– PKgen(.): For input proxy signer’s identity IDj and delegation W =
(mω, r0, V0), if j = t, then abort. Otherwise, F1 computes DP =
H2(mω , r0)Dj−V0 as the reply to F0. Let Glist ← Glist∪{(W, IDj , DP )}.

– PSign(.): For input W = (mω, r0, V0) and message m, designator’s iden-
tity be IDi and proxy signer’s identity be IDj. If j 	= t, F1 computes
the proxy signature τ = (rP , VP , mω, r0) on m with secret signing key
DP = H2(mω, r0)Dj − V0, and return (m, τ) as the reply. Otherwise,
F1 simulates IDt’s proxy signature on behalf of IDi with the simu-
lator SPS(W, m) and lets the output (m, τ) of SPS as the reply. Let
Slist ← Slist ∪ {(W, m, τ)}.

7. F1 keeps interacting with F0 until F0 halts or aborts.
– Case 0: If F0’s output is (ID∗, m∗

ω, W ∗), where W ∗ = (m∗
ω, r∗0 , V ∗

0 ), and
satisfies: DV erify(W ∗, ID∗) = 1, (ID∗, .) /∈ Clist, (ID∗, ., .) /∈ Glist

and (ID∗, m∗
ω, .) /∈ Dlist, and ID∗ = IDt, F1 can get a delegation

forgery (m∗
ω , r∗0 , h∗

0, V
∗
0 ) corresponding to identity IDt (whose secret key

is a−1Q), where h∗
0 = H2(m∗

ω, r∗0). By replays of Step 6 with the same
random tape but different choices of H2(.), as done in the Forking Lemma
[14], F1 can get another valid forgery (m∗

ω , r∗0 , h∗
1, V

∗
1 ) such that h∗

1 	= h∗
0.

Set statue = 0.
– Case 1: If F0’s output is (W ∗, m∗, τ∗) =

((m∗
ω , r∗0 , V

∗
0 ), m∗, (r∗P , V ∗

P , m∗
ω, r∗0)) with designator’s identity IDt and

proxy signer’s identity IDj , and satisfies PV erify((m∗, τ∗), IDt) = 1,
(W ∗, m∗, .) /∈ Slist, and (IDj , .) /∈ Clist, (IDj , W

∗, .) /∈ Glist, F1 can get
a forgery (W ∗, m∗, (r∗P , h∗

P , V ∗
P , m∗

ω, r∗0)) corresponding to proxy signing
key DP = μa−1Q − V ∗

0 , where μ = H2(m∗
ω, r∗0) and h∗

P = H2(m, r∗P ).
Define H2(m∗

ω, r∗0) = μ. By replays of Step 4 with the same random
tape but different choices of H2(.), as done in the Forking Lemma [14],
F1 can get another valid forgery (W ∗, m∗, (r∗P , h∗

P1, V
∗
P1, m

∗
ω, r∗0)) such

that h∗
P1 	= h∗

P . Set statue = 1.
8. F1 can compute a−1Q as follows:

– If statue = 0,
a−1Q = (h∗

1 − h∗
0)

−1(V ∗
1 − V ∗

0 ).
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– If statue = 1,

a−1Q = H2(m∗
ω, r∗0)−1((h∗

P1 − h∗
P )−1(V ∗

P1 − V ∗
P ) + V ∗

0 ).

9. F1 computes ê(Q, a−1Q) = ê(Q, Q)a−1
. Then, F1 computes and outputs

ê(P, P )a−1
= ê(Q, Q)a−1

/ê(Q′, Q + c0P ))c−2
0

as the solution to the given instance of (n1 + 1)-BDHI problem.

This completes the description of F1.
During F1’s execution, if F0 manages an ExpID PS

F0
(k) and gets return 1 or

2, collisions appear with negligible probability, as mentioned in [14]. So F1’s
simulations are indistinguishable from F0’s oracles. Because t is chosen ran-
domly, F1 can get a forgery of (m∗

ω, r∗0 , h∗
0, V

∗
0 ) corresponding to identity IDt,

or (W ∗, m∗, (r∗P , h∗
P , V ∗

P , m∗
ω, r∗0)) corresponding to proxy signing key DP =

μa−1Q − V ∗
0 , within expected time T (k) with probability ε(k)/n1.

In fact, the delegation and proxy signing are both schemes producing sig-
natures of the form (m, r, h, V ), where each of r, h, V corresponds to one
of the three moves of a honest-verifier zero-knowledge protocol. By applying
the forking lemma[14], F1 can produce two valid forgery (m∗

ω, r∗0 , h∗
0, V

∗
0 ) and

(m∗
ω, r∗0 , h∗

1, V
∗
1 ) such that h∗

0 	= h∗
1 within expected time less than 120686 · n2 ·

n1 · T (k)
ε(k) . So F1 can output ê(P, P )a−1

. Thus we prove the theorem.

5 Conclusion

This paper presents an efficient and provably secure ID-based proxy signature
scheme based on the bilinear pairings. Although fruitful achievements [15,16]
have been made in enhancing the computation of pairings, the computation of
pairings are still a heavy burden for schemes from pairings. The number of paring
operation involved in the verification procedure of our schemes is only one, so our
scheme is more efficient comparetively. The scheme can be proved secure with
the hardness assumption of the k-BDHI problem, in the random oracle model.
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Improved and Multiple Linear Cryptanalysis

of Reduced Round Serpent

B. Collard, F.-X. Standaert�, and J.-J. Quisquater

UCL Crypto Group, Microelectronics Laboratory, Louvain-la-Neuve, Belgium

Abstract. This paper reports on the improved and multiple linear
cryptanalysis of reduced round Serpent by mean of a branch-and-bound
characteristic search within the algorithm. We first present a 9-round
linear characteristic with probability 1

2 + 2−50 that involves a reduction
of the estimated data complexity of the best reported attack by a factor
of 16. Then, we investigate the possibility to take advantage of multiple
linear approximations for improving the linear cryptanalysis of Serpent.
According to the framework of Biryukov et al. from Crypto 2004, we
provide estimations of the improved data complexity of such attacks and
derive practical cryptanalysis scenarios. For computational reasons, the
branch-and-bound search is not guaranteed to be optimal. However, these
are the best reported complexities of a linear attack against Serpent.

Keywords: linear cryptanalysis, multiple linear cryptanalysis, Advanced
Encryption Standard, Serpent, linear approximations, branch-and-bound.

1 Introduction

The linear cryptanalysis [8] is one of the most powerful attacks against modern
block ciphers in which an adversary exploits a linear approximation of the type:

P [χP ] ⊕ C[χC ] = K[χK ] (1)

In this expression, P , C and K respectively denote the plaintext, ciphertext and
the secret key while A[χ] stands for Aa1 ⊕ Aa2 ⊕ ... ⊕ Aan ,with Aa1 , ..., Aan

representing particular bits of A in positions a1, ..., an (χ is usually denoted as
a mask). In practice, linear approximations of block ciphers can be obtained by
the concatenation of one-round approximations and such concatenations (also
called characteristics) are mainly interesting if they maximize the deviation (or
bias) ε = p − 1

2 (where p is the probability of a given linear approximation).
In its original paper, Matsui described two methods for exploiting the linear

approximations of a block cipher, respectively denoted as algorithm 1 and algo-
rithm 2. In the first one, given an r-round linear approximation with sufficient
bias, the algorithm simply counts the number of times the left side of Equation 1
is equal to zero for N pairs (plaintext, ciphertext). If T > N/2, then it assumes
either K[χK ] = 0 if ε > 0 or K[χK ] = 1 if ε < 0 so that the experimental value

� Postdoctoral researcher of the Belgian Fund for Scientific Research (FNRS).
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c© Springer-Verlag Berlin Heidelberg 2008
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(T − N/2)/N matches the theoretical bias. If T > N/2, an opposite reasoning
holds. For the attack to be successful, it is shown in [8] that the number of
available (plaintext, ciphertext)-pairs must be proportional to 1

ε2 .
In the second method, an r-1-round characteristic is used and a partial de-

cryption of the last round is performed by guessing the key bits involved in the
approximation. As a consequence, all the guessed key bits can be recovered rather
than the parity K[χK ] which yields much more efficient attacks in practice.

Among the various proposals to improve the linear cryptanalysis of block ci-
phers, Kaliski and Robshaw proposed in 1994 an algorithm using several linear
approximations [6]. However, their method imposed a strict constraint as it re-
quires to use only approximations implying the same bits of subkeys K[χK ]. This
restricted at the same time the number and the quality of the approximations
available. As a consequence, an approach removing this constraint was proposed
in 2004 [4] that can be explained as follows. Let us suppose that one has access
to m approximations on r block cipher rounds of the form:

P [χi
P ] ⊕ C[χi

C ] = K[χi
K ] (1 ≤ i ≤ m), (2)

and wishes to determine the value of the binary vector:

Z = (z1, z2, ..., zm) = (K[χ1
K ], K[χ2

K ], ..., K[χm
K ]) (3)

The improved algorithm associates a counter Ti with each approximation, that
is incremented each time the corresponding linear approximation is verified for
a particular pair (plaintext-ciphertext). As for algorithm 1, the values of K[χi

K ]
are determined from the experimental bias (T i − N/2)/N and the theoretical
bias εi by means of a maximum likelihood rule. The extension of algorithm 2 to
multiple approximations is similarly described in [4].

An important consequence of this work is that the theoretical data complexity
of the generalized multiple linear cryptanalysis is decreased compared to the
original attack. According to the authors of [4], the attack requires a number of
texts inversely proportional to the capacity of the system of equations used by
the adversary that is defined as: c2 = 4 ·

∑n
i=1 ε2i . Therefore, by increasing this

quantity by using more approximations, one can decrease the number of texts
necessary to perform a successful key recovery.

In this paper, we aim to apply the previously described cryptanalytic tools
to the AES candidate Serpent [1]. For this purpose, we first apply a branch-
and-bound algorithm to derive an improved single linear characteristic for the
cipher. It allows us to reduce the expected complexity of a linear cryptanalysis
by a factor of 16. Due to the structure of the Serpent algorithm components
(in particular its S-boxes and diffusion layer), the Matsui’s branch-and-bound
method could not be applied as such and we proposed a modified algorithm,
based on the minimization of the number of active S-boxes in the linear trans-
form. Then, in the second part of the paper, we take advantage of our modified
algorithm in order to investigate multiple linear approximations. We show that
a large number of linear approximations with significant biases can be derived
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and evaluate the resulting capacities of the obtained systems. As result of these
experiments, the theoretical complexity against 10-rounds Serpent can be as low
as 280. We mention that these conclusions have to be tempered by the possibility
to perform practical attacks dealing with large number of equations and by the
possibility that a significant part of these equations give rise to dependent infor-
mation, as discussed at the end of this paper. Therefore, practical experiments
of multiple linear cryptanalysis against actual ciphers appear to be a necessary
step for the better understanding of these theoretical improvements.

2 The Serpent Algorithm

The Serpent block cipher was designed by Ross Anderson, Elie Biham and Lars
Knudsen [1]. It was an Advanced Encryption Standard candidate, finally rated
just behind the AES Rijndael. Serpent has a classical SPN structure with 32
rounds and a block width of 128 bits. It accepts keys of 128, 192 or 256 bits and
is composed of the following operations:

– an initial permutation IP ,
– 32 rounds, each of them built upon a subkey addition, a passage through 32

S-boxes and a linear transformation L (excepted the last round, where the
linear transformation is not applied),

– a final permutation FP .

In each round Ri, only one S-box is used 32 times in parallel. The cipher uses 8
distinct S-boxes Si (0 ≤ i ≤ 7) successively along the rounds and consequently,
each S-box is used in exactly four different rounds. Finally, the linear diffusion
transform is entirely defined by XORs (⊕), rotations (≪) and left shifts (�).
Its main purpose is to maximize the avalanche effect within the cipher. If one in-
dicates by X0, X1, X2, X3 the 4 ·32 bits at the input of the linear transformation,
it can be defined by the following operations:

input = X0, X1, X2, X3

X0 = X0 ≪ 13
X2 = X2 ≪ 3
X1 = X1 ⊕ X0 ⊕ X2

X3 = X3 ⊕ X2 ⊕ (X0 � 3)
X1 = X1 ≪ 1
X3 = X3 ≪ 7
X0 = X0 ⊕ X1 ⊕ X3

X2 = X2 ⊕ X3 ⊕ (X1 � 7)
X0 = X0 ≪ 5
X2 = X2 ≪ 22

output = X0, X1, X2, X3
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3 Matsui’s Branch-and-Bound Approximation Search

The first step in a linear cryptanalysis consists in finding linear approximations
with biases as high as possible. In practice, the adversary usually starts by
investigating the non-linear components in the cipher (e.g. the S-boxes) and
tries to extrapolate partial approximations through the whole. A first problem
is then to compute the probability of the concatenated linear approximations,
that is usually estimated thanks to the following piling-up lemma. Let the bias
of a linear approximation on the block cipher ith round be defined as:

(χIi , χOi) = εi = Pr {Ii[χIi ] ⊕ Oi[χOi ] = 0} − 1/2 (4)

The total bias εtot on r rounds is then given by:

εtot = [ε1, ε2, ..., εr] = 2r−1
r∏

i=1

εi, (5)

and the best r rounds linear approximation is defined as:

Br = max
χIi

=χOi−1
(2≤i≤r)

[(χI1 , χO1), (χI2 , χO2), ..., (χIr , χOr )] (6)

Next to the pilling up lemma, the problem of searching the best r-round ap-
proximation is not trivial. Il consists of finding r + 1 binary masks (one for
each output round plus one mask for the input of the cipher), which define a
linear approximation of maximum bias for a particular encryption algorithm.
The difficulty of the problem mainly comes from the great cardinality of the set
of candidates. In 1994, Matsui proposed a branch-and-bound algorithm making
possible to effectively find the best linear approximation of the DES [9]. The
algorithm works by induction: knowing the value of maximum bias on the r-1
first rounds, it manages to find the maximum bias on r rounds as well as the
corresponding input and output masks. For this purpose, it constantly requires
to know a lower bound Br. This bound must imperatively be lower or equal to
the exact Br and the closer it is from Br, the faster the algorithm converges.

In practice, the set of all the possible characteristics through the cipher can
be seen as a large tree. At the roots stand the input masks of the cipher approx-
imations, at each branch stand the output masks of a round and at the leaves
stand the output masks of the cipher. Each branch of the tree is divided in as
many new branches as there are possible approximations for the next round.
In this tree, a linear approximation on i rounds forms a path starting from a
root up to the i-th level. The number of leaves of the tree growing exponentially
with the number of rounds, it quickly becomes unthinkable to evaluate all the
approximations by exhaustive search. The principle of the branch-and-bound
therefore consists in cutting whole branches of the tree as soon as it becomes
obvious that all the corresponding linear approximations will have a bias lower
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than the bound Br. Being given an approximation on i rounds and its bias εi, a
linear approximation on r rounds generated by concatenating an approximation
on r−i rounds with this approximation cannot have a bias better than [Br−i, εi].
Consequently, if [εi, Br−i] is strictly lower than Br, it is useless to prospect this
part of the tree more in detail. Matsui’s technique is obtained by the systematic
application of this reasoning and is described in more details in [9], Appendix A.

The branch-and-bound strategy can be applied as such to many ciphers. How-
ever, its efficiency and time complexity varies, notably depending on the initial
estimation Br. Small estimations increase the size of the search tree. If the es-
timation is too large, the algorithm may not return any characteristic at all [5].
For DES, good estimations could be found by first performing a restricted search
over all characteristics which only cross a single S-box in each round. Unfortu-
nately, the algorithm may perform poorly for other ciphers and in particular,
could hardly be applied as such to Serpent, as the next section underlines.

4 Linear Approximations Search for Serpent

4.1 Observations on the S-Boxes and Single Round Approximations

The Serpent S-boxes have only four (non-trivial) different biases: ±2−2 and
±2−3. Consequently, by the piling-up lemma, the bias of any approximation is
a power of 2. The S-boxes S0, S1, S2 and S6 have 36 biases ε = ±0.25 and 96
biases ε = ±0.125. The S-boxes S3, S4, S5 and S7 have 32 biases ε = ±0.25
and 112 biases ε = ±0.125. In Table 1, we summarized the distributions of the
approximations biases for one round of Serpent and compared them with similar
results obtained in [10] for the DES and FEAL.

Table 1. Number of 1-round linear approximations with bias ≥ ε for some ciphers

ε 2−1 2−2 2−3 2−4 2−5 2−6 2−7

DES 1 13 195 3803 40035 371507 ...

FEAL 16 1808 98576 3.45 · 106 7.74 · 108 1.22 · 109 ...

Serpent: S0,1,2,6 1 1153 647041 2.35 · 108 6.25 · 1010 1.29 · 1013 2.15 · 1015

Serpent: S3,4,5,7 1 1025 512513 1.67 · 108 3.96 · 1010 7.33 · 1012 1.10 · 1015

This table clearly illustrates that the number of approximations on a round of
Serpent is several orders superior to those of DES and FEAL. We consequently
expected practical problems in the linear approximations search due to an explo-
sion of the number of candidates to be explored within the branch-and-bound.
This was experimentally confirmed: a classical implementation of Matsui’s algo-
rithm appeared unable to determine the best approximation on as low as three
rounds. One reason for this phenomenon is the good diffusion provided by the
linear transform, causing a significant increase in the number of active S-boxes
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at each round, with an exponential increase in the number of approximation-
candidates being tested. Even by arbitrarily limiting the number of candidates
to be explored, the algorithm was stuck after 5 to 6 rounds.

4.2 Modified Search Algorithm

Matsui’s branch-and-bound method is primarily concerned with the analysis of
the S-boxes in order to obtain linear approximations with high biases. However,
the previously described failure suggests that in Serpent, the search for optimal
linear characteristics is severely slowed down by the avalanche effect. Therefore,
limiting the number of active S-boxes in the linear approximations could help to
improve the search efficiency. This observation led us to modify the branch-and-
bound algorithm. In our modified method, we start by exhaustively counting all
the couples (input, output) of the linear transform for which the number of active
S-boxes is arbitrarily low. Such couples are called transform candidates and are
entirely defined by the number of active input/output S-boxes, the position of
these S-boxes and their corresponding mask value. The transform candidates are
then stored in a database (e.g. a hash table) so that all the candidates having
the same active output S-boxes are stored in the same list.

Once the database is created, we launch the actual approximation search:
a linear approximation on r rounds can be obtained by the concatenation of
r transform candidates, if the positions of the active S-boxes at the exit of a
transform candidate correspond to those of the active S-boxes at the input of
the next transform candidate (i.e. we have to fulfill boundary conditions, as in
the original method). These constraints are easily checked, as the candidates are
picked up in the database according to the position of their active output S-
boxes. To calculate the bias of an approximation, we simply apply the piling up
lemma to the S-boxes approximations generated between the transform candi-
dates. We can then determine the best approximations by means of a traditional
branch-and-bound, where the only difference is that we pile up the transform
candidates instead of piling up round approximations. Note that we pile up the
candidates starting with the last round, then going down gradually until the first
round, in order to benefit from the knowledge of best bias in the branch-and-
bound.

In order to improve the flexibility of the approximation search, the input mask
in the first round and the output mask in the last round are chosen in order to
maximize the biases of these rounds. Therefore, in a r rounds approximation,
transform candidates are only picked up for the r−1 inner rounds, which speeds
up the research. Additionally, the first round input mask and last round output
mask can be replaced by any other mask, provided that the biases are left un-
changed. Due to the properties of the Serpent S-boxes, for any approximation
found by the algorithm, many more similar approximations can be generated by
the modification of the outer masks.
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4.3 Performance and Hardware Constraints

The number of possible transform candidates that one can pile up in each round
is limited by the boundary conditions and the size of the lists. Moreover, among
these candidates, a majority leads to a zero bias and is thus directly rejected.
Indeed, a significant proportion of the Serpent S-boxes linear approximations is
null: the proportion varies between 93/225 = 0.4131 for the S-boxes S0, S1, S2, S6
and 81/225 = 0.36 for the others. If there are q active S-boxes at the exit
of the transform candidates, then only a fraction of roughly (1 − 0.413)q or
(1−0.36)q of these candidates will lead to a non-zero bias. As this proportion falls
when q increases, there is no exponential increase of the number of candidates
anymore.

Nevertheless, the major drawback of the proposed method remains in the
consequent size of the database used. Even if the proportion of useful transform
candidates is weak, the number of candidates stored can easily reach several
millions. In an optimized structure, a transform candidate with q active S-boxes
requires (10 + 9 ∗ q) bits of memory2. If one considers a reasonable average of
16 active S-boxes per candidate, it yields 154 bits, i.e. 54400 candidates per
megabyte, or approximately 55 · 106 candidates per gigabyte. Additionally, it
is of course possible that the algorithm does not find any linear approxima-
tion beyond a certain number of rounds, either because the list of candidates
checking the boundary conditions is empty, or because all these candidates lead
to a zero bias. The higher the number of transform candidates, the lower the
risk.

On the positive side, this database can be precomputed before the execution
of the branch-and-bound. Once it is created, the execution of the algorithm is
very fast since in each stage of the branch-and-bound, we only consult tables and
calculate biases. In our experimentations, we generated the database as follows:
we exhaustively generated all the possible transform candidates with maximum
i (1 ≤ i ≤ 5) active input S-boxes and stored only those with maximum (15 − i)
active output S-boxes. This required the analysis of approximately 3 · 1011 lin-
ear transformations3 among which only about 130 · 106 were stored/kept. With
about 106 analyzes per second, this search took roughly 4 days on a 2GHz proces-
sor4. The exhaustive search of all the transform candidates with i = 6 would
require the analysis of approximately 21 · 1012 transformations, i.e. roughly 250
days of computation on the same processor. Better strategies could probably
be investigated, taking advantage of the linearity of the diffusion layer, and are
a scope for further research. Note that the database would not be the same if
differential approximations were to be found [2,9] although it would be strongly
correlated.

1 As ∃ 132 approximations with non-zero biases among the 15*15 non-trivial ones.
2 Namely 2*5 bits to store the number of input/output active S-boxes (1...32) and 9

bits to store the 5-bit position (1...32) and 4-bit mask (0...15) of each active S-box.
3 That is 2 ·

�5
k=1 15k ∗ Ck

32.
4 Note that the task can be parallelized.
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5 Practical Results

5.1 Best Approximation Found

Since the best 9-round characteristic found by Biham et al. involves at most
15 active S-boxes at the extremity of the linear transform [3], our previously
described database ensures us to find an approximation with a bias at least as
high. Table 2 summarizes the results of our approximations search, in function
of the starting S-box (and therefore round). The best biases are given in the
penultimate column and the values of Biham et al. are in the last column. As a
first result of our investigations, we found an improved approximation starting
with S3. Our improved characteristic is very similar to the one in [3], excepted
for the three first rounds. It involves a reduction of the linear cryptanalysis data
complexity by a factor of 16. Due to a lack of room, the description of the linear
approximations used in our attacks are not given in this paper. It is available at:
http://www.dice.ucl.ac.be/crypto/publications/2007/inscrypt appendix.pdf.

Table 2. Biases of the best 9-round approximations for different starting S-boxes

r S0 S1 S2 S3 S4 S5 S6 S7 Max Br

3 2−8 2−8 2−8 2−8 2−8 2−7 2−8 2−7 2−7 2−7

4 2−13 2−14 2−13 2−16 2−12 2−12 2−12 2−12 2−12 2−12

5 2−26 2−23 2−21 2−23 2−17 2−18 2−18 2−18 2−17 2−18

6 − − − 2−30 2−23 2−25 2−24 2−33 2−23 2−25

7 − − − 2−36 2−30 2−32 − − 2−30 2−32

8 − − − 2−43 2−37 − − − 2−37 2−39

9 − − − 2−50 − − − − 2−50 2−52

Note that we also tried to find iterative approximations, i.e. approximations
of which the input masks fulfill the boundary conditions of their own output.
Such approximations are useful in practice because they can be straightforwardly
extended to an arbitrary number of rounds [7]. However, our restricted database
did not allow us to find any such approximation on 8 rounds. Searching over
larger databases would therefore be necessary to further investigate the existence
of good iterative characteristics.

5.2 Multiple Linear Approximations Found

In addition to the previously reported characteristic, we ran our search algorithm
in order to generate a list of useful approximations for a multiple linear crypt-
analysis of Serpent. As for the previous section, this generation is very fast due
to the properties of the branch-and-bound that allows an effective limitation of
the candidates to explore. Table 3 reports the bias distribution of the 150 best
9-rounds linear approximations of Serpent found with our database (starting
with S3). Additionally, since each of these approximations can generate several
others by simply replacing its input and output masks (as discussed in Section
4.2), we straightforwardly obtained the distribution in table 4.
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Table 3. Bias distribution of the 150 best approximations found

bias # of approx. bias # of approx.

2−50 3 2−53 42
2−51 12 2−54 66
2−52 27 2−55

Table 4. Bias distribution and cumulative capacities of the extended approximations

bias # of approx. capacity bias # of approx. capacity

2−50 786432 2.482 · 10−24 2−55 1.208 · 1013 5.184 · 10−20

2−51 6.134 · 107 5.087 · 10−23 2−56 1.250 · 1014 1.481 · 10−19

2−52 2.290 · 109 5.024 · 10−22 2−57 1.059 · 1015 3.520 · 10−19

2−53 5.447 · 1010 3.188 · 10−21 2−58 7.513 · 1015 7.138 · 10−19

2−54 9.281 · 1011 1.463 · 10−20 2−59 4.553 · 1016 1.262 · 10−18

5.3 Resulting Capacity and Discussion of the Results

According to the framework in [4], the use of multiple approximations in linear
cryptanalysis allows decreasing the number of plaintexts needed for a successful
key recovery proportionally to the capacity of the obtained system (given in
Table 4). It involves the following observations:

– The data complexity of the simple linear cryptanalysis of 10-rounds Serpent
is approximately 2100 (using the best 9-round approximation with bias 2−50).

– If the 786432 approximations with bias 2−50 are used, the resulting capacity
equals 2.482 · 10−24, which yields a theoretical data complexity of 278.4.

– Cumulatively using all the 2.29 · 109 approximations of bias higher than
2−52, we could theoretically reach a capacity of 5.024 · 10−22, which would
correspond to 270.8 plaintext-ciphertext pairs.

– The more realistic use of 2048 (resp. 1.802 · 106) approximations with bias
250 (resp. greater than 252) involving the same target subkey would result
in a theoretical data complexity of 287 (resp. 281).

As a matter of fact, these results do not take the size of the target subkey
(and therefore the time complexity) into account but only consider the data
complexity. In the next section, we propose more realistic attacks presenting a
better trade-off between data and time complexities. Let us also mention that
a possibly more powerful way to exploit multiple approximations would be to
consider Matsui’s algorithm 1 and therefore avoid the time complexity prob-
lems related to key guesses, e.g. using the three 2−50 bias approximations and
their derivatives. Since each approximation reveals up to one bit of informa-
tion on the secret key and m � 128, the resulting linear system is strongly
overdefined.
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In general, the previous results have to be tempered by the possible influ-
ences of dependencies between the various linear approximations exploited in
an attack. This is specially true in our context since our approximations are all
generated from an initial set of 150 characteristics and the number of derivatives
is much larger than 2 · 128. As discussed in [4], it is actually hard to determine
the consequence of these dependencies on the capacity of the multiples approx-
imations. Because 2 · m · ε � 1 (for any reasonable choice for the number m
of approximations), the dependencies between the text masks (χi

P , χi
C) should

have a negligible influence on the capacity. Therefore, the major question relates
to the dependencies between the linear trails. As a matter of fact, the estimated
data complexities in our analysis (as well as in Biryukov et al.’s) are fairly opti-
mistic and an important next step in the understanding of linear cryptanalysis
would be to experiment these predictions with a real life cipher.

6 Realistic Attack Scenarios Against Serpent

In this section, we present realistic attack scenarios on reduced round Serpent
using (multiple) linear cryptanalysis. The reduced version is just like Serpent,
excepted for its reduced number of rounds. After the last S-box, the linear trans-
formation is omitted as it has no cryptographic significance. The linear approx-
imations used were generated with the algorithm presented before.

Using an approximation on r − 1 rounds, one can recover bits of the subkey
in round r. In Matsui’s original method, a partial decryption of the last round
is performed for every ciphertext by guessing the key bits involved in the ap-
proximation. The parity of the approximation for the plaintext and the partially
decrypted ciphertext is then evaluated and a counter corresponding to each key
guess is incremented if the relation holds or decremented otherwise. The key
candidate with the highest counter in absolute value is then assumed to be the
correct key. However, as we only consider a limited number of bits k (in the
active S-boxes) during the partial decryption of the ciphertexts, the same pat-
tern for these k bits possibly appear several times during the attack. In order to
avoid doing the same partial decryption work several times, Biham et al. pro-
posed in [3] an improvement which considerably reduces the time complexity of
an attack:

– Initialize an array of 2k counters (k is the size of the target subkey).
– For each generated ciphertext: extract the k-bit value corresponding to the

active S-boxes and evaluate the parity of the plaintext subset defined by
the approximation. Increment or decrement a counter corresponding to the
extracted k-bit value according to the obtained parity.

– Once all the ciphertexts have been generated: for each k-bit ciphertext and
for each k-bit subkey, partialy decrypt the k-bit ciphertext under the k-bit
subkey and evaluate the parity of the output subset (as defined by the linear
approximation). Keep this value in a table of size 2k · 2k.
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– For each k-bit subkey, evaluate its experimental bias by checking, for each
k-bit ciphertext, the parity of the approximation and the value of the corre-
sponding counter. Then output the subkey with maximal bias.

This method reduces the attack time complexity from O(N · 2k) to O(2k · 2k).

6.1 Attack on 7 Rounds Serpent

The attack uses a 6-round approximation starting with S-box 4 and ending with
S-box 1. This approximation is derived from the best 6-round approximation
found in section 5 except a small change in the last round that reduces the num-
ber of active S-boxes from 13 to 5. The bias of the approximation falls from 2−23

to 2−25. Using only one approximation, the data complexity is approximately
252 known plaintexts. The attack requires 220 counters and a time complexity
of approximately 240 decryptions of 1-round Serpent. Several similar approxi-
mations can be obtained by changing the input mask of the relation. We found
up to 8 approximations with bias 2−25 and up to 96 approximations with bias
2−26. This would lead to a capacity of respectively 2−45, 2−43, reducing the data
complexity to 247 or 245 at the cost of a slight increase of the time/memory
complexities.

6.2 Attack on 8 Rounds Serpent

Similarly, we can attack 8-round Serpent using a 7-round approximation starting
with S-box 4 and ending with S-box 2. The approximation is the one found in
section 5. It has a bias of 2−30 and 7 active S-boxes. Consequently, an attack using
only one approximation requires 256 1-round decryptions, 228 counters and � 262

known plaintexts. We can again reduce the data complexity by taking advantage
of multiple approximations. We found 8 approximations with the same bias
and the same active S-boxes giving a capacity of 2−55, thus a data complexity
of approximately 257 plaintexts. Adding 96 approximations with bias 2−31, we
obtain a capacity of 2−53 and therefore a data complexity of 255 plaintexts
(see Table 6). Again, this effect can be increased at the cost of more memory
and computation. For example, there are 384 approximations with bias 2−32

and 512 approximations with bias 2−33, that gives rise to data complexities of
respectively 254.1 or 254, but requires 228 counters and 256 memory access for
each counter.

6.3 Attack on 9 Rounds Serpent

The best approximation found on 8 rounds has a bias of 2−37 but it has 23
actives input S-boxes. We can slightly modify its input in order to lower this
number to 11 active S-boxes. This way, the bias of the approximation is 2−39

instead of 2−37. This approximation starts with S-box 4 and ends with S-box 3.
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The complexity of an attack based on this approximation is 288 1-round decryp-
tions, 244 counters and about 280 known plaintexts. Multiples approximations
allow us to decrease the number of texts needed. We found 128 approximations
with bias 2−39, 3584 approximations with bias 2−40, 43008 approximations with
bias 2−41 and 286720 approximations with bias 2−42. The corresponding capac-
ities are 2−69, 2−66, 2−64.1, 2−63, thus requiring 271, 268, 266.1, 265 generated
plaintexts.

6.4 Attack on 10 Rounds Serpent

We finally ran our search algorithm to generate a list of 150 9-round approxima-
tions with high bias and a reasonable number of active S-boxes. Among the the
huge number of candidates (see table 4), we found the three following approxi-
mations starting and finishing with S-box 3:

– Approximation 1 with bias 2−55 and 11 active S-boxes,
– Approximation 2 with bias 2−58 and 10 active S-boxes,
– Approximation 3 with bias 2−59 and 8 active S-boxes.

Using the first approximation, we obtain an attack requiring 2112 texts, 244

counters and 288 decryptions. Using the second approximation, we obtain an
attack requiring 2118 texts, 240 counters and 280 decryptions. Using the third
approximation, we obtain an attack requiring 2120 texts, 232 counters and 264

decryptions. Multiple linear cryptanalysis based on the first approximation leads
to capacities equal to 2−97, 2−93.42 or 2−90.93 according to bias of the approxima-
tions. Using the second approximation, the capacities decrease to 2−103, 2−99.42

or 2−96.93 . With the third approximation the capacities then become 2−105,
2−101.42 or 2−98.93. All the presented attack results are summarized in Table 6
and Table 5 remembers the previously known attacks against Serpent.

6.5 Attack on 11 Rounds Serpent

We can attack 11 round Serpent with a 9-rounds linear approximation. Such
an attack requires a partial encryption before the first round of the approxima-
tion and a partial decryption after the last round. In this context, it becomes
essential to minimize the total number of active S-boxes, both in input and in
output.

Our algorithm provided a 9-rounds approximation with a bias of 2−58 and
only 27 active S-boxes (15 in input and 12 in output). Using the trick proposed
in [3], section6, we obtain a time complexity of 288 + 260 · (2118 + 288) = 2178

and a memory complexity of 288. The data complexity is left unchanged, that is
2118 known plaintext.

In this case, it is practically not possible to use multiples approximations,
as they should have at least the same active S-boxes, both in their input and
output.
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6.6 Summary

Table 5. Summary of previous attacks on Reduced-rounds Serpent (see [15])

Rounds Type of attack complexity
data time memory

6 differential [13] 283CP 290 244

differential [13] 271CP 2103 279

differential [13] 241CP 2163 249

7 differential [11] 284CP 278.9 256

8 Amp.Boomerang [13] 2128CP 2163 2137

Amp.Boomerang [13] 2110CP 2175 2119

differential [11] 284CP 2206.7 289

9 Amp.Boomerang [13] 2110CP 2252 2212

10 Rectangle [14] 2126.3CP 2165 2131.8

Boomerang [14] 2126.3ACPC 2165 289

Lin.Cryptanalysis [3] 2116KP 292 245

Diff.Lin.Cryptanalysis [15] 2105.2CP 2123.2 240

11 Lin.Cryptanalysis [3] 2118CP 2205.7 2183

Diff.Lin.Cryptanalysis [15] 2125.3CP 2172.4 230

Diff.Lin.Cryptanalysis [15] 2125.3CP 2139.2 260

Complexity is measured in encryption units.
Memory is mesured in Bytes.
CP - Chosen Plaintexts, KP - Known Plaintexts,
ACPC - Adaptive Chosen Plaintexts and Ciphertext.

Table 6. Summary of attacks on Serpent presented in this paper

Rounds Type of attack complexity
data time memory

7 Lin.cryptanalysis 252KP 240 220

Mult.Lin.Cryptanalysis (8 appr.) 247KP 243 223

8 Lin.cryptanalysis 262KP 256 228

Mult.Lin.Cryptanalysis (8 appr.) 257KP 259 231

Mult.Lin.Cryptanalysis (104 appr.) 255KP 262.7 234.7

9 Lin.cryptanalysis 280KP 288 244

Mult.Lin.Cryptanalysis (128 appr.) 271KP 295 251

Mult.Lin.Cryptanalysis (3712 appr.) 268KP 299.9 255.9

10 Lin.cryptanalysis (ε = 2−55) 2112KP 288 244

Mult.Lin.Cryptanalysis (2048 appr.) 299KP 299 255

Lin.cryptanalysis (ε = 2−59) 2120KP 264 232

Mult.Lin.Cryptanalysis (2048 appr.) 2107KP 275 243

11 Lin.cryptanalysis (ε = 2−58) 2118KP 2178 288
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7 Conclusion and Further Works

This paper first presents a modification of Matsui’s branch-and-bound algorithm
for the linear approximation search in a block cipher. It enabled us to find the
best reported 9-round approximation for the AES candidate Serpent. The algo-
rithm allows speeding up the search of linear approximations at the cost of larger
memory requirements. It is generic and especially well suited for ciphers where
the linear transformation involves an important avalanche effect (as the AES
candidates and most recent ciphers). Moreover, it could be straightforwardly
adapted for the research of differential characteristics.

In a second part of the paper, we take advantage of this modified branch-
and-bound algorithm in order to investigate the possible use of multiple linear
approximations against Serpent. According to the framework of Biryukov et al.
[4], we provided estimations of the improved data complexity of such attacks
against 10-round Serpent that can be down to approximately 280. Since these
results are mainly theoretical (due to an unrealistic time complexity), we also
presented several attacks against 7- to 10-round Serpent using reasonable attack
parameters that outperform previously known results.

As an important scope for further research, these results should be experi-
mented against real-life ciphers of tractable size in order to determine the actual
influence of dependencies between the different approximations used in an at-
tack. That is, to figure out the extend to which the information provided by
multiple linear approximations can lead to efficient attack strategies.
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Abstract. KeeLoq is a block cipher used in numerous widespread pas-
sive entry and remote keyless entry systems as well as in various compo-
nent identification applications. The KeeLoq algorithm has a 64-bit key
and operates on 32-bit blocks. It is based on an NLFSR with a nonlinear
feedback function of 5 variables.

In this paper new key recovery attacks on KeeLoq are proposed. The
first one has a complexity of about 250.6 KeeLoq encryptions. The second
attack finds the key in 237 encryptions and works for the whole key space.
In our attacks we use the techniques of guess-and-determine, slide, and
linear attacks as well as cycle structure analysis. Both attacks need 232

known plaintext-ciphertext pairs.
We also analyze the KeeLoq key management and authentication pro-

tocols applied in rolling-code and IFF access systems widely used in real-
world applications. We demonstrate several practical vulnerabilities.

Keywords: KeeLoq, cryptanalysis, slide attacks, linear cryptanalysis,
hopping codes, rolling codes, authentication protocols, identify friend-
or-foe, key generation.

1 Introduction

KeeLoq is a block cipher based on an NLFSR with a nonlinear boolean feedback
function of 5 variables. The algorithm uses a 64-bit key and operates on 32-bit
blocks. Its architecture consists of two registers (a 32-bit text register and a
64-bit key register), which are rotated in each of 528 encryption cycles, and of
a nonlinear function (NLF) providing nonlinear feedback. One bit of the key is
added to the output of the NLF modulo 2 in each cycle.

The light-weight architecture of the KeeLoq cipher allows for an extremely
low-cost and efficient hardware implementation (about 700 GE and 528 clock cy-
cles per block). This contributed to the popularity of the KeeLoq cipher among
designers of remote keyless entry systems, automotive and burglar alarm sys-
tems, automotive immobilizers, gate and garage door openers, identity tokens,
� This is a short version of the full work [1] on the analysis of KeeLoq systems presented

at the 3rd Conference on RFID Security (RFIDSec’07) in Malaga, Spain.

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 66–80, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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component identification systems. For instance, the KeeLoq block cipher is used
by such automotive OEMs as Chrysler, Daewoo, Fiat, GM, Honda, Toyota,
Volvo, VW, Jaguar [2] and in the HomeLink wireless control systems to secure
communication with garage door openers [3]. The KeeLoq technology supplied
by Microchip Technology Inc. includes the KeeLoq cipher and a number of au-
thentication protocols as well as key management schemes. Our description of
KeeLoq is based on the newly published article [2], [4] and a number of the
manufacturer’s documents [5], [6], [7], [8].

Our contribution. The contribution of the paper is many-fold. First, a new
technique to perform recovery attacks on KeeLoq is proposed. Our direct at-
tack recovers the key in 250.6. Second, the techniques allow us to propose an
extended attack of complexity 237 working for the whole key space. Then se-
vere vulnerabilities of the KeeLoq protocols and key management systems are
demonstrated.

Our cryptanalysis of the KeeLoq algorithm is based on the following weak-
nesses of the KeeLoq structure: The key schedule is self-similar, which allows us
to mount a slide attack [9], [10], [11]. It is supported by the existence of an effi-
cient linear approximation of the NLF used to recover a part of the key. Then the
remainder of the key bits is obtained using other linear relations within KeeLoq.

The key recovery complexity of our first attack is 250.6. The attack requires 232

plaintext-ciphertext pairs and a memory of 232 32-bit words. Several computing
devices can share the memory during the attack. All computations are perfectly
parallelizable. The property inherited from the slide attacks [9], [10] is that the
complexity of our attack is independent of the number of encryption cycles,
which is as a rule not the case for linear or differential cryptanalysis, where the
complexity often grows exponentially with the number of iterations.

The second attack is an extension of our first attack by using the cycle struc-
ture analysis introduced in [12]. Our attack finds the key in 237 steps. It also
requires 232 known plaintext-ciphertext pairs and a memory to hold 232 32-bit
words. Additionally, 232 bits of memory are needed for exploring the cycle struc-
ture of the KeeLoq permutation. Our techniques work for all keys, unlike those
in [12] which are applicable to 26% of all keys only. Our second attack is the
best known attack on the KeeLoq block cipher working for the whole key space.

We also show how the cryptanalytic attacks on the KeeLoq block cipher apply
to the KeeLoq hopping codes and IFF (Identify Friend or Foe) systems supplied
by Microchip which are based on this algorithm. It is demonstrated that the
attacks pose a real threat for a number of applied key management schemes:
After attacking one instance of KeeLoq using attacks presented in this paper, one
can reduce the effective key length of all other KeeLoq systems of the same series
to 32, 48, or 60 bits depending on the key management scheme applied. In some
attack models, the attacker is even able to retrieve the individual encryption key
instantly.

The paper is organized as follows. Section 2 describes the KeeLoq algorithm.
In Section 3 our basic linear slide key recovery attack on KeeLoq and its extension
with a reduced complexity are presented. In Section 4 we discuss the impact of
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attacks on the KeeLoq algorithm with respect to the standard KeeLoq real-word
applications supplied by Microchip. We conclude in Section 5.

2 Description of the KeeLoq Algorithm

KeeLoq is a block cipher with a 64-bit key which operates on 32-bit words [2],
[4]. Its design is based on a nonlinear feedback shift register (NLFSR) of length
32 bits with a nonlinear feedback function of 5 variables. The feedback depends
linearly on two other register bits and on the next key bit taken from the rotated
key register of length 64 bits.

Fig. 1. The i-th KeeLoq encryption cycle

Let Vn = GF(2)n be the set of all n-bit words and Y (i) = (y(i)
31 , . . . , y

(i)
0 ) ∈ V32,

y
(i)
j ∈ GF(2), describe the state of the text register in cycle i for j = 0, . . . , 31

and i = 0, 1, . . . Let also K(i) = (k(i)
63 , . . . , k

(i)
0 ) ∈ V64, k

(i)
j ∈ GF(2), denote the

state of the key register in cycle i for j = 0, . . . , 63 and i = 0, 1, . . . Then each
cycle of encryption can be described using the following algorithm (see Figure 1):

Compute the feedback bit: ϕ = NLF (y(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1 )⊕ y(i)

16 ⊕ y
(i)
0 ⊕ k(i)

0

Rotate text and insert feedback: R(i+1) = (ϕ, y(i)
31 , . . . , y

(i)
1 )

Rotate key: K(i+1) = (k(i)
0 , k

(i)
63 , . . . , k

(i)
1 ).

For encryption the key register is filled with the 64 key bits K = (k63, . . . k0) ∈
V64, kj ∈ GF(2), j = 0, . . . , 63, in the straightforward way: K(0) = K. If X =
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(x31, . . . , x0) ∈ V32, xj ∈ GF(2), j = 0, . . . , 31, is a block of plaintext, the initial
state of the text register is Y (0) = (x31, . . . , x0). The output of the algorithm is
the ciphertext Z = (z31, . . . , z0) = Y (528) ∈ V32, zj ∈ GF(2), j = 0, . . . , 31.

For decryption the key register is filled in the same way: K(0) = K =
(k63, . . . k0) ∈ V64. But the decryption procedure complements the encryption.
One decryption cycle can be defined by the following sequence of operations:

Compute the feedback bit: ϕ = NLF (y(i)
30 , y

(i)
25 , y

(i)
19 , y

(i)
8 , y

(i)
0 )⊕ y(i)

15 ⊕ y
(i)
31 ⊕ k

(i)
15

Rotate text and insert feedback: R(i+1) = (y(i)
30 , . . . , y

(i)
0 , ϕ)

Rotate key: K(i+1) = (k(i)
62 , . . . , k

(i)
0 , k

(i)
63 ).

The ciphertext and plaintext are input/output in a similar way: The cipher-
text is input into the text register before decryption, Y (0) = Z, and the plaintext
can be read out after 528 decryption cycles, Y (528) = X .

The NLF is a boolean function of 5 variables and is of degree 3. In the speci-
fication [4] the NLF is assigned using a table. This corresponds to the following
ANF:

NLF (x4, x3, x2, x1, x0) = x0 ⊕ x1⊕
x0x1 ⊕ x1x2 ⊕ x2x3 ⊕ x0x4 ⊕ x0x3 ⊕ x2x4⊕
x0x1x4 ⊕ x0x2x4 ⊕ x1x3x4 ⊕ x2x3x4.

(1)

The NLF is balanced and its correlation immunity order is 1, cor(NLF ) = 1 [13],
[14]. This means that the NLF is 1-resilient [15], which is the maximum for a
function of 5 variables with deg(NLF ) = 3 due to Siegenthaler’s inequality [13]:

deg(NLF ) + cor(NLF ) ≤ 4.

Fig. 2. Round structure of KeeLoq encryption

The KeeLoq algorithm has the following round structure. We define a KeeLoq
round as the permutation F (K) : V32 → V32 depending on the key K ∈ V64.
A KeeLoq quarter round is defined as the permutation F ′(K ′) : V32 → V32

depending on the subkey K ′ = (k15, . . . , k0) ∈ V16. Then the whole KeeLoq
encryption mapping consists of successively computing 8 full round permutations
F (K) and consequently applying the last quarter round permutation F ′(K ′), see
Figure 2. Note that the first 8 full rounds are identical. The decryption can be
represented in a similar way using inverse permutations F ′(K ′)−1 and F (K)−1.

The algorithm allows for an extremely simple hardware implementation com-
prised of a 32-bit shift register with taps on fixed positions, a 64-bit shift resister
with a single tap and a 32-bit (5 × 1) look-up table (LUT) for the NLF. The
LUT can be replaced with the corresponding logical elements according to (1).
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In this case the hardware implementation of KeeLoq requires about 700 GE and
528 clock cycles per block, which is to be compared to about 1500-2000 GE
needed for modern light-weight hardware-oriented stream ciphers such as Grain
or Trivium.

3 Attacks on the KeeLoq Algorithm

3.1 Basic Linear Slide Attack on KeeLoq

Our basic attack is based on the following weaknesses of the algorithm: self-
similar key schedule scheme, relatively short blocks of 32 bits, and existence of
an efficient linear approximation of the NLF.

The attack can be outlined in the following way. For each subkey K ′ =
(k15, . . . , k0) and for a random 32-bit input I0 ∈ V32 guess the corresponding
output O0 ∈ V32 after the 64 clock cycles which depends on the other 48 key
bits (k63, . . . , k16). Using the periodic structure of the KeeLoq key schedule gen-
erate several other pairs (Ii, Oi) ∈ (V32)2, i = 1, . . . , N − 1 (sliding step). For a
successful attack N has to be about 28. For each number of such pairs we mount
a distinguishing attack to obtain linear relations on some unknown key bits with
a high probability due to the fact that the KeeLoq NLF is not 2-resilient (linear
correlation step). In this way it is possible to determine (k47, . . . , k16) bit by bit.
After this an input/output pair for 16 encryption cycles can be represented as a
triangular system of linear equations with the remaining bits (k63, . . . , k48) of K
as variables. It can be solved using 16 simple computational operations (linear
step).

Sliding step. Using a single input/output pair (I0, O0) for the full round of
64 cycles and knowing the first 16 key bits K ′ = (k15, . . . , k0) one can produce
an arbitrary number of other input/output pairs for this round. This is possible
due to the fact that (almost) all rounds in KeeLoq are identical permutations
which is the property on which the slide attacks by Biryukov and Wagner are
substantially based [9], [10]. Once a pair (I0, O0) is known, the next input/output
pair is produced by encrypting I0 and O0 with the key to be recovered (it is a
chosen plaintext attack) and obtaining (I ′1, O

′
1) as ciphertext. Then I ′1 and O′

1

are decrypted using the guessed partial key K ′ = (k15, . . . , k0). The resulting
plaintexts form the needed pair (I1, O1), see Figure 3. From one pair (Ii, Oi),
i = 0, 1, 2, . . . , an arbitrary number of pairs (Ij , Oj), j > i can be derived for a
certain value of K ′ by iteratively encrypting Ii, Oi using KeeLoq and decrypting
them with K ′ (thus, obtaining (Ij+1, Oj+1)). We call the set of pairs (Ii, Oi)
needed for determining the key a pseudo-slide group.

As the sliding has to be performed for each guess of K ′ = (k15, . . . , k0) and
each round output (247 times on average) in our basic attack, its complexity is
crucial for the efficiency of the whole attack.



Linear Slide Attacks on the KeeLoq Block Cipher 71

Fig. 3. Generating input/output pairs using sliding techniques

Correlation step. Once the pseudo-slide group was generated in the sliding
step, the following weakness of the KeeLoq NLF with respect to correlation
attacks is used due to the fact that the NLF is 1-resilient, but not 2-resilient.

Lemma 1. For uniformly distributed x4, x3, x2 ∈ GF(2) the following holds:

– Pr {NLF (x4, x3, x2, x1, x0) = 0 | x0 ⊕ x1 = 0} = 5
8 ,

– Pr {NLF (x4, x3, x2, x1, x0) = 1 | x0 ⊕ x1 = 1} = 5
8 .

This means that the NLF can be efficiently approximated by x0 ⊕ x1. So, if x0,
x1 are known and x4, x3, x2 are random and unknown, we can determine f(K)
by statistically filtering out the contribution of NLF (x4, x3, x2, x1, x0) to the
equation

NLF (x4, x3, x2, x1, x0)⊕ f(K) = 0

using a very limited number of such samples. f(K) is a key-dependent boolean
function remaining constant for all samples.

Here we show how to obtain k16 and k32 from Ii and Oi. The remaining key
bits (k47, . . . , k33) and (k31, . . . , k17) can be obtain in the same way by using k32,
k16 and shifting input and output bits.

We denote Ii = Y (0) and Oi = Y (64) for each i. The idea is to make use of the
correlation weakness of the dependency between the output bits y(64)

0 , y(64)
1 and

the input bits Y (0). One can compute Y (16) from Y (0), since K ′ = (k15, . . . , k0)
is known. For the next bit y(17)

31 , which is the first key-dependent bit, one has
the following equation:

y
(32)
16 = y

(17)
31 = NLF (y(16)

31 , y
(16)
26 , y

(16)
20 , y

(16)
9 , y

(16)
1 )⊕ y(16)

0 ⊕ y(16)
16 ⊕ k16 =

= c0 ⊕ k16,
(2)

where c0 ∈ GF(2) denotes the key-independent part of (2).
After 32 encryption cycles the following holds:

(y(32)
15 , y

(32)
14 , . . . , y

(32)
0 ) = (y(16)

31 , y
(16)
30 , . . . , y

(16)
16 ) ∈ V16.

Thus, the least significant half of Y (32) is known. Then y
(64)
0 can be repre-

sented as:

y
(64)
0 = NLF (y(32)

31 , y
(32)
26 , y

(32)
20 , y

(32)
9 , y

(32)
1 )⊕ y(32)

0 ⊕ y(32)
16 ⊕ k32 =

= NLF (y(32)
31 , y

(32)
26 , y

(32)
20 , y

(32)
9 , y

(32)
1 )⊕ y(32)

0 ⊕ (c0 ⊕ k16)⊕ k32,
(3)
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where y(64)
0 , y(32)

0 , y(32)
1 , y(32)

9 , c0 are known and y(32)
31 , y(32)

26 , y(32)
20 , k32, k16 are

unknown. As the first two inputs of the NLF are known, its contribution to (3)
can be replaced with the random variate ε using Lemma 1:

NLF (y(32)
31 , y

(32)
26 , y

(32)
20 , y

(32)
9 , y

(32)
1 )⊕ y(32)

9 ⊕ y(32)
1 = ε (4)

with
Pr {ε = 0} =

5
8
. (5)

Then the following holds:

y
(64)
0 ⊕ y(32)

0 ⊕ c0 ⊕ y(32)
9 ⊕ y(32)

1 = ε⊕ k16 ⊕ k32. (6)

In order to determine k16⊕k32 one has to distinguish between the following two
cases: k16 ⊕ k32 = 0 and k16 ⊕ k32 = 1. In the first case:

Pr{y(64)
0 ⊕ y(32)

0 ⊕ c0 ⊕ y(32)
9 ⊕ y(32)

1 = 0} =
5
8
.

Otherwise, this probability is 3/8.
Thus, the bias δ of the first random variable with respect to the second one

is δ = 1
4 . Our experiments show that about 27 equations (6) for different pairs

(Ii, Oi), i = 0, . . . , 27−1, are needed to recover α = k16⊕k32 with an acceptable
error probability (for all 32 key-dependent linear combinations to be determined
in this way), which agrees1 with Theorem 6 of [16].

Next we consider y(64)
1 and its dependencies from the input and key bits.

Similar to (2) one has:

y
(33)
16 = NLF (y(17)

31 , y
(16)
27 , y

(16)
21 , y

(16)
10 , y

(16)
2 )⊕ y(16)

1 ⊕ y(16)
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= NLF (c0 ⊕ k16, y(16)
27 , y

(16)
21 , y

(16)
10 , y

(16)
2 )⊕ y(16)

1 ⊕ y(16)
17 ⊕ k17 =

= c′1 ⊕ c2k16 ⊕ y
(16)
1 ⊕ y(16)

17 ⊕ k17 = c1 ⊕ c2k16 ⊕ k17,
(7)

where c′1 ∈ GF(2) is the free term of NLF, c2 ∈ GF(2) is its linear term with
respect to k16, and c1 = c′1 ⊕ y

(16)
1 ⊕ y(16)

17 ∈ GF(2). Here c1 and c2 are known
and depend on Y (0). Then the second output bit y(64)

1 is represented as follows:

y
(64)
1 = NLF (y(33)

31 , y
(33)
26 , y

(33)
20 , y

(33)
9 , y

(33)
1 )⊕ y(33)

0 ⊕ y(33)
16 ⊕ k33 =

= (ε⊕ y(33)
9 ⊕ y(33)

1 )⊕ y(33)
0 ⊕ (c1 ⊕ c2k16 ⊕ k17)⊕ k33,

(8)

where the random variate ε is assigned in a way similar to (4) and c0, c1, c2,
y
(33)
0 , y(33)

9 , y(33)
1 are known. To determine k17⊕k33 pairs (Ii, Oi) with c2 = 0 are

selected2. Then ε in (8) is filtered out statistically, which recovers β = k17⊕ k33.
1 Strictly speaking, the mentioned Theorem 6 cannot be applied here since Assump-

tion 4 of [16] does not hold due to the fact that the mutual bias is relatively large
in our case. But this suggests that our experimental estimations are correct.

2 Note that for random inputs Ii the probability of c2 = 0 is 0.5. Therefore about N/2
out of N known pairs (Ii, Oi) will lead to c2 = 0. This raises the required number
of plaintext/ciphertext pairs to about 28.
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After this the remaining pairs (Ii, Oi) (with c2 = 1) are used to obtain γ =
k16 ⊕ k17 ⊕ k33 in the same way. Thus, k16 = β ⊕ γ and k32 = α⊕ k16.

Now k16, k32 and k17⊕k33 are known. In the next step we determine k18⊕k34
and k17 ⊕ k18 ⊕ k34 using the same plaintext/ciphertext pairs (Ii, Oi) and the
same statistical recovery method. In this way all 32 key bits (k47, . . . , k16) are
obtained in only 16 rather simple computational steps.

Linear step and key verification. The remaining key bits (k63, . . . , k48) ∈ V32

can be recovered as follows. As (k47, . . . , k0) are known, Y (48) can be computed
for each pair (Ii, Oi). y

(64)
16 can be expressed as:

y
(64)
16 = NLF (y(48)

31 , y
(48)
26 , y

(48)
20 , y

(48)
9 , y

(48)
1 )⊕ y(48)

16 ⊕ y(48)
0 ⊕ k48, (9)

which reveals k48 since the entire state Y (48) is known. Now Y (49) can be com-
pletely calculated which leads to the value of k49 using y(64)

17 , and so on. In this
way the rest of the key is recovered.

At the end of the key recovery procedure we expect to obtain a number of
key candidates. The upper bound for their average quantity is 264−32 = 232 due
to the known plaintext unicity distance [17], since the block length is 32 bit and
the key length is 64 bit. Thus, we need to verify each key candidate against max.
� 64+4

32 � = 3 plaintext-ciphertext pairs for all 528 encryption cycles.

Attack complexity and experiments. The attack consists of the following
stages:

– Compute all plaintext-ciphertext pairs for the whole cipher;
– Guess the partial keyK ′ and the outputO0 after one round for some input I0;
– For each pair of guesses (K ′, O0) do the following:

• Obtain 28−1 other pairs (Ii, Oi); thus, the cardinality of the pseudo-slide
group is 28 for this attack;

• Determine k16⊕ k32 by evaluating c0 for the first 27 pairs of the pseudo-
slide group;

• Determine (k47, . . . , k16) by evaluating c1 and c2 28 times;
• Determine (k63, . . . , k48) by evaluating 24 nonlinear boolean functions;

– Verify max. 232 candidate keys using at most 3 plaintext-ciphertext pairs for
the whole cipher and 3 full encryption operations.

If one step is equivalent to a single full KeeLoq encryption (528 encryption
cycles), 232 steps are needed for generating 232 plaintext-ciphertext pairs. Each
element has to be stored in a memory of 232 32-bit words.

For each guess of (I0, O0) and K ′ operations of the following complexity have
to be be performed:

– 29 − 2 memory accesses for obtaining (Ii, Oi), i = 1, . . . , 28 − 1. We assume
a single memory access equivalent to 4 encryption cycles. This leads to ap-
proximately 22 steps required to perform the memory accesses.
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– 27 evaluations of c0 and k16 ⊕ k32, each evaluation being equivalent to one
encryption cycle. The complexity of this stage is then 27/528 ≈ 2−2 steps.

– 16 · 28 = 212 evaluations of c1 and c2 for determining (k47, . . . , k16). Each
evaluation is computationally equivalent to one encryption cycle. This stage
requires about 212/528 ≈ 23 steps.

– 24 evaluations of a boolean function to determine (k63, . . . , k48). Each eval-
uation is equivalent to one encryption cycle which leads to a complexity of
about 24 · 2−9 = 2−5 steps.

Max. 232 candidate keys have to be verified using at most 3 full encryptions
which requires max. 234 steps. Thus, the overall computational complexity of
the attack is

232 +
232 · 216

2
· (22 + 2−2 + 23 + 2−5) + 234 ≈ 250.6 steps.

The memory complexity is quite reasonable and is 232 32-bit words (16 GByte).
This enables an attacker to place all plaintext-ciphertext values into RAM which
substantially accelerates the implementation of the attack. Most computations
in our attack are perfectly parallelizable.

3.2 Advanced Attack on the KeeLoq Algorithm

In this subsection, we first outline some parallel work on the cryptanalysis of
KeeLoq including algebraic attacks and cycle structure analysis. Then we com-
bine our basic linear slide attack with the cycle structure analysis and obtain the
best known attack on KeeLoq working for the whole key space, which requires
237 KeeLoq encryptions.

Algebraic attack. Courtois and Bard [12] used the idea of sliding KeeLoq, but
employed algebraic techniques to obtain the key from a slid pair. The attack
requires only one slid pair. This eliminates the necessity to guess the partial
key K ′.

The attack works as follows. By exploring 216 random known plaintext-
ciphertext pairs, the attacker expects to have at least one slid pair (Ii, I ′i+1),
(Oi, O

′
i+1) with Oi = F (Ii). This forms the first 32 equations of the non-linear

system, which are not sufficient for uniquely determining the key. To obtain
more equations, the attacker can use the fact that the ciphertexts I ′i+1 and O′

i+1

are related by F ′[F [F ′−1[I ′i+1]]] = O′
i+1 (see Figure 3), which gives the other

32 binary equations. That is, the ciphertexts in the slid pair are one round (64
KeeLoq cycles) apart in the same KeeLoq cipher with K rotated by 16 bits -
(k16, k17, . . . , k63, k0, . . . , k15).

After this, the 64 equations are solved using the SAT solver MiniSat. The
procedure has to be performed 231 times on average (for each combination of the
available plaintext-ciphertext pairs). The total complexity of the attack is about
253 KeeLoq encryptions and it requires only 216 known plaintexts. However, our
basic attack is faster than this algebraic attack, though requiring more known
plaintexts.
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Cycle structure attack. The second attack from [12] makes use of the specific
cycle structure imposed by the fact that the first 8 KeeLoq rounds (64 clock
cycles each) are exactly the same.

For a random permutation on n-bit words, there are on average about ln 2n

cycles. That is, for n = 32 the expected number of cycles is about 22, approx-
imately half of them being even. If the same permutation is applied twice, the
cycles of even size split into two classes - even and odd cycles. The odd cycles of
the original permutation persist.

In KeeLoq, the same permutation F , which we consider as random, is applied
8 times (8 full rounds of KeeLoq) followed by a quarter round F ′. That is, the
permutation F 8(·) has about 11/2log 8 ≈ 1.4 cycles of even size3. At the same
time, a random permutation would have about 11 cycles of even size.

Thus, one can determine the correct value of K ′ by decrypting all ciphertexts
one quarter round and counting the number of cycles of even size. If there are
more than 6 even cycles, this can be seen as a random permutation and the
guess of K ′ is wrong. Otherwise, the guessed K ′ is correct. This test allows one
to determine the correct value of K ′ with a high probability. The complexity of
this step is about 237 KeeLoq encryptions.

Our extended attack. Now we can determine the quarter keyK ′=(k15, . . . , k0)
using the cycle structure attack described above. This requires 232 known
plaintext-ciphertext pairs and about 237 KeeLoq encryptions. Then we just apply
our basic attack from Section 3.1.

Actually, we do not have to perform the whole attack, as the first 16 key
bits are already known. The attacker chooses two plaintext-ciphertext pairs and
builds the corresponding pseudo-slide group of size 28. Then the correlation and
linear steps of our basic attack are directly applied to determine the remaining
48 bits of the key. This operation has to be performed for approximately 231

random plaintext-ciphertext pairs to achieve a high success probability. That is,
the complexity of these steps is about 233 KeeLoq encryptions.

Thus, we built an attack of complexity 237 operations working for the whole
key space and requiring 232 known plaintexts. This is the fastest known attack
on the KeeLoq block cipher applicable to the whole key space.

Though it might seem that the data requirements make the attack unpractical,
we show in the next section that our attacks can have practical relevance due
to some severe weaknesses of the key management schemes used in real-world
KeeLoq systems.

4 Attacks on KeeLoq-Based Systems in Practice

4.1 KeeLoq Protocols

The typical applications of KeeLoq are the car anti-theft systems. Here the car ig-
nition key authenticates itself to the car. For instance, the KeeLoq block cipher is
3 Note that we believe that [12] reports an incorrect expected number of even cycles

in this case.
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used by such automotive OEMs as Chrysler, Daewoo, Fiat, GM, Honda, Toyota,
Volvo, VW, Jaguar [2] and in the HomeLink wireless control systems to secure
communication with garage door openers [3]. Other automotive KeeLoq appli-
cations include component authentication, vehicle-to-garage authentication, etc.
KeeLoq is also used in various access control and property identification systems.
Below three major types of security protocols are outlined in which the KeeLoq
block cipher is involved.

KeeLoq hopping codes. These are also known as rolling codes and provide
authentication of an encoder to the decoder (the main system) by sending an en-
crypted counter value (unilateral communication) [5]. The encoder and decoder
share a 64-bit symmetric key and a 16-bit synchronized counter value. To au-
thenticate itself the encoder encrypts the next counter value and sends it to the
decoder which decrypts the message and verifies whether the received counter
value is within the open window of length 16. A resynchronization mechanism
exists to repair communication in case the counter value received exceeds the
bounds of the open window. See also [6], [18].

KeeLoq IFF. The IFF (Identify Friend or Foe) systems provide authentication
of a transponder to the main systems (decoder) using a simple challenge-response
protocol (bilateral communication), see [7]. The transponder and decoder share
a 64-bit symmetric key K. The encoder sends its 28-bit identifier to the main
system. To require authentication the decoder sends a 32-bit random challenge to
the transponder that replies with the corresponding KeeLoq-encrypted challenge
using K. The decoder encrypts the genuine challenge using K corresponding to
the identifier and compares the message received as a reply with this value. If
they coincide, the authentication is accepted. See also [19].

4.2 KeeLoq Key Management Schemes

The KeeLoq systems use a number of different key management mechanisms
depending on the concrete model of encoder/decoder. In all these schemes, an
individual encoder key is derived from a manufacturer’s key MK and some
encoder-specific information in some way during the learning phase. The indi-
vidual (KeeLoq encryption) key K is stored in the EEPROM of the encoder.
The manufacturer’s key MK is stored in the ROM and is fixed for large series
of encoders. This enables each manufacturer to produce encoders that cannot be
cloned by competitors. For example,MK can remain the same for all immobiliz-
ers installed in a certain car model within one production year. This fact makes
the manufacturer’s key a valuable attack target. It turns out that one can de-
duce some information about the manufacturer key from an individual encoder
key which can be found using the cryptanalytic attacks on the KeeLoq block
cipher described above. The concrete amount of gained information depends on
the specific key derivation function.

There are two classes of key derivation functions used in KeeLoq systems:
normal key generation and secure key generation. In this paper, we concentrate
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Fig. 4. XOR-based secure key generation with a 32-bit seed
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Fig. 5. XOR-based secure key generation with a 48-bit seed

on the XOR-based secure key generation and do not treat the normal key gener-
ation. The secure key derivation procedure has a variety of modes. Their general
feature is that the individual encoder key depends on a randomly looking but
fixed seed stored in the encoder and sent to the main system at the learning
stage. The modes differ with respect to the length of the seed used.

To derive an individual key according to XOR-based secure key generation
method, the encoder uses a seed S, its 28-bit encoder identifier N27,0 and the
64-bit manufacturer’s key MK = MK63,0 = MK63,32|MK31,0. Here MK63,32

and MK31,0 are the most significant and least significant 32-bit parts of MK,
respectively.

There are three modes of the KeeLoq XOR-based secure key generation:

– 32-bit seed: The 64-bit individual encoder key K = K63,0 = K63,32|K31,0 is
obtained by XORing MK31,0 with the seed S = S31,0 and MK63,32 with the
zero-padded N27,0 (Figure 4).

– 48-bit seed: The seed S47,0 is split into two parts - S47,32 and S31,0. K31,0

is obtained by XORing MK31,0 with S = S31,0. K63,32 is the XOR of the
zero-padded N11,0|S47,32 with MK31,0 (Figure 5).

– 60-bit seed: In this case, the individual encoder keyK does not depend on the
encoder identifier SN . K is obtained by XORing MK with the zero-padded
S = S59,0 (Figure 6).
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4.3 Attacking KeeLoq Hopping Codes and IFF Systems

The protocols and key derivation schemes described above allow one to deduce
some information about the manufacturer’s key MK from a single individual
encoder key.

Attack on KeeLoq IFF. In the case of KeeLoq IFF, the attacker can freely col-
lect plaintext-ciphertext pairs choosing challenges and recording the responses.
The PIC16 controllers run at a frequency of 4 MHz. As the KeeLoq cipher is
implemented in hardware, every of its 528 clocks takes about 2−18 s. That is, it
can be theoretically possible to encrypt all 232 plaintexts within about 100 days
on a PIC16 controller. Other controllers using KeeLoq can be clocked faster, thus
reducing the time needed to collect the plaintext-ciphertext pairs. For instance,
if a KeeLoq implementation is clocked with a moderate frequency of 64 MHz,
the attacker can theoretically collect all needed pairs within about 6 days. Note
that the encoder identifier is known as it is transmitted in plaintext before each
protocol run.

Thus, one can apply the advanced linear slide attack with complexity 237

working for the whole key space (Section 3.2) to the collected 232 pairs and
recover the individual encoder key K. As the identifier is known, the attacker
obtains 32, 16, or 4 bits of MK by XORing the found K with N27,0 or sim-
ply taking the 4 most significant bits, depending on the used key derivation
function. This reduces the security of all other KeeLoq systems using the same
manufacturer’s key MK to 32, 48, or 60 bits, respectively.

Moreover, the attacker can have access to the seed used. For instance, he can
intercept the transmission of the seed from the encoder to the decoder during
the learn procedure, as the seed is sent in plaintext. Note that the attacker can
also put an encoder into the learn mode by activating some of the PIC16 pins.
In this case, the attacker pulls off the seed from the individual encoder key by
XORing these two numbers and obtains the full manufacturer’s key MK. This
all other KeeLoq systems using the same manufacturer’s key totally insecure, if
the corresponding seeds are known.

Attack on KeeLoq hopping codes. There are at most 216 input-output texts
available, the synchronization counter running through the set {0, . . . , 216 − 1}.
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The ciphertexts can be obtained directly from the communication channel. The
corresponding plaintexts can be deduced, if the discrimination value is known.
Note that it takes the encoder at most one hour to generate 216 ciphertexts
(even including the wireless data transmission, each session of which requires at
most 50 ms). Moreover, the encoder identifier is known to the attacker, since it
is transmitted in plaintext with every hopping code.

Having collected all needed plaintext-ciphertext pairs, the attacker can launch
the algebraic attack mentioned above in Section 3.2 that is very well paralleliz-
able and finds K in 253 KeeLoq operations.

The rest of the attack works as described for KeeLoq IFF above, resulting in
the reduction of the security to 32, 48, 60, or 0 bits, depending on the used key
generation method and assumed security model.

5 Conclusion

In this paper we proposed practical key-recovery attacks on the KeeLoq block
cipher used in numerous automotive applications as well as in various property
identification systems.

Our cryptanalysis uses techniques of guess-and-determine, sliding, linear and
cycle structure attacks. Our basic attack works with complexity of 250.6 KeeLoq
encryptions (while KeeLoq uses a 64-bit key). It requires all 232 plaintexts and
a memory of 232 32-bit words. Our second attack uses the cycle structure tech-
niques to determine the first 16 bits of the key and then applies our first attack.
It has a complexity of 237 encryptions and requires 232 known plaintexts, while
being applicable to the whole key space. This is the best known attack on the
KeeLoq block cipher working for the whole key space.

We demonstrated that several real-world applications are vulnerable to at-
tacks on the KeeLoq block cipher, including KeeLoq IFF systems and KeeLoq
hopping codes. After attacking one instance of KeeLoq using attacks presented
in this paper, one can reduce the effective key length of all other KeeLoq systems
of the same series to 32, 48, or 60 bits depending on the key management scheme
applied. In some cases, the attacker is even able to obtain the encryption key
instantly. All this imposes a real threat on the KeeLoq systems.

Acknowledgements. The author would like to thank Christof Paar for fruitful
discussions and the anonymous referees for constructive observations.
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Abstract. In wireless distributed sensor networks, it is important for
sensor nodes to communicate securely each other. In order to ensure this
security, many approaches have been proposed recently. One of them is
to use key predistribution scheme (KPS). In this paper, we shall use
the Möbius plane to present a key predistribution scheme for distributed
sensor networks. The secure connectivity and resilience of the resulting
sensor network will be analyzed in this paper. This KPS constructed in
our paper has some better properties than the ones of KPSs constructed
in [5],[7] and [9].
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1 Introduction

Due to their wide applications, Distributed Sensor Networks (DSNs) have be-
come an active research area recently. In applications, we often accept the fol-
lowing assumptions: (1) many sensor nodes are dropped, in a random way, to the
target area. So that the network topology is unknown before the deployment.
(2) the sensor nodes are typically low-cost, battery powered, and highly resource
constrained, hence they should consume as little power as possible. (3) the sen-
sor nodes have limited computation, storage, and communication capabilities,
they can communicate with nodes only within a limited radius. We assume that
the radio coverage area of each sensor node forms a circle of fixed radius whose
center is that node. We call this circle a neighborhood of the given sensor node.
Once the sensor nodes are deployed, they scan their neighborhoods and find out
their neighbors.

In wireless distrubuted sensor networks, it is important for sensor nodes to
communicate securely each other. Of course, public key infrastructure (PKI)
can be used to establish pairwise secret keys between sensor nodes. However,
the operations, which are based on the complex arithmatic of big integers, have
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to be implemented in the low-level environments. By now, it is not suitable to
use PKI due to its expensive computational cost as well as storage consuming in
each sensor node. Therefore it is natural to use the key predistribution scheme
(KPS), where a set of secret keys is installed in each node before the sensor
nodes are deployed. If two adjacent sensor nodes have at least one common
keys, they can select one as the secret key and communicate securely by means
of symmetric cryptography.

In general, a key predistribution scheme consists of three phases: key predis-
tribution, shared key discovery, and path key establishment. First, a large pool
of keys are specified, and each key is assigned a unique identifier. Then, every
sensor node is loaded with a fixed number of keys chosen from the key pool,
along with their key identifiers. After the deployment of the DSN, the shared
key discovery phase takes place, where any two nodes in wireless communica-
tion range exchange their list of key identifiers to each other, and look for their
common keys. If they share one or more common keys, they can pick one of
them as their secret key for cryptographic communication. The path key estab-
lishment phase takes place if there is no common key between a pair of nodes
which need to have cryptographic communication. We call a successive sequence
of nodes a path, where any two adjacent nodes (also in the radio coverage range)
have at least one common keys. If the sensor node i wants to communicate se-
curely with the sensor node j, it needs to find a path between itself and the
sensor node j. Thus messages from the sensor node i can reach the sensor node
j securely.

In [1], Eschenauer and Gliger proposed a probabilistic key predistribution
scheme. The main idea is to assign every sensor node randomly a set of keys from
the given pool of keys before deployment, so any two sensor nodes have a certain
probability of sharing at least one common keys. Extensions and variations of
this approach can be found in [2,3,4].

To construct deterministic key predistribution scheme for DSN, using combi-
natorial design is another strategy in this area. This idea was first proposed in
Çamtepe and Yener [5]. Further study in this context can be found in [6,7,8].

A combinatorial design is a pair of sets (X, B), where X = {x1, x2, · · · , xv}
is a finite set, the elements of which are called points, and B = {B1, B2, · · · ,
Bb} is a finite set of subsets of X , called blocks.

Example 1: Let

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
B = {0129, 0134, 0158, 0167, 0235, 0247, 0268, 0369, 0378, 0456,

0489, 0579, 1236, 1245, 1278, 1357, 1389, 1468, 1479, 1569,
2348, 2379, 2469, 2567, 2589, 3459, 3467, 3568, 4578, 6789}.

In this design, X has ten points, B has thirty blocks, each block has four points of
X . Furthermore, each point of X appears in twelve blocks, any pair of distinct
points from X appears in four blocks, and any triple of distinct points from
X appears in exactly one block. Such a combinatorial design will be called 3-
(10, 4, 1) design later.
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Any combinatorial design can be used to establish a key predistribution
scheme for a DSN. Let X = {x1, x2, · · · , xv} and B = {B1, B2, · · · , Bb} where
each block Bj has k points of X . Let the sensor nodes be denoted by N1, N2,
· · · , Nb. For every 1 � i � v, a key Ki is chosen randomly from some special key
space. Hence there exists a 1-1 correspondence between X and {Ki | 1 � i � v},
and the symbol xi can be called the label of Ki. Then for 1 � j � b, the sen-
sor node Nj receives the set of keys {Ki | xi ∈ Bj}, that is, the block Bj is
used to specify which keys are given to the node Nj. Thus each node receives k
keys.

The effectiveness of a sensor network can be explained by the following two
aspects: (1) the connective probability p1, it is defined by the probability that
any pair of sensor nodes shares a link, i.e., they have at least one common keys.
Of course, this probability is expected as large as possible, since it measures the
effectiveness of the sensor network. (2) the probability fail(1). If a sensor node is
detected as being compromised, then all the keys it possesses should no longer
be used by any node in the sensor network. Suppose the sensor nodes Ni and Nj

have at least one common keys (which means that there is a link between the
pair of Ni and Nj). If all the common keys of the pair of Ni and Nj are contained
in the compromised sensor node, then Ni and Nj are no longer communicate
directly, i.e., the link between Ni and Nj is lost. And the probability of links
being affected is defined as

fail(1) =
the losted connectivities

the original connectivities
.

Generally, we expect fail(1) as small as possible, since it measures the resilience
of the sensor network, when a random sensor node is compromised.

Çamtepe and Yener [5], constructed a key predistribution scheme for sensor
network by use of finite geometry over projective planes. In [7], Lee and Stinson
provided a key predistribution scheme by using a special combinatorial design
TD(k, N). In this scheme, any two sensor nodes share at most one common
key.

In this paper, we shall construct a key predistribution scheme by using 3-
designs. The most attractive feature of this key predistribution scheme is that
when the number of sensor nodes b tends to ∞, we have p1 → 1/2 and fail(1) → 0.
In a previous paper[9] the authors found a key predistribution scheme, in which
p1 → 5/8 and fail(1) → 0 as b → ∞. Although, the connective probabilities of
this scheme is less than that of the scheme in [9], the probabilities fail(1) of this
scheme is also much less than that of the scheme in [9].

The rest of this paper is arranged as follows. The key predistribution scheme
based on 3-design will be presented in section 2, and the connective probabilities
p1 and fail(1) of the scheme will be computed. Some issues on implementation
will be given in section 3. We compare the scheme of this paper with some known
schemes in section 4.
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2 New Scheme

Let (X, B) be a combinatorial design with |X | = v and every block B of B has
exactly k elements of X . Let t � 1 be an integer, if any t distinct elements of X
occur in λ blocks exactly, then it is called a t-(v, k, λ) design.

Now we are going to introduce a 3-design, which is called the Möbius plane
or inverse plane in history. One may refer to [11] and [12] for more information
on such topic.

Let n � 2 be an integer, and q a prime power. Let X be the set of all qn + 1
points on the projective line PG(1, Fqn), which can be denoted by

{(1, α) | α ∈ Fqn} ∪ {(0, 1)}.

The set X can be also denoted by Fqn ∪ {∞}. Let B denote PG(1, Fq), then
B can be considered as a subset of X since Fq is a subfield of Fqn . Suppose
T ∈ GL2(Fqn), i.e., T is a non-singular 2 × 2 matrix over Fqn , then

PG(1, Fqn) −→ PG(1, Fqn)
(x0, x1) �−→ (x0, x1)T.

defines a 1-1 transformation on X , which is called a projective transformation. It
is easy to see that two matrix T1, T2 ∈ GL2(Fqn) define the same transformation
on X if and only if there exists an non-zero element α of Fqn such that T1 = αT2.
Denote G = PGL2(Fqn) = GL2(Fqn)/{αI|α ∈ Fqn}. Let GB = {T ∈ G | T (B) =
B}. It is easy to show that GB = PGL2(Fq).

Let B = {T (B) | T ∈ G/GB}, then we have

b = |B| = |G|/|GB | =
(q2n − 1)(q2n − qn)

qn − 1

/
(q2 − 1)(q2 − q)

q − 1
=

qn(q2n − 1)
q(q2 − 1)

.

The following proposition is well known in projective geometry.

Proposition 1. Any three distinct points of PG(1, Fpn) can be mapped into any
other three distinct points by a transformation in G.

Proposition 2. Let q be a prime power. Then there exists a 3-(qn + 1, q + 1, 1)
design with the number of blocks b = (qn(q2n − 1))/(q(q2 − 1)).

Proof. Let X = PG(1, Fqn), G = PGL2(Fqn), and B = {T (B)|T ∈ G}. Then
|X | = v = qn + 1, and each block of B is of k = q + 1 elements of X . By
proposition 1, each 3-subset of X is at least contained in one block of B. The
total number of distinct 3-subsets of X is

(
qn + 1

3

)
=

(qn + 1)qn(qn − 1)
3!

=
qn(q2n − 1)

3!
.

On the other hand, the number of taking three distinct elements from each
block of B is (

q + 1
3

)
=

(q + 1)q(q − 1)
3!

=
q(q2 − 1)

3!
,
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Since the number of blocks in B is b = (qn(q2n − 1))/(q(q2 − 1)), we know that
the total number of taking three distinct elements from all blocks of B is

b

(
q + 1

3

)
=

qn(q2n − 1)
q(q2 − 1)

· q(q2 − 1)
3!

=
qn(q2n − 1)

3!
=

(
qn + 1

3

)
,

This implies that each 3-subset of X is contained in exactly one block of B.
Therefore, the pair (X, B) is a 3-(qn + 1, q + 1, 1) design.

Thus, we can construct a key predistribution scheme by the above 3-design:

Proposition 3. Suppose q is a prime power, and n � 2 is an integer. Then there
exists a key predistribution scheme for a DSN having b = (qn(q2n−1))/(q(q2−1))
sensor nodes and every node containing exactly q + 1 keys.

Now we calculate the connective probability p1 and fail(1).
First, we consider the case of n = 2. For any given i distinct elements, let λi

(1 � i � 3) denote the number of blocks in which these elements occur. Then
we have the following:

Lemma 1. In the 3-(q2 + 1, q + 1, 1) design, the number of blocks is b = q3 + q,
and λ1 = q2 + q, λ2 = q + 1, and λ3 = 1.

Let C be a fixed block, and for every pair of elements i, j ∈ C, i �= j, define

μ′
C(i, j) = #{C′ ∈ B | C′ ∩ C = {i, j}}.

which is the number of blocks which intersect with C at the set {i, j} exactly.
It is easy to see that the number μ′

C(i, j) is independent on the special block C
and the special pair of elements i and j in C, hence denote it by μ′

C(2). Since
there are λ2 = q+1 blocks contain {i, j}, so that only λ2 −1 = q blocks intersect
with C at {i, j} exactly, therefore μ′

C(2) = q.
For every i ∈ C, let μ′

C(i) denote the number of blocks that intersect with C
at {i} exactly. It can be easily seen that μ′

C(i) is independent with the special
block C and the special element i in C, and denote it by μ′

C(1). Similarly, as
what we have done above, we know that

μ′
C(1) = λ1 − 1 − ((q + 1) − 1) ∗ μ′

C(2) = q − 1.

Let C be a fixed block as above, and μC(1) and μC(2) denote the number of
blocks that have only one or two common points with C, respectively. Then we
have

μC(1) = (q + 1) ∗ μ′
C(1) = q2 − 1

μC(2) =
(

q + 1
2

)
μ′

C(2) =
1
2
q3 +

1
2
q2

Hence, the number of blocks that have some common keys with C is

μC = μC(1) + μC(2) =
1
2
q3 +

3
2
q2 − 1.
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So, the connective propobability of this KPS is

p1 =
μC

b − 1
=

(1/2)q3 + (3/2)q2 − 1
q3 + q − 1

→ 1
2
, when q → ∞

Next, we consider the resilience of the key predistribution scheme. All q + 1
keys the compromised sensor node possesses should no longer be used by any
node in the network. Furthermore, if all the common keys of sensor nodes Ni

and Nj are contained in the compromised sensor node, then Ni and Nj can no
longer communicate directly.

For any block C, there are μC blocks that have some common keys with it.
Hence, the number of all the connections in this scheme is

μ =
b ∗ μC

2
=

1
4
q6 +

3
4
q5 +

1
4
q4 +

1
4
q3 − 1

2
q.

Suppose that Ch is a block corresponding to the compromised sensor node
Nh. For every pair i, j ∈ Ch, i �= j, the following links are no longer used:

{(C, C′) | C ∩ C′ = {i, j}}.

There are
λ2 ∗ μ′

C(2)
2

=
q2 + q

2
.

such links. Hence the number of pairs of C and C′ such that C ∩ C′ ⊂ Ch with
|C ∩ C′| = 2 is (

q + 1
2

)
λ2 ∗ μ′

C(2)
2

=
1
4
q4 +

1
2
q3 +

1
4
q2.

Similarly, the number of pairs of C and C′ such that C ∩ C′ ⊂ Ch with
|C ∩ C′| = 1 is

(
q + 1

1

)
λ1 ∗ μ′

C(1)
2

=
1
2
q4 +

1
2
q3 − 1

2
q2 − 1

2
q.

So the probability that an arbitrary link is affected by the compromise of one
node is

fail(1) =
3q2 + q − 2

q4 + 2q3 − q2 + 2q − 2
→ 0, when q → ∞.

The connective probability p1 and fail(1) for some q in the case n = 2 are
given in Table 3.

Now, we consider the case that n � 3. In order to simplify discussions, we
only consider the probability of connectivity p1.

Lemma 2. In the 3-(qn + 1, q + 1, 1) design, we have

b =
qn(q2n − 1)
q(q2 − 1)

, λ1 =
qn(qn − 1)
q(q − 1)

, λ2 =
qn − 1
q − 1

, λ3 = 1.
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Suppose the symbols μ′
C(1), μ′

C(2), μC(1), μC(2), and μ(C) were defined as
above. We consider the degrees of them as polynomials of q.

By lemma 2, we have

deg(b) = 3n − 3, deg(λ1) = 2n − 2, deg(λ1) = n − 1.

Since

μ′
C(2) = λ2 − 1, μ′

C(1) = (λ1 − 1) −
(
(q + 1) − 1

)
μ′

C(2),

and

2n − 2 = deg(λ1 − 1) > deg(q ∗ μ′
C(2)) = n, (since n > 2)

we have

deg(μ′
C(2)) = deg(λ2) = n − 1, deg(μ′

C(1)) = deg(λ1) = 2n − 2.

Furthermore, by

μC(1) = (q + 1)μ′
C(1), μC(2) =

(
q + 1

2

)
μ′

C(2)

we know that

deg(μC(1)) = 2(n − 1) + 1 = 2n − 1, deg(μC(2)) = (n − 1) + 2 = n + 1,

Noting that n � 3, we have

2n − 1 = deg(μC(1)) > deg(μC(2)) = n + 1.

Therefore,

deg(μC) = deg(μC(1) + μC(2)) = deg(μC(1)) = 2n − 1,

and hence, by comparing the degrees,

p1 =
μC

b − 1
→ 0, when q → ∞.

So, we have the following theorem:

Theorem 1. We have

lim
q→∞ p1 =

1
2

when n = 2,

and
lim

q→∞ p1 = 0 when n > 2.

In fact, we can show that p1 monotonously decreases to 1/2 for the case n = 2
and q > 2. Let

f(q) = μC =
1
2
q3 +

3
2
q2 − 1,

g(q) = b − 1 = q3 + q − 1.
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It is sufficient to show that f ′g − fg′ < 0. We have

f ′ =
3
2
q2 + 3q, g′ = 3q2 + 1,

and

gf ′ − fg′ = −
(

3
2
q4 − q3 − 3q2 + 3q − 1

)

Let

h(q) = (−2) ∗ (gf ′ − fg′)

= 3q4 − 2q3 − 6q2 + 6q − 2.

Assume q > 2, then

h(q) = q2(3q2 − 2q − 6) + 6q − 2

= q2
(
q(3q − 2) − 6

)
+ 6q − 2

> q2
(
2 ∗ (6 − 2) − 6

)
+ 6 ∗ 2 − 2

= 2q2 + 10 > 0

This proves what we wanted.

3 Implementation

Suppose that n = 2 and q is a prime in this section. The size of q is determined
by the number of keys k = q + 1 per node. Take an irreducible polynomial f(x)
of degree 2 over the field Fq. (for example, take f(x) = x2 − u where u is a
non-square element of Fq.) Let α be a root of f(x), then we have

Fq2 = {aα + b | a, b ∈ Fq}.

Let X be the set of q2 + 1 points of the projective line PG(1, Fq2):

X = {(1, β) | β ∈ Fq2} ∪ {(0, 1)}.

and B be the set of q + 1 points of the projective line PG(1, Fq):

B={(1, β) | β ∈ Fq} ∪ {(0, 1)}.

as defined in section 2. Each point of X is assigned with a key chosen ran-
domly from a key pool, and each key has a unique identifier by an integer from
(0, 1, · · · , q2).

We have the set of blocks B = {T (B) | T ∈ G/GB}. Each block is assigned
to a unique sensor node which will receive the set of keys assigned to the points
contained in this block. For assigning keys for each node, we need to know all
the blocks in B. This is equivalent to have a representation system of the cosets
of GB = PGL2(Fq) in G = PGL2(Fq2). We may find the system by computer if
q is not too large.
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When q grows larger, the number of blocks b = q3 + q in B may become too
large for application. In this case we can only use a part of the blocks chosen
randomly from B. The experiments (Tables 1, 2 where t is the number of blocks
used) shows that the parameters p1 and fail(1) have only a small disturbance
when only a part of blocks is used.

Table 1. Experimental results of p1

q 29 59 79 109 139 179

t = 1000 0.551381 0.524314 0.518308 0.511952 0.512332 0.509700

t = 2000 0.552091 0.526103 0.519160 0.513462 0.512361 0.507129

t = b 0.551050 0.525271 0.518903 0.513718 0.510765 0.508364

Table 2. Experimental results of fail(1)

q 29 59 79 109 139 179

t = 1000 0.003311 0.000831 0.000469 0.000245 0.000155 0.000093

t = 2000 0.003305 0.000830 0.000467 0.000243 0.000155 0.000091

t = b 0.003376 0.000838 0.000471 0.000249 0.000153 0.000093

Choosing randomly a matrix T ∈ GL2(Fq2), we can find a block

T (B) = {(1, β)T | β ∈ Fq} ∪ {(0, 1)T }.

Hence we may find a set of blocks by choosing a set of matrices in GL2(Fq2).
Suppose that the matrices T1 and T2 have been chosen successively, it is necessary
to check whether T1 and T2 generate the same blocks T1(B) and T2(B). If this is
the case we may choose another T2. Repeating this process until enough blocks
are found.

After the deployment of the distributed sensor network, any two nodes in the
wireless communication range exchange their list of key identifiers to each other,
and look for their common keys. If they have common keys, they can pick one
of them as their secret key for cryptographic communication.

4 Comparisons

In [5], Çamtepe and Yener constructed a key predistribution scheme for sensor
network by use of finite geometry over projective planes. Let q be a prime power,
X the projective plane PG(2, Fq), B the set of projective lines in PG(2, Fq), then
it is easily seen that (X, B) is a 2− (q2 + q +1, q +1, 1) design. Each pair of lines
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has exactly one common point, so the connective probability p1 = 1. However,
sine b = |B| = q2 + q + 1, the number of keys per node is k = q + 1 ≈√

b. When the size of DSN is large, it may be impossible for its heavy storage
requirement.

For example, suppose that we want to construct a key predistribution scheme,
by the Çamtepe and Yener’s method, for a DSN having 1000000 nodes. Then
the smallest prime power q such that q2 + q + 1 � 1000000 is q = 1009. The
resulting KPS would assign 1010 keys to every node.

In our schemes, the smallest prime power q such that b = q3 + q � 1000000 is
that q = 101. If we take q = 101, then the resulting key predistribution scheme
for a DSN can support 1000000 sensor nodes and each node stores k = q+1 = 102
keys, which is much less than that in Çamtepe and Yener’s scheme.

In [7], Lee and Stinson constructed a key predistribution scheme by using of
transversal design TD(k, N).

Let k � 2 and N � 1. A transversal design TD(k, N) is a triple (X, B, G )
such that the following properties are satisfied: (1) X is a set of kN elements
called points, (2) G is a partition of X into k subsets of size N called groups, (3)
B is a set of k-subsets of X called blocks, (4) any group and any block contain
exactly one common point, and (5) every pair of points from distinct groups
is contained in exactly one block. For further introduction, or construction to
transversal designs, one can refer to [10].

A class of transversal design TD(k, N), where N is a prime and k < N ,
was constructed in [7]. In the resulting scheme, every two sensor nodes share at
most one common key, the number of nodes b = N2, the connective probability
p′1 = k/(N + 1) and Fail(1) = (N − 2)/(N2 − 2). We compare the scheme based
on this class of TD(k, N) with the scheme of this paper with n = 2. For a given
prime power q, let k = q + 1 and N be the largest prime such that N2 � q3 + q.
The comparison between these two schemes is given in Table 3.

The Table 3 shows that when these two schemes have the same number k of
keys per node and approximately the same number b of nodes, the scheme of
this paper has greater probability p1 and lower fail(1).

Table 3. The comparison 1

q b v k p1 fail(1) N p′
1 Fail(1)

5 130 26 6 0.767442 0.090909 11 0.500000 0.075630

7 350 50 8 0.699140 0.049836 17 0.444444 0.067265

11 1342 122 12 0.630872 0.021625 31 0.375000 0.030240

13 2210 170 14 0.611589 0.015788 47 0.291667 0.020390

17 4930 290 18 0.586123 0.009475 67 0.264706 0.014486

29 24418 842 30 0.551050 0.003376 151 0.197368 0.006535

59 205438 3482 60 0.525271 0.000838 449 0.133333 0.002217

79 493118 6242 80 0.518903 0.000471 701 0.113960 0.001422

109 1295138 11882 110 0.513718 0.000249 1129 0.097345 0.000884

139 2685758 19322 140 0.510765 0.000153 1637 0.085470 0.000610

179 5735518 32042 180 0.508364 0.000093 2393 0.075188 0.000418
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Table 4. The comparison 2

q b v k p1 fail(1) N b′ = N2 p′
1 Fail(1)

5 130 26 6 0.767442 0.090909 7 49 0.750000 0.106383

7 350 50 8 0.699140 0.049836 11 121 0.666667 0.075630

11 1342 122 12 0.630872 0.021625 19 361 0.600000 0.047354

13 2210 170 14 0.611589 0.015788 23 529 0.583333 0.039848

17 4930 290 18 0.586123 0.009475 31 961 0.562500 0.030240

29 24418 842 30 0.551050 0.003376 59 3481 0.500000 0.014659

59 205438 3482 60 0.525271 0.000838 127 16129 0.468750 0.007751

79 493118 6242 80 0.518903 0.000471 157 24649 0.506329 0.006289

109 1295138 11882 110 0.513718 0.000249 223 49729 0.491071 0.004444

139 2685758 19322 140 0.510765 0.000153 277 76729 0.503597 0.003584

179 5735518 32042 180 0.508364 0.000093 359 128881 0.500000 0.002723

Table 5. The comparisin 3

q b2 p2 FAIL(1) b p1 fail(1)

5 3100 0.7677 0.1250 130 0.767442 0.090909

7 16758 0.7331 0.0877 350 0.699140 0.049836

11 58968 0.7118 0.0671 1342 0.630872 0.021625

13 160930 0.6975 0.0542 2210 0.611589 0.015788

17 371124 0.6873 0.0453 4930 0.586123 0.009475

29 20510308 0.6541 0.0194 24418 0.551050 0.003376

59 714920818 0.6396 0.0093 205438 0.525271 0.000838

79 3077050158 0.6359 0.0069 493118 0.518903 0.000471

109 15386227668 0.6330 0.0050 1295138 0.513718 0.000249

139 51888825378 0.6312 0.0039 2685758 0.510765 0.000153

179 183765964858 0.6299 0.0030 5735518 0.508364 0.000093

In both schemes, we take the same k, and approximately the same connective
probability p1 by choosing suitable N in TD(k, N), then we compare the number
b and fail(1). Some of the results are listed in the following Table 4, where b′,
p′1, and Fail(1) denote the corresponding parameters of the scheme in [7].

In [9], Pei et. al. constructed a key predistribution scheme based on ratio-
nal normal curves over finite fields. The Table 5 gives a comparison between
the scheme in [9] and the scheme of this paper when both schemes have the
same number of keys k = q + 1 per note, where b2, p2 and FAIL(1) denote the
corresponding parameters of the scheme in [9].

The Table 5 shows that when the number of keys per node is equal, the
block number in scheme of [9] is larger than that of this scheme, the connective
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probability of [9] is larger than that of this scheme, and the fail(1) of the scheme
of this paper is much less than that of [9].

5 Conclusions

In this paper, we construct a key predistribution scheme by using a the 3-design.
Comparing with the scheme from [7], our scheme has higher connective proba-
bility and lower fail(1). And comparing with scheme from [9], our scheme has
lower fail(1).
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Abstract. Until now, it is still an open problem to provide a provably
secure and efficient protocol for treating the case in which n communica-
tion parties can authenticate each other and establish a secure session key
with their respective passwords shared with a trusted server. Accordingly,
in this paper we propose a solution in a formal way. Firstly, we review
the strengthened EKE-M protocol—a maiden attempt to resolve the set-
ting above and point out a subtle flaw in it that may cause unknown key
sharing attacks. Next, based on previous work in the adversary model for
key establishment protocols, we provide an extended one for the N-party
setting. Finally, we propose a constant-round and provably secure generic
construction of N-party different password-authentication (DPWA) key
exchange protocols in the multicast setting.

Keywords: Password, authenticated key exchange, key distribution,
multi-party protocols.

1 Introduction

In the last few years, password-based authenticated key exchange (PAKE) pro-
tocols have received much attention due to their simplicity and convenience, in
which communication parties can establish authenticated session key for later se-
cure communications only by using short secrets—passwords, which occupy little
memory space and facilitate human being’s remembering. Such resolutions are
particularly attractive for the practical environments in which communication
clients are light-weight or hand-held devices that can not afford a heavyweight
infrastructure such as public key infrastructure (PKI).

There are two classes of PAKE protocols. The first is the shared password-
authentication (SPWA) scheme [14] which uses a password shared among com-
munication parties to implement authentication and session key establishment.
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Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 93–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



94 W. Wang, L. Hu, and Y. Li

The second is the different password-authentication (DPWA) scheme [14] in
which parties authenticate each other and build a common session key by the
help of a trusted server, with which each of them share a distinct password.

Generally, SPWA-type schemes are used for the setting in which there are only
a few participators. It is a very difficult task for a large number of parties to keep
sharing a single password synchronously and securely, since the compromise or
corruption of any one of these parties will lead to so serious a trouble on the
whole group that the remaining parties must re-communicate each other and
update the shared password, which can hardly be implemented in a real-world
network circumstance, especially for a large scale group. Also, previous work in
the SPWA-type in the literature mainly focus on the 2-party setting, where one
party C, a client and the other S, a server implement authenticated key exchange
by using their shared password.

In contrast, DPWA-type schemes are well suited for the multi-party case where
the parties of a group only need to hold and manage their respective passwords
shared with a trusted server. Even if finding someone being corrupted, the re-
maining honest parties can easily rebuild a new session to exclude him by using
their respective passwords. Certainly, the main drawback of this type scheme
is that the trusted server is always needed throughout the establishment of all
communication.

Related work. In the initial stages of the research on PAKE, most researchers
consider different aspects of SPWA-type schemes in the 2-party case [6, 7, 5, 9,
11, 18, 19, 20, 24, 25, 27]. Recently, based upon the previous work on group key
exchange (GKE) [10,12,22], several N -party SPWA-type schemes [17,23,1,4,8]
were proposed, and some of them [1, 4, 8] are equipped with formal treatments
for the security.

Simultaneously, the importance of the multi-party DPWA-type PAKE also
began to be realized by the security community, especially followed by an in-
creasing recognition that strict formal treatments for those of the DPWA-type
were needed. Abdalla et al. [2] recently provided a formal security model for
DPWA-type PAKE protocols in the 3-party setting, based on those of Bellare
and Rogaway [7] for key distribution schemes and that of Bellare, Pointcheval,
and Rogaway [5], and presented a provably secure generic construction for this
class of protocols under their model. Subsequently, Abdalla et al. [3] proposed an
simple and efficient 3-party PAKE protocol and verified its security under their
security model. Most recently, Wang and Hu [29] provided a modified security
model for the treatment of resisting undetectable on-line dictionary attacks, and
also proposed a new provably secure and efficient construction for 3-party PAKE
protocols.

On the other hand, Byun and Lee [14] firstly extended DPWA-type schemes to
the N -party case, and proposed two password-based Diffie-Hellman key exchange
schemes, referred to as the EKE-U and EKE-M protocols, for two distinct net-
work environments: unicast network and multicast network. The former assumes
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that one client can send messages one by one to the next client in one direction;
The latter assumes that any client can send messages to multiple recipients only
in one round (in parallel) during the protocol. However, although both of these
two schemes are claimed to be provably secure, Tang and Chen [28] soon showed
that the EKE-U protocol suffers from off-line dictionary attacks and the EKE-M
protocol is susceptible to undetectable on-line dictionary attacks. Subsequently,
Byun and Lee [15] provided immediate countermeasures (two strengthened ver-
sions) on Tang et al.’s attacks in which they strengthen their two schemes by
adding key confirmation procedures after each clients and the server build the
session key. And then they adapt the strengthened EKE-M to the multi-layer
MANET environment in [16]. Nevertheless, very recently, Phan and Goi [26]
made an extensive analysis of the EKE-U protocol and its strengthened ver-
sion, based on the prior work of Tang and Chen [28]. They pointed out that the
strengthened EKE-U is still susceptible to a variant of the unknown key-share
attack even if temporary session keys are used to encrypt the channel between
clients and the trusted server in the up-flow stage instead of passwords being
used in the original version. They also review that the strengthened EKE-M
cannot provide key privacy1 due to its key distribution structure.

Our contribution. In this paper, we consider the N -party DPWA-type PAKE
in the multicast network case, which allows a group of members to build a group
session key concurrently in a multicast environment with respective distinct pass-
words by the help of a trusted server. Firstly, we further analyze the strengthened
EKE-M protocol [15], which is the countermeasure version of the EKE-M [14]
on Tang et al’s attacks [28], and present a trivial but interesting attack against
it. Secondly, based on the prior work on the security model for 3-party PAKE
case [2, 29] and those on the security for group key exchange protocols [12, 20],
we present an extended one for N -party DPWA-type PAKE in the multicast
network case. Finally, we propose a constant-round and provably secure generic
construction of N -party DPWA-type PAKE protocols in the multicast setting,
in which the secure 2-party PAKE schemes between each client and the trusted
server and a Burmester-Desmedt (BD) group key exchange protocol [13] among
clients, as two independent and parallel components, are perfectly connected by
the secure Message authentication code (MAC) schemes.

Outline of the paper. Our paper is organized as follows. In section 2, we briefly
review the strengthened EKE-M protocol [15] and discuss the attacks against
it. In section 3, we present a security model for N -party DPWA-type PAKE
protocols in the multicast setting based on some prior work. In section 4, several
security primitives are introduced, which will be used in the following work. In
section 5, we propose a generic construction for such protocol and provide its
security results. Finally, conclusions and discussions are given in section 6.

1 The trusted server can not obtain any information of the session key in a passive
way.



96 W. Wang, L. Hu, and Y. Li

2 Strengthened EKE-M Protocol

In the sequel, we briefly review the strengthened EKE-M scheme which is pro-
posed as an improved version of the original protocol to resist the attacks pre-
sented by Tang and Chen [28], and point out that it still has a subtle flaw which
may cause a weak variant of unknown key share attack2, under which the ses-
sion key generated by each client can be easily interfered by an adversary. Note
that another variant of unknown key share attack in N -party case was provided
by Phan and Goi [26], where each client (except Cn−1) believes it is sharing a
session key with all other clients including Cn−1 which is rightly so, but Cn−1 is
not present and does not know that such a key has been established.

2.1 Description of the Strengthened EKE-M Protocol

Let G = 〈g〉 be a cyclic group of prime order q, sid′ = εpw1(gx1)||εpw2(gx2)||...
||εpwn−1(gxn−1) and SIDS = sid′||sk1 ⊕ N ||sk2 ⊕ N ||...||skn−1 ⊕ N .

S C1 C2 ... Cn−1

Round 1 si ← [1, q − 1] x1 ← [1, q − 1] x2 ← [1, q − 1] ... xn−1 ← [1, q − 1]
εpwi

(gsi ) εpw1 (gx1 ) εpw2 (gx2 ) ... εpwn−1 (gxn−1 )

Round 2 H2(ski||S) H2(sk1||C1) H2(sk2||C2) ... H2(skn−1||Cn−1)

Round 3 N ← [1, q − 1]
sk1 ⊕ N ||...||skn−1 ⊕ N

Fig. 1. The strengthened EKE-M protocol

– In Round 1, the server S sends εpwi(gsi) to the clients C1,C2,...,Cn−1 con-
currently. Simultaneously each client Ci, 1 ≤ i ≤ n − 1, sends εpwi(gxi) to
S. Upon receiving their respective message above, S and Ci,1 ≤ i ≤ n − 1
share an ephemeral Diffie-Hellman Key, ski = H1(sid′||gxisi).

– In Round 2, S and Ci, 1 ≤ i ≤ n − 1, authenticate each other by broadcast-
ing authenticators H2(ski||S) and H2(ski||Ci), and checking their validity,
respectively.

– In Round 3, S chooses a random value N from Z∗
q and then sends N ⊕ ski

to Ci, 1 ≤ i ≤ n − 1, concurrently. After obtaining the message above, every
client generates a common key , sk = H2(SIDS||N).

If it is necessary for some applications to provide the mutual authentication
(key confirmation), the additional authenticator H4(sk||i) can be used as de-
scribed in [15].
2 An unknown key share attack on a 2-party case is where one party A believes it is

sharing a session key with B which is true, but B instead believes it is sharing a
session key with E �= A.
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2.2 Analysis of the Strengthened EKE-M

In fact, the original version of this protocol has not the property of mutual
authentications between each client and the trusted server, so Tang and Chen
[28] point out that an adversary, who may be an inside attacker, can perform
undetectable on-line dictionary attacks, namely, it can guess the password of
another client among the group, start the protocol with both the illegal and
its own legal identities and finally verify its guess on-linely in each session by
comparing the two session keys obtained by using his two identities, respectively,
while the server can not detect it.

By adding mutual authentication between each client and the trusted server,
Byun and Lee [15] resolved the problem on undetectable on-line dictionary at-
tacks. Unfortunately, we find that the modified version is still not so secure as
they claimed, as shown as follows.

The nonce N that the server distribute to each client in the last message can
be replaced with any value by an adversary. Specifically, it is assumed that there
are totally three clients C1, C2 and C3 and the protocol among them has been
executed in the key distribution stage so that three messages N ⊕ ski, where
1 ≤ i ≤ 3, have been delivered by the server. An adversary can interfere them
by substituting the three messages N ⊕ ski (1 ≤ i ≤ 3) with any three different
values. As a result, if the optional key confirmation stage does not exist in some
cases, the three clients will generate different session keys but they do not know.

However, even if the key confirmation stage is involved in the protocol, an
adversary still can intercept the three message aforementioned and compute
sk1 ⊕ sk3 = (N ⊕ sk1)⊕ (N ⊕ sk3) and sk2 ⊕ sk3 = (N ⊕ sk2)⊕ (N ⊕ sk3). Next,
it sends to C1, C2 and C3 three values sk1 ⊕ sk3, sk2 ⊕ sk3 and 0 instead of
N ⊕ sk1, N ⊕ sk2 and N ⊕ sk3. Finally, the nonce received by each party would
be the session key sk3 between the server and C3. Certainly, the attack above
is trivial since the adversary does not know the modified nonce, but it is still a
hidden danger for a secure protocol that the nonce distributed by the server can
be changed easily by any attacker.

In fact, the above attack is based on the observation that in the strength-
ened EKE-M, authentication is absent in the key distribution stage. To resist
this attack, the protocol can be enhanced by sending the nonce with its au-
thentication information by using each session key between each client and the
server. However, strictly speaking, the EKE-M scheme is essentially a multi-
party key distribution protocol, which is absent of some important properties
desirable in the real applications such as forward security [21] and privacy se-
curity [2] and is exceedingly dependent on the server. So how to build a secure
N -party DPWA-type PAKE protocol is still an open problem. For this, in the
following sections, we present a provably secure general construction of secure
N -party DPWA-type PAKE protocols, which consists of three independent com-
ponents: a semantically secure 2PAKE protocol, a secure MAC scheme, and the
Burmester-Desmedt group key exchange protocol [13].
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3 Security Model

Generally, a formal model for protocols is composed of two main parts: the
description of the ability of the adversary and the security definitions. In this
section we present a security model, which specifies the N -party DPWA-type
PAKE setting, based on the prior work of [2, 12, 22, 29]. Different from the one
of Byun and Lee [14], which is a simple extension of the work of [12], our model
for N -party DPWA-type PAKE protocols considers the ability of the adversary
attacking the server, and as in [2, 29], introduces a new oracle SendSever to
simulate this ability. Further, in order to treat formally the security against
undetectable on-line dictionary attacks, we add the authentication security no-
tion in the security definitions. On the other hand, although our model is more
likely a generalization of the models of Abdalla et al. [2] and Wang and Hu [29],
only the common semantic security notion which is also referred to as the Find-
Then-Guess (FTG) model [2], rather than the stronger model—Real-Or-Random
(ROR) model [2], is employed in our model so that the scheme provable under
it has stronger security. The difference between the FTG and the ROR models
is that in the former the Reveal query is allowed and only single Test query can
be asked in all sessions, while in the latter the Reveal query is not available but
Test can be queried once for each fresh instance.

3.1 Protocol Syntax

Protocol Participants. In a N -party DPWA-type PAKE protocol P , there
are two types of participants: clients and a trusted server. We denote by U =
{U1,...,Un}, where the number n of players is up bounded polynomially in the
security parameter k, the former that can participate in the protocol P , and by
S the latter that is supposed to be always online. Here the set U can be further
divided into two disjoint subsets: C, the set of honest clients and E , the set of
malicious clients, and the set of all client participators U is the union C

⋃
E . The

malicious set E corresponds to the set of inside attackers, which is the particular
case in the DPWA-type setting.

Each participants may engage in several distinct, possibly concurrent, execu-
tions of the protocol P so that they initiate the corresponding instances called
oracles. We denote by U i (Sj) the instance i (j) of a participant U (S).

Long-lived keys. Each client party Ui keeps a low-entropy password pwi, which
is assumed to be uniformly drawn from a small dictionary D. The trusted server
S holds in its database a vector pwS = 〈pwS [U ]〉U∈U of the password verifiers of
all the parties, and we denote by pwE , where E ∈ E , the set of passwords held
by the inside attackers.

Communication model. In the model, it is assumed that an adversary A
potentially control all communications in the network. During the execution of
the protocol, the interaction between an adversary and the protocol participants
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occurs only via oracle queries, which model the adversary capabilities in a real
system. We consider these queries as follows:

1. Execute({U i1
1 , ..., U in

n }, Sj): This query models passive attacks, where A gets
access to honest executions among the client instances U i1

1 , ..., U in
n and the

trusted server instance Sj by eavesdropping. The output of this query con-
sists of the resulting transcript that was exchanged during the honest exe-
cution of the protocol P .

2. SendClient(U i, m): This query models an active attack against a client, in
which A sends a message m to client instance U i and gets back the response
the client generates in processing the message according to the protocol
P . This query can be utilized by A to perform various active attacks such
as impersonation attacks and man-in-the-middle attacks through modifying
and inserting the messages of the protocol. A query Send(Start) initializes
a new instance of the protocol P , and thus the adversary receives the initial
flows sent out by the instance.

3. SendServer(Sj , m): This query models an active attack against the trusted
server, in which the adversary sends a message m to server instance Sj . It
outputs the message which server instance Sj generates upon receipt of the
message.

4. Reveal(U i): This query models known key attacks (or Denning-sacco at-
tacks), in which A gets the group session keys of the protocol instance in-
volving the client instance U i. Only if the group session key between the
client instance U i and partnered instances is defined, the query is available
and returns it to the adversary.

5. Test(U i): This query is used to measure the semantic security of the group
session key of client instance U i, which models the misuse of the session key
by a client instance in a way. If the session key is not defined, it returns
⊥. Otherwise, it returns either the session key held by client instance U i if
b = 0 or a random number of the same size if b = 1, where b is a random bit
preselected.

Notation. An instance Us is said to be opened if the query Reveal(Us) has
been made by the adversary. We say an instance Us is unopened if it is not
opened. An instance Us is said to be accepted if it goes into an accept state after
receiving the last expected protocol message, which also means it has enough
information to generate the session key.

Session IDS and Partnering. Our approach defining the two notions is
from [5], where the session IDS (SIDS) for the client instance Us

i is defined as
SIDS(Us

i ) = {SIDij : j ∈ ID}, where SIDij is the concatenation of all transcript
that the instance Us

i exchanges with the instance U t
j during an execution of P .

It should be noted that SIDS is public and independent of the group session key.
Following the definition of SIDS, we say that two instances Us

i and U t
j are

directly partnering if both of them are accepted and SIDS(Us
i ) ∩ SIDS(U t

j ) 	= ∅
holds, denoted as Us

i ↔ U t
j . Based on this, we can further define that two in-

stances Us
i and U t

j are partnering if there exists a route with several instances as
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nodes and the two ones above as the two ends, in which each pair of adjoining
nodes are directly partnering (For more details, one can refer to [12]). We denote
this partnering as SIDS(Us

i ) � SIDS(U t
j ).

Freshness. If an instance U i has been accepted, both the instance and its part-
ners are unopened and they are both instances of honest clients, we say the
instance U i is fresh.

AKE semantic security. The security notion is defined in the context of ex-
ecuting a N -party DPWA PAKE protocol P under the control of an adversary
A. During execution of the protocol, an adversary A is allowed to send multiple
queries to the Execute, SendClient and SendServer, but ask at most one Test
oracle to a fresh instance. Finally A outputs its guess b′ for the bit b hidden in
the Test oracle. An adversary A is said to be successful if b′ = b. We denote this
event by Succ. Given that passwords are drawn from dictionary D, we define
the advantage of A in violating the AKE semantic security of the protocol P
and the advantage function of the protocol P , respectively, as follows:

Advake
P,D(A) = 2 · Pr[Succ] − 1

Advake
P,D(t, R) = max

A
{Advake

P,D(A)},

where maximum is over all adversaries A with time-complexity at most t and
using resources at most R (such as the number of oracle queries).

We say a N -party PAKE protocol P is semantically secure if the advantage
Advake

P,D(t, R) is only negligibly larger than nq/|D|, where q is the number of
active sessions and n is the number of the honest participants.

Authentication security. As in [29], to measure the security of a N -
party DPWA-type protocol resisting the undetectable on-line dictionary at-
tacks, we consider the unilateral authentication from the client to the trusted
server. We denote by Succ

auth(C→S)
P (A) the probability that an adversary A

successfully impersonates a client instance during executing the protocol P

while the trusted server does not detect it. Further, Succ
auth(C→S)
P (t, R) =

max
A

{Succ
auth(C→S)
P (A)} is defined as the maximum over all adversaries A run-

ning in time at most t and using resources at most R. We say a N -party DPWA-
type protocol P is client-to-server authentication secure if Succ

auth(C→S)
P (t, R)

is negligible in the security parameter.

4 Security Assumptions

In this section, we briefly review the definitions [2,22] of the cryptographic prim-
itives which are used as building blocks in our scheme.

Decisional Diffie-Hellman assumption (DDH): Let G be a cyclic group
of prime order q and let g be an arbitrary generator of G. We consider two
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experiments: Expddh−real
G

and Expddh−rand
G

. In the former, gx, gy and gxy are
given, and in the latter gx, gy and gz are provided, where x, y and z are drawn
at random from {1, ..., q}. We define Advddh

G
(t) as the maximum value, over all

probabilistic polynomial algorithms Δ running in time at most t, of:

|Pr[Expddh−real
G

(Δ) = 1] − Pr[Expddh−rand
G

(Δ) = 1]|.
We say the DDH assumption in G holds if Advddh

G
(t) is a negligible function of t.

Parallel Decisional Diffie-Hellman assumption (PDDH): [22]Let us con-
sider an extension of the DDH assumption, where there are the two distributions
as follows:

PDDH∗
n = (gx1 , ..., gxn , gx1x2 , ..., gxn−1xn , gxnx1 |x1, ..., xn ∈R Zq),

PDDH#
n = (gx1 , ..., gxn , gy1 , ..., gyn |x1, ..., xn, y1, ..., yn ∈R Zq).

Δ is assumed to be a probabilistic polynomial (t, ε)-distinguisher for these two
cases with the advantage Advpddhn

G
(Δ), so that the advantage function

Advpddhn

G
(t) is defined as the maximum value over all Δ with at most time

complexity t.

Lemma 1. The PDDHn is equivalent to the DDH for any prime order group
G, any integer n and any time complexity T ,

Advddh
G (T ) ≤ Advpddhn

G
(T ) ≤ nAdvddh

G (T )

Proof. The proof of this lemma already exists and one can refer to [22, 1] for
more details.

Message authentication codes (MAC). A message authentication code
MAC = (Tag; Ver) is defined by the following two algorithms:

– A MAC generation algorithm Tag, possibly probabilistic, which produce a
tag μ with the input of a message m and a secret key sk.

– A MAC verification algorithm Ver, which takes a tag μ, a message m, and a
secret key sk as the input, and then outputs 1 if μ is a valid tag for m under
sk or 0 otherwise.

A MAC scheme is existential unforgeability under chosen-message attacks
(euf -cma) [2] if the adversary can not create a new valid message-tag pair,
even after obtaining many valid message-tag pairs. Formally, let us consider the
experiment, in which let l be a security parameter and sk be a secret key selected
uniformly at random from {0, 1}l, and let A be the adversary attacking the
security of MAC, who is allowed to ask a MAC generation oracle Tag(sk; ·) and
a MAC verification oracle Ver(sk; ·, ·) and outputs a message-tag pair (m; μ). Let
Succ denote the event in which A generates a legal message-tag pair that was not
outputted by the Tag(sk; ·) oracle on input m. The advantage of A in violating
euf -cma is defined as Adveuf−cma

A = Pr[Succ]. We define Adveuf−cma
MAC (t, qg, qv)

as the maximal value of Adveuf−cma
A over all A running in time at most t and

asking at most qg and qv queries to its MAC generation and verification oracles,
respectively.
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5 Our Scheme

In this section, we present a generic construction (referred as to DGPAKE) of
the DPWA-type PAKE protocols in N -party settings. As mentioned earlier, our
scheme is essentially a compiler that mainly includes two independent compo-
nents: a semantically secure 2-party password-based authenticated key exchange
scheme and the Burmester-Desmedt group key exchange scheme [13]. As a mat-
ter of fact, any N -party DPWA-type PAKE scheme, as a complex protocol, can
be regarded as a combiner of 2-party PAKE protocol and a group key exchange
protocol, whose security also depends on both the securities of the above two
primitives to some extent. But if either primitive is broken to pieces which are
combined with the other primitive or its pieces in the designation of an N -party
DPWA-type PAKE scheme, it will lose its original security, which raises the
complexity of the security analysis of the resulting scheme and the possibility of
generating insecure protocols such as the case of the two schemes of Byun and
Lee [14]. So, it is reasonable to consider using the two primitives as independent
units in building an N -party DPWA-type PAKE scheme, respectively. By doing
this, their original securities remains and the security of resulting scheme can be
directly reduced to the securities of the two primitives, which can largely sim-
plify the security proof of the whole protocol. Moreover, if semantically secure
2-party password-based key exchange protocols already exist between the server
and each group member in a distributed system, they can be reused as building
blocks in the construction of our N -party DPWA-type PAKE scheme.

On the other hand, the security analysis of our scheme does not resort to any
random oracle. That is, if the underlying building primitives are secure in the
standard model, so is the resulting scheme. For instance, if one makes use of the
KOY protocol [20] as the 2PAKE building blocks, one gets a N -party PAKE
scheme whose security can be proved in the standard model.

5.1 Description of Our Scheme

Let U1, ..., Un be the users, who share a password with the trusted server S,
respectively and wish to establish a session key, and let U = U1| · · · |Uj | · · · |Un.
Further, we assume that these participants mentioned above are arranged in a
ring with respect to the lexicographic order of their identities so that U1 = Un+1.

Phase 1: Each user Ui begins by choosing a random nonce ri ∈ {1, 0} and
broadcasting Ui|0|ri. After receiving the initial broadcast message from all other
parties, each instance stores U |r1|, ..., |rn| as part of its state information. The
session N = U |r1|, ..., |rn| is then defined.

Phase 2: Each group principal Ui engages in a secure 2-party password-based
authenticated key exchange protocol to build a session key ski with the trusted
server concurrently.

Phase 3: After the session key ski between it and the trusted server S has been
established, each player Ui chooses a random exponent xi, computes zi = gxi and
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sends to the server S MacMsg(zi, Ui, S) = {zi, Ui, S, N, MACski(zi, Ui, S, N)},
which is the authentication message from client to server.

Phase 4: After receiving the authentication message from Ui−1 and
Ui+1, the trusted server S checks them. If both of them are le-
gal, S returns to user Ui two messages MacMsg(zi−1, S, Ui−1) =
{zi−1, S, Ui−1, N, MACski(zi−1, S, Ui−1, N)} and MacMsg(zi+1, S, Ui+1) =
{zi+1, S, Ui+1, N, MACski(zi+1, S, Ui+1, N)}.

Phase 5: Each player Ui checks the authentication messages from the server S.
If valid, it computes Ti = zxi

i−1 and Ti+1 = zxi

i+1, and then broadcasts message
Zi = Ti+1/Ti.

Phase 6: Each player Ui computes the group session key SK =
(Ti)

nZi
n−1Zi+1

n−2 · · · Zi+n−2. This key is equal to gx1x2+x2x3+···+xnx1 ,
which is same for all 1 ≤ i ≤ n.

Finally, the key confirmation as an additional phase is necessary in our scheme,
in which each player computers its authenticator as in [15] and broadcasts it.
Our scheme is shown schematically in the figure 2 (the key confirmation stage
is omitted).

5.2 Security Analysis of Our Scheme

The fundamental security goal for a N -party DPWA-type PAKE protocol to
achieve is Authenticated Key Exchange (with “implicit” authentication), in
which each participator is assured that no other player aside from the arbitrary
pool of participators can learn any information about the session key. Another
stronger highly desirable goal for such scheme to provide is Mutual Authen-
tication (MA), which include two aspects: one is MA among participators (or
called the key confirmation), namely, each player is assured that its partners
actually have possession of the distributed session key; the other is MA between
each client and the server, in which the two parts identify each other by the
shared password. As mentioned above, the former is always achieved by adding
a key confirmation round, but the latter is an intractable hidden trouble for all
password-based scheme. In this section, we consider the AKE semantical secu-
rity and the authentication security from clients to the server on the DGPAKE
scheme, and provide the two corresponding security theorems as follows.

Theorem 1. Let us consider the DGPAKE scheme, where it is assumed that
there are n honest users who participate qsession honest executions of the scheme,
and where 2PAKE is a semantically secure 2-party PAKE protocol and MAC is
a secure MAC algorithm. Let qexe and qreveal represent the number of queries to
Execute and Reveal oracles, and let q

Us
i

send represent the number of queries to the
SendClient and SendServer oracles with respect to 2PAKE protocols between
the user instance Us

i and the corresponding server instance Sl. Then,
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Advake
DGPAKE,D(t, qexe, n · qsession · qU

send, qsession) ≤
2 · n · qsession · Advake

2PAKE,D(t, qexe, q
U
send, qexe + qU

send)

+ 2 · n · qsession · Adveuf−cma
MAC (t, 3, 0)

+ 2 · n · qsession · Advddh
G (t),

where qU
send = max

(i,s)
{q

Us
i

send}.

Theorem 2. Consider the DGPAKE scheme, where n honest users are assumed
to participate each of qsession honest executions of the scheme, and where 2PAKE
is a semantically secure 2-party PAKE protocol and MAC is a secure MAC algo-
rithm. Let qexe and qreveal represent the number of queries to Execute and Reveal
oracles, and let q

Us
i

send represent the numbers of queries to the SendClient and
SendServer oracles with respect to 2PAKE protocols between the user instance
Us

i and the corresponding server instance Sl. Then,

Succ
auth(C→S)
DGPAKE (t, qexe, n · qsession · qU

send, qsession) ≤
n · qsession · Advake

2PAKE,D(t, qexe, q
U
send, qexe + qU

send)

+ n · qsession · Adveuf−cma
MAC (t, 3, 0),

where qU
send = max

(i,s)
{q

Us
i

send}.

The proofs of the theorems above can be found in the full version of this paper
[30].

As a full treatment of resisting undetectable on-line dictionary attacks, it
should consider mutual authentication securities both among clients and between
clients and the server. As mentioned above, we only present the authentication
security from clients to the server, while the one from the server to clients and the
one among clients are not provided. As matter of fact, it is generally considered
that the two securities may be achieved by adding the key confirmation stage
mentioned above in section 4.1, but its formal proof is still an open problem and
may resort to the random oracle.

On the other hand, though key privacy and forward security of our scheme
DGPAKE is not formally considered in this paper, it is not difficult to prove the
two securities in DGPAKE if we formally deal with our scheme as in [2, 22].

6 Conclusion

In this paper, we present the first N -party DPWA-type PAKE scheme, DG-
PAKE, that is of constant round and prove its semantical security and unilateral
authentication security in the standard model. Furthermore, all the securities of
DGPAKE are held in the Find-Then-Guess model, instead of in the Real-Or-
Random model defined by Abdalla et al. [2]. This is since that we consider that
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our scheme as a general construction for N -party DPWA-type PAKE protocols,
should adapt for more cases as possible. The latter model have been proved
stronger than the former one [2]. That is, it is possible that some 2PAKE pro-
tocols are secure under the former but not secure under the latter. Although
Abdalla et al. [2] claimed that KOY protocol [20] and PAK suit protocols [24]
are still secure under the latter, no strict proof for them is presented until now.
Thus, it is desirable for us to prove the scheme secure under the former even
with a bit more complex proof procedures.
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Abstract. For two parties to communicate securely over an insecure
channel, they must be able to authenticate one another and establish a
common session key. We propose a new secure one-pass authenticated key
establishment protocol which is well suited to one-way communication
channels. The protocol is examined using an extension of the Bellare-
Rogaway model proposed by Blake-Wilson et. al., and is shown to be
provably secure, in the sense that defeating the protocol is equivalent to
solving a CDH problem. We compare our protocol to existing approaches,
in terms of security and efficiency. To the best of our knowledge, ours
is the only one-pass protocol that resists general key-compromise imper-
sonation attacks, and avoids certain vulnerabilities to loss of information
attacks found in other protocols of its class.

Keywords: One-pass protocols, two-party key agreement, key-compro-
mise impersonation, loss of information.

1 Introduction

In the last few years, there has been increasing interest in secure two-party key
agreement protocols, in large part because of the need for protecting commu-
nications over public, unreliable channels. In that context, the protection and
authenticity of the messages to be exchanged hinges on the establishment of
a group symmetric session key. The pioneering work in two-party key estab-
lishment was the Diffie-Hellman protocol [14], which nevertheless suffered from
several security problems, such as vulnerability to man-in-the-middle attacks.
Efforts to improve on the early Diffie-Hellman protocol have given rise to var-
ious non-ID based authenticated two-party key agreement protocols, including
recently proposed one round, [18,24], two round [6,25] and three round pro-
tocols [8,10,22]. A complementary approach has focused on ID-based schemes
[27,13,31,30], which achieve their main security goals but may be quite slow be-
cause of their extensive use of bilinear pairings [32]. A common disadvantage of
the protocols mentioned here is that they impose either a high computational
cost or high communication cost in order to provide authentication. Moreover,
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their majority requires at least two “rounds”, making them unsuitable for one-
way communication channels (e.g., e-mail, sms, store-and-forward applications).

This paper proposes a new one-pass two-party key establishment protocol
that rectifies some of the problems associated with existing one-pass approaches.
The proposed scheme is a slight adaptation on the basic elliptic curve Diffie-
Hellman (ECDH) protocol, equipped with an authentication mechanism based
on bilinear pairings. To establish a session key, the sender (the initiator of the
one-way protocol) generates an ephemeral key-pair and sends its public part to
the receiver. To achieve authentication, a similar technique to the short signature
scheme proposed in [9] is used. Finally, time-stamp and identities are used to tie
quantities to particular entities and reduce the replay vulnerability.

Our approach is robust to unknown key-share (UK-S) attacks and achieves the
highest possible level of security against key-compromise impersonation (K-CI)
attacks for one-pass protocols, where an attacker who somehow learns a user’s
private key can impersonate any other entity to the victim, potentially gaining
much more knowledge than by simply having access to the victim’s past or future
conversations. We will have more to say about this in Section 5.4. Furthermore,
our protocol is not affected by a loss of information (LoI) attack which can be
mounted against other one-pass approaches.

The remainder of this paper is organized as follows: In Section 2 we fix no-
tation and review some required definitions. Section 3 describes the proposed
protocol. A security analysis is presented in Section 4. We discuss various desir-
able attributes of our protocol in Section 5. Section 6 makes comparisons with
other widely used schemes.

2 Preliminaries

For the purposes of this work, we will require an abelian, additive finite group
G1, of prime order q, and an abelian multiplicative group, G2, of the same
order. For example, G1 may be the group of points on an elliptic curve. We
will let P denote the generator of G1. Also, H1, H2, will be two secure hash
functions, with H1 : {0, 1}∗ �→ G1 and H2 : {0, 1}∗ �→ {0, 1}k, where k ∈ Z

∗
+.

We will write a ∈R S to denote an element a chosen at random from S. Finally,
e : G1 ×G1 �→ G2 will be a bilinear pairing, defined below.

Definition 1. Let G1 be an additive cyclic group of prime order q generated
by P , and G2 be a multiplicative cyclic group of the same order. A map ê :
G1 ×G1 �→ G2 is called a bilinear pairing if it satisfies the following properties:

– Bilinearity: ê(aV, bQ) = ê(abV,Q) = ê(V, abQ) = ê(V,Q)ab for all V,Q ∈ G1

and a, b ∈ Z∗
q .

– Non-degeneracy: there exist V,Q ∈ G1 such that ê(V,Q) �= 1.
– Efficiency: there exists an efficient algorithm to compute the bilinear map.

Admissible bilinear pairings can be constructed via the Weil and Tate pairings
[12,32]. For a detailed description of pairings and conditions under which they
can be applied to elliptic curve cryptography, see [12,32].
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3 Proposed Protocol

In this Section we describe a new one-pass two-party authentication key es-
tablishment protocol. It is composed of two phases, protocol initialization and
protocol running, described next.

3.1 Protocol Initialization

Consider two players, A and B, which are to establish a common session key.
First, A chooses a random xA ∈ Z

∗
q as her private key, and computes YA = xAP

to be her corresponding public key. Similarly, B chooses a random xB ∈ Z
∗
q as

his private key, and computes his public key YB = xBP . We will let the strings
IDA, IDB denote the identities of A and B, respectively.

3.2 Protocol Running

To establish a session key, A and B obtain the public key of one another and
execute the protocol shown in Table 1.

Table 1. Proposed two-party authenticated key agreement protocol

A (xA, YA = xAP ) B (xB, YB = xBP )

α
R←−Z

∗
q , X1 = αP

X2 = αYB = αxBP

Q = H1(X2||IDA||IDB ||T1)

Y1 = xAQ

sk = H2(X2||IDA||IDB ||T1) (X1, Y1, T1, IDA)
−−−−−−−−−−−−−−−−−→

X2 = xBX1 = αxBP

Q = H1(X2||IDA||IDB ||T1)

ê(YA, Q)
?
= ê(P, Y1)

sk = H2(X2||IDA||IDB ||T1)

1. Player A selects a random number α ∈ Z
∗
q , and computes:

X1 = αP , X2 = αYB, Q = H1(X2||IDA||IDB||T1), Y1 = xAQ, and the
session key sk = H2(X2||IDA||IDB||T1), where T1 is a time-stamp and the
symbol || denotes string1 concatenation. Then, A sends X1, Y1, T1 and its
identity, IDA, to B.

1 When elements of a group appear as arguments of a hash function (e.g.,
H1(X2||IDA||IDB ||T1)), it will be understood that string representations of these
elements are used.
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2. Upon receipt of (X1, Y1, T1, IDA), player B computes X2 = xBX1 = αYB ,
Q = H1(X2||IDA||IDB||T1) and checks whether ê(YA, Q) ?=ê(P, Y1). If equal-
ity does not hold, B terminates the protocol. Otherwise, he computes the
session key sk = H2(X2||IDA||IDB||T1).

Correctness: In an honest execution of the protocol A and B share the common
key sk = H2(X2||IDA||IDB||T1).

Efficiency: Our one-pass protocol requires four integer-to-point multiplications,
two map-to-point hashes, two plain hashes and two pairings. The computational
cost of pairings will be discussed further in Section 6.3.

4 Provable Security

Although the concept of provable security has occasionally taken some criticism,
it remains one of the few formal approaches used to make precise statements
regarding the security of protocols, and therefore continues to be widely used.
In this work, we prove the security of our protocol in an environment which
is an extension of the Bellare-Rogaway model [5] proposed by Blake-Wilson et.
al. [7]. Our choice of [7] is partly motivated by the fact that in our protocol,
authentication and key generation are intertwined (for example, X2 is used to
generate both Q and the secret key). In particular, this means that the protocol
is not amenable to the “modular” approach of Canneti-Krawzcyk [11] where
a protocol is first proved secure in the absence of authentication and then an
appropriate authentication layer is added.

4.1 The Computational Diffie-Hellman Problem

The security of our protocol will turn out to be linked to the well-known Com-
putational Diffie-Hellman (CDH) problem. The CDH problem in G1 [14], is to
compute αβP given P, αP , and βP , for some fixed α, β ∈ Z

∗
q . It is considered

computationally hard, assuming an adversary that runs in polynomial time. In
our protocol, we have precisely an instance of the CDH problem, because the ad-
versary must compute αxBP given αP (transmitted by A) and xBP (B’s public
key), in order to find the session key.

4.2 Security Analysis

We proceed to show that the proposed protocol is secure in the random oracle
model [5,7], assuming that the CDH problem is hard in G1. We first give a
brief, intuitive description of the main assumptions regarding the environment
in which the protocol is run. Additional details can be found in [7].

We consider a collection of entities-players which may communicate with one
another by initiating the protocol. An adversary can eavesdrop on communi-
cations, reroute or change the content of messages, initiate sessions between
entities, engage in multiple sessions with the same entity at the same time,
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and ask an entity to enter a session with itself. The adversary is a probabilistic
polynomial-time Turing Machine and has access to a collection of oracles {Πs

i,j},
where Πs

i,j behaves as entity i carrying out a protocol session in the belief that
it is running the protocol with entity j for the s-th time. We will assume that
1 ≤ s ≤ τ(k), where τ is polynomial in the security parameter k of the protocol.

The adversary may choose to give an oracle a message (of the form (X1, Y1,
IDA, IDB, T )) as an input, via a Send query. A Reveal query tells an oracle to
reveal its current session key. An oracle which has been asked a Reveal query
is said to be opened. Finally, a Corrupt query, targeted at entity i, tells all Πs

i,j

oracles to reveal i’s long-term private key to the adversary and to replace i’s key
pair with any valid key pair chosen by the adversary. An oracle Πs

i,j for which a
Corrupt query has been asked for i, is said to be corrupted. We say informally
that an oracle has accepted, if it has successfully terminated a protocol run.
An oracle Πs

ij is fresh if it has accepted, i and j are both uncorrupted, it is
unopened, and there is no opened oracle Πt

j,i with which it has had a matching
conversation2, as defined in [5,7].

In the setting described above, the adversary begins by asking the oracles all
the queries it wishes to make. He then selects any fresh oracle Πs

i,j and asks a
single new query, called Test. To answer the query, the oracle flips a fair coin
b

R←{0, 1} and returns the session key if b = 0 or a random value if b = 1. The
adversary “wins” at this experiment if he correctly guesses the value of b.

Definition 2. A protocol P is a secure One-Pass Authenticated Key establish-
ment (OPAK) protocol if:

1. In the presence of a benign adversary on Πs
i,j and Πt

i,j, (i.e., an adversary
that does not interfere with the routing or contents of messages) both oracles
always accept holding the same session key κ, and this key is distributed
uniformly at random on {0, 1}k, where k is the protocol’s security parameter.

2. If uncorrupted oracles Πs
i,j and Πt

i,j have matching conversations then both
oracles accept and hold the same session key κ.

3. The adversary makes no Reveal queries.
4. Let GoodGuessE(k) be the probability that the adversary, E, correctly guesses

the coin flip at the Test query. Then,
advantageE(k) =

∣∣Pr[GoodGuessE(k)]− 1
2

∣∣ is negligible3.

In the following we will show that the protocol described in Table 1 is a secure
OPAK protocol.
2 Intuitively, two oracles are said to have matching conversations if one of them is

the initiator of an exchange of messages, and the messages sent by each of the two
are identical to those received by the other, and are in the same temporal order.
See [5,7] for a precise definition. In our case, there is only one message msg =
(X1, Y1, T1, IDA) transmitted during the protocol, so that matching conversations
have a particularly simple form: the initiator oracle takes as input the empty string,
λ, and transmits msg; the responder takes msg as input and transmits λ.

3 A real-valued function ε(k) is called negligible if for every c > 0 there exists a kc > 0
such that ε(k) < k−c for all k > kc.
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Remark 1. We note that Def. 2 is a modified version of Def. 10 in [7]. Our con-
dition 3 is necessary because all one-pass protocols are prone to replay attacks,
thus the strongest property of Authenticated Key (AK) security [7] cannot be
achieved. If Reveal queries were allowed then an adversary E could win the
Test by a replay attack. E could submit the same properly formatted message
to two receiver instances (formally, E initiates oracles Πs

AB, Πu
AB, corresponding

to two distinct sessions between A and B). Both receiver instances will accept
and produce the same output session key. Then, E Reveals the key of one of
the sessions, Tests against the other session, and wins.

Remark 2. If one insists on keeping Reveal queries in play, then the weakness
with respect to replay attacks can be somewhat rectified in practical settings if
each entity maintains a list of secret keys used during the latest time period. The
length of that list would depend on the frequency with which T1 is updated. An
entity would be alerted to a replay attack if a session key it generates is present in
the list. Session keys from previous time periods need not be memorized because
they could not be successfully replayed to a received.

Remark 3. The notion of OPAK security could actually be strengthened slightly,
by allowing the adversary to make Reveal queries, but stipulating that if such
a query is issued to an oracle Πs

AB, all oracles ΠAB are marked as opened.

Theorem 1. The protocol shown in Table 1 is a secure OPAK protocol, provided
that the CDH problem is computationally hard and H1, H2 are independent
random oracles.
Proof : See Appendix.

5 Protocol Attributes

In the following we discuss a series of security attributes as they pertain to
our protocol. We will forgo formal proofs where applicable because of space
limitations.

5.1 Known Session-Keys

Known session-key security [7], also known as known-key security (K-KS), means
that a protocol still achieves its goal in the face of an adversary who has learned
some previous session keys. One-pass protocols without time-stamps cannot
achieve K-KS since an adversary can simply replay the information from a previ-
ous protocol run. time-stamps allow a one-pass protocol to achieve some measure
of K-KS, meaning that they reduce but do not eliminate the vulnerability to at-
tacks. More specifically, entity B can check the time-stamp T1 sent by A, and
terminate the protocol if too much time has elapsed since then. Of course, this
requires synchronization of A’s and B’s clocks, to within some reasonable tol-
erance. Depending on the transmission delay imposed by the communication
channel, an entity can set a time threshold that leaves a potential attacker little
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time to mount a known session key attack. If A’s and B’s clocks are perfectly
synchronized and the transmission delay is known with certainty, then the time
left for an attack could be made arbitrarily small. The question of what is an
acceptable time threshold will generally be application-dependent, and will not
be discussed further here.

5.2 Forward Secrecy

Perfect forward secrecy (PFS) means that if long term secrets of one or more
entities are compromised, the secrecy of previously computed session keys is
not affected. Our protocol does not achieve PFS. To see this, note that if the
adversary learns the secret value of B, xB, then knowing X1 = αP , which is
transmitted in the clear, the adversary can compute X2 = xBαP . Because time-
stamps are also transmitted in the clear, the adversary can also compute the
session key sk = H2(X2||IDA||IDB||T1) of a previous session. This is not sur-
prising in light of the fact that there exists no protocol for implicit authentication
that achieves PFS with two or fewer messages [21]. However, similarly to the ma-
jority of one-pass approaches [21,24], our protocol does achieve partial forward
secrecy, because if the adversary learns the secret value of A, xA, he still faces
the CDH problem of computing αxBP from αP and xBP , before finding any
previous session key.

5.3 Unknown Key-Share

Prevention of unknown key-shares (UK-S) as defined in [7], is a property held
by all AK-secure protocols. In that setting, an entity i is coerced into sharing a
key κ with entity f , while entity j is coerced into holding κ in the belief that it
is shared with i. Our OPAK protocol is also secure against UK-S of that type, as
well as against the more typical (and broader) UK-S attack [20,28,24,4], where
f is not required to possess the key held by i and j, but merely to confuse j as
to the identity of i, with whom j shares a key. In our case, UK-S is prevented via
the inclusion of the parties’ identities in the computation of the session key. A
formal proof can easily be constructed around the following basic argument. In
order to accomplish a UK-S, the adversary must at least alter the ID information
transmitted by i to j. Even if the altered data are such that j’s bilinear pairing
test is successful, the key computed by j will not be the same as that held by
i, thus no key sharing is accomplished. This technique seems to be a general
mechanism for preventing UK-S attacks [23].

5.4 Key-Compromise Impersonation

Resistance to key-compromise impersonation (K-CI) attacks means that if i’s
secret value is disclosed to an adversary, then the adversary cannot impersonate
other entities to i [7]. We stress the importance of a protocol being secure against
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impersonation threats, as an attacker of this type can feign a trusted entity to
the victim, and thus ask for (and receive) important information4.

In fact, there is a special K-CI attack that apparently succeeds with all one-
flow protocols. An intruder C that learns B’s secret key and then eavesdrops one
message from A, (X1, Y1, T1, IDA), would be able to impersonate A (but no one
else) to B and only for the current session, because C is also able to create the
current session key. However, this attack is more limited than the general K-CI
attack, in which the intruder can impersonate any entity and at any time, to
which other one-pass schemes are open (see comparisons in Sec. 6.2).

In our case, if an adversary, C, obtains the secret value of B, xB, he cannot
impersonate another entity, J, to B (excluding the special case described in the
previous paragraph); in that sense, our protocol achieves a reduction of the K-CI
vulnerability to the greatest extent possible for one-pass approaches. To see why
that is, note that C must “pass” the bilinear pairing test, ê(YJ , Q) = ê(P, Y1),
performed by B to successfully impersonate J. If C knows B’s private key, xB ,
he can initially create a X1 value from which he can compute Q. C is then faced
with the task of computing an appropriate Y1 such that ê(YJ , Q) = ê(P, Y1).
One can easily show that if C can do this, then with high probability he can
compute xJQ from Q and xJP . By rewriting Q = kP for some unknown k, the
last statement is equivalent to C finding (with high probability) xJkP from kP
and xJP , which is an instance of the CDH problem.

Finally, we note that there is no need to examine the case where an adversary
obtains the secret value xA of A and impersonates B to A, since B does not
reply to A. In that sence, all of the modern one-pass approaches, including ours,
achieve K-CI resilience in the initiator’s side [8].

5.5 Loss of Information

Loss of the value X2 (or loss of Q) from a previous protocol run does not af-
fect the security of subsequent protocol runs, because the computation of X2

is based on the random value α. Usually a loss-of-information attack succeeds
when authentication is used with values which are not random. Some examples
are the protocols proposed in [19] and [18], where authentication is based on
the computation of xAxBP

5. In contrast to the majority of one-pass key estab-
lishment schemes [21,24,1,26,15,29], we do not make use (directly or indirectly)
of xAxBP values in our approach. We will return to the implications of this in
Sec. 6.2. Finally, note that the private key of the receiver (B) is as secure as can
be, because B transmits no information during the protocol run.

4 If a private key is compromised, the attacker is able to intercept messages by eaves-
dropping on past or future conversations (e.g., e-mails). However, if a communication
protocol is vulnerable to K-CI, the attacker would also be able to elicit additional
information that may never have been communicated otherwise.

5 This quantity is widely used in a number of cryptographic protocols; to date, the
consequences of its exposure have not been adequately studied in the literature.
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5.6 No Key Control and Message Independence

A protocol is said to have the “No Key Control” property if no participant
(or adversary) can either control or predict the value of the session key. This
property cannot be provided by any one-flow protocol, due to the fact that only
the initiator of the protocol produces a random value, and so he can a-priori
compute the session key (the receiver does not reply at all). In order to avoid
key control, two or more passes are required.

A protocol is said to achieve message independence if individual flows of a pro-
tocol run between two honest entities are unrelated [7]. Because in our OPAK
protocol only one flow exists, message independence is achieved. This is in con-
trast to AKC (AK with Key confirmation) protocols [7].

6 Comparison with Existing One-Pass Schemes

This section compares the security and efficiency of the proposed protocol against
those of existing one-pass protocols.

6.1 Existing One-Pass Key Establishment Protocols

Because of the need for security in applications where only one entity is on-line,
(e.g., secure e-mail, sms, store-and-forward), there have been numerous attempts
at designing a secure and efficient one-pass key agreement protocol. The majority
of existing one-pass schemes were created as variants of previously-proposed two-
way or even two-round key agreement schemes. Some of the best known and most
successful approaches to one-pass key establishment protocols include:

– The one-pass variant of the Key Exchange Algorithm (KEA) designed by
the NSA and declassified in 1998 [29]. KEA is the key agreement protocol in
the FORTEZZA suite of cryptographic algorithms designed by NSA in 1994
and it is similar to the Goss [15] and MTI/A0 [26] protocols.

– The one-pass variant of the Unified Model, proposed by Ankney, Johnson
and Matyas [1]; it is an AK protocol that is in the draft standards ANSI
X9.42 [2], ANSI X9.63 [3], and IEEE P1363 [17].

– The one-pass variant of the MQV protocol [24] that is in the draft standards
ANSI X9.42 [2], ANSI X9.63 [3], and IEEE P1363 [17].

– The one-pass HMQV protocol [21], a variant of MQV.

6.2 Comparison in Terms of Security

Table 2 compares the proposed protocol to those listed in Section 6.1, in terms
of various classes of attacks and security-related attributes.

Being one-pass, the protocols listed cannot provide PFS or No Key Control;
also, none of the existing one-pass protocols provide K-KS, due to the possibility
of replay attacks. The use of time-stamps and the independence of session keys
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Table 2. Comparison of Security Properties. IKA denotes implicit key authentication,
PFS perfect forward secrecy, K-KS known-key security, UK-S unknown key-share, K-CI
key-compromise impersonation, and LoI loss of information (xAxBP ).

√
denotes as-

surance;
√

? indicates that the assurance is provided modulo a technicality;
√− denotes

assurance, excluding the vulnerability to eavesdropping attacks discussed in Sec. 5.4;
×+ indicates that the assurance is not provided by the protocol, unless modifications
are made; × indicates that the assurance is not provided by the protocol.

IKA PFS K-KS UK-S K-CI LoI

KEA
√ × √

? ×+ × ×
Unified Model

√ × √
?

√ × ×
MQV

√ × √
? ×+ × ×

HMQV
√ × √

? ×+ × ×
Proposed OPAK

√ × √
?

√ √− √

help reduce (but not eliminate) the vulnerability to known-key attacks. In Ta-
ble 2 we have used the symbol

√
? to indicate the fact that K-KS security should

be regarded “modulo” the technicalities discussed in Section 5.1, namely clock
synchronization and the time threshold used to decide whether the message A
sends to B is “too old”. We have marked all protocols listed with

√
? under K-KS

because we assume that time-stamps can be added to any of them, just as we
have done for ours.

Regarding security against UK-S attacks, [20] has presented an on-line UK-S
attack on the MQV protocol, and [28] described a UK-S attack on the one-pass
HMQV protocol. The KEA one-pass protocol is also prone to UK-S attacks as
was shown in [23]. Of course, these protocols can be modified by incorporating
parties identities in the computation of a session key, and thus become secure
against UK-S threats6. This is the reason we have marked KEA, MQV and
HMQV with ×+ under UK-S. Unlike these protocols, there are no known UK-S
attacks either on the Unified Model or on the protocol proposed here (see also
the discussion in Section 5.3).

Of the protocols shown in Table 2, ours provides the highest level of security
against K-CI attacks. This is because the bilinear pairing verification works as a
short digital signature [9] on the secret key for the specified time period whereas,
none of the previous approaches includes a sender verification mechanism. For
instance, an exponential challenge-response (XCR) signature (from a player A
to a player B), used in the HMQV protocol [21], can also be constructed by
anyone who has knowledge of the recipient’s private key. The latter means, that
if an attacker has knowledge of B’s private key, he is able to create a signature
of this type and impersonate A to B. At this point, there do not seem to be any
obvious modifications that would eliminate the K-CI vulnerability in the first
four protocols shown in Table 2. We have marked our protocol with

√− under
6 In some cases (e.g., HMQV), the incorporation of parties’ identities is already applied

in some of the intermediate steps of the protocol; following our suggestion regarding
the computation of the session key then leads to a significantly different protocol.
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K-CI because no one-flow scheme can provide perfect K-CI security (for the rea-
sons mentioned in Sec. 5.4). However, our protocol minimizes the vulnerability
to such attacks: the class of entities which an adversary in possession of B’s pri-
vate key can impersonate is reduced from any entity / any time (with the KEA,
MQV, HMQV and Unified Model protocols) to only an entity that attempts to
communicate with B (and only for that session).

Finally, considering the possible loss of the static Diffie-Hellman exponent,
xAxBP , our approach remains secure, as explained in Section 5.5. However, the
security of the rest of the protocols examined here depends on the secrecy of this
value. In particular, if xAxBP were known to an adversary, an impersonation
attack can easily take place. For instance, in the one-pass HMQV protocol, an
adversary, say E, knowing7 L = xAxBP , can initiate a new session with B by
impersonating A to him. Using the same notation for the private/public keys
as in our protocol, a session key between A and B, sk = (α + xAd)YB (where
d = H̄(X1, IDA, IDB) [21]), could also be computed by E as sk = αYB + dL.
The same attack can be mounted against the Unified Model, KEA and MQV
one-pass protocols.

6.3 Comparison in Terms of Computational Efficiency

Among the protocols examined, MQV and HMQV are the most efficient. They
require two scalar multiplications for the initiator (A) and two for the receiver
(B). For the KEA and Unified Model protocols, the corresponding figures are
three and two, respectively. Under our protocol, the computational cost for the
initiator is a bit higher (three scalar multiplications and one map-to-point hash)8.
The recipient performs one scalar multiplication in order to create the session
key, but must also compute one map-to-point hash and two bilinear pairings
in order to verify the sender. Based on the estimates in [16,33], the computa-
tional cost of one bilinear pairing is approximately equal to that of four scalar
multiplications in the abelian group G1when using a subgroup of order q in a
supersingular elliptic curve E over Fp, where p is a 512 bit prime and q is a 160
bit prime. The pairing computation is the most expensive part of our protocol,
but this is the price to be paid for improved security. We emphasize, however,
that the reason for choosing the pairing-based short signature (BLS) scheme of
[9] is that its signature length is half the size of a DSA signature for a similar
level of security and thus the lowest communication cost is achieved.9. Because
of this, and because pairings are only computed by the recipient, our protocol
7 this would require E to compromise an earlier session key of B; prior to that, it is

possible for E to send a properly formatted message to B such that B’s session key
is a known multiple of L.

8 We ignored operations whose cost is negligible compared to that of a scalar multi-
plication in G1. These include generating random numbers, integer multiplication,
plain hashes and point additions in G1.

9 It is a fact that in cases where computational complexity on the receiver’s side is
of much more importance, one could replace BLS signatures with a more efficient
scheme based on discrete logs.
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is best-suited to systems where initiators use mobile or low-power devices, as
well as in cases where data is sent over a low-bandwidth channel. For example,
in smartcard transactions, the initiator of the protocol (e.g., hardware on the
smartcard) will not have to compute any pairings; that cost will be borne by the
typically more powerful CPU attached to the card reader.

7 Conclusions

This work proposed a new OPAK protocol that addresses the major security
problems existing in protocols of its category. We have used the extension to the
Bellare-Rogaway model [5] by Blake-Wilson et al. [7] to prove the security of the
protocol. We have compared the proposed protocol to existing one-pass schemes,
including the MQV (proposed by NSA as the standard key exchange protocol for
the US government) and HMQV protocols, and discussed its strengths in several
aspects of security. Our protocol achieves the highest level of security possible
with one-pass approaches against all widely studied security attacks/properties
(IKA, K-KS, UK-S, K-CI, partial forward secrecy and LoI), at the expense of
slightly higher computational cost.

The proposed protocol is well-suited to applications with one-way communica-
tion channels. Examples include e-mail or sms, where the receiver cannot imme-
diately reply, and store-and-forward applications (e.g., printers) where messages
are sent to resources which need not reply at all. The low processing require-
ments for the protocol’s initiator make our approach ideal for use in very low-end
computing systems such as smartcards or high-load servers, because the sender
does not have to compute any pairings, which are the most costly part of the
protocol. Opportunities for further work include the conversion of our protocol
to provide security in the standard model, perhaps using [18] as a basis.
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Appendix: Proof of Theorem 1

Conditions 1 and 2: From the protocol definition it is clear that, in the presence
of a benign adversary on Πs

ij and Πt
ji, as well as when uncorrupted oracles Πs

ij

and Πt
ji have matching conversations, both oracles accept and hold the same

session key sk = H2(axjP‖IDi‖IDj‖T1).
Condition 3: Consider an adversary, E. We will show that if advantageE(k) is
non-negligible we are led to a contradiction, and in particular that it is then
possible to construct a new adversary, F , which succeeds in solving the CDH
problem with non-negligible probability.

Suppose that E chooses some fresh oracle, Πi,j , to ask its Test query. The key
held by such an oracle will be of the form H2(axjP‖IDi‖IDj‖T1). Let Γk be the
event that H2 has previously been queried on an input that begins with axjP , by
E or by some oracle other than a Πi,j or Πj,i oracle. If advantageE(k) is non-
negligible, then Pr[E succeeds] = 1

2 + n(k), for some non-negligible function
n(k). At the same time,

Pr[E succeeds] = Pr[E succeeds|Γk]Pr[Γk] + Pr[E succeeds|Γ̄k]Pr[Γ̄k]. (1)

Because H2 is a random oracle and Πs
i,j remains unopened (by the definition of

a fresh oracle), Pr[E succeeds|Γ̄k] = 1/2. Therefore,

1
2

+ n(k) ≤ Pr[E succeeds|Γk]Pr[Γk] +
1
2
, (2)

which implies that Pr[E succeeds|Γk] ≥ n(k), and Pr[Γk] ≥ n(k), are both
non-negligible. Let Pr[Γk] = n1(k), for some non-negligible function n1(k). E
can now be used to construct an adversary F that solves the CDH problem with
non-negligible probability. Given P (the generator of the group G1), aP (akin to
the X1 value transmitted by i), and xjP (j’s public key), with randomly chosen
a ∈R Z

∗
q and xj ∈R Z

∗
q , F must guess axjP . This is precisely an instance of the

http://eprint.iacr.org/2005/205
http://csrc.nist.gov/encryption/skipjack/skipjack.pdf
http://eprint.iacr.org/2002/164
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CDH problem. The construction of F follows that in Case 1 of Theorem 9 in [7].
Let I be the set of entities with which E may communicate. F chooses a pair
of entities i, j ∈R I, guessing that E, or an oracle other than Πi,j or Πj,i will
query H2 with axjP‖IDi‖IDj‖T1 at some time T1. F performs E’s experiment
and picks all entities’ secret values at random, except of those of Πi,j and Πj,i.
F records the public keys of all entities and starts E. F answers all H1 and H2

queries at random, just like a random oracle. For all Send, Reveal and Corrupt
queries made to oracles other than Πi,j or Πj,i, F answers as an honest player
would. If E asks i or j a Corrupt query then F gives up. When E asks Πi,j or
Πj,i a Send query, instead of computing the value sk = H2(axjP‖IDi‖IDj‖T1)
(the key that would have been used by the oracle), F must select a random
κ to represent sk, since F does not actually know axjP . Finally, if E sends a
Reveal query to Πi,j or Πj,i, then instead of revealing H2(axjP‖IDi‖IDj‖T1),
F responds with his guess, κ, at the session key.

Let τ2(k) be a polynomial bound on the number of H2 queries made by E
and its oracles. F chooses l ∈ {1, . . . , τ2(k)}, guessing that the l-th distinct input
on which H2 is queried will be axjP‖IDi‖IDj‖Tl, where Tl the time of the l-th
query. We note that T1, T2, . . . , Tτ2(k) are known to the adversary because time-
stamps are always transmitted in the clear, as are the entities’ IDs. When the l-th
distinct H2 call is made (say, on input g), F stops and outputs g as its guess at
axjP‖IDi‖IDj‖Tl (or, equivalently, F outputs the first part of g corresponding
to axjP , by discarding the identifiers and time stamp). If E halts before the l-th
distinct input is queried then F gives up. Clearly, if the l-th distinct H2 query
made by E or its oracles is on an input that begins with axjP , then F wins at
this experiment and has solved an instance of the CDH problem.

Of course, H2 may have been queried on axjP‖IDi‖IDj‖Tl′ some time before
the l-th distinct input, in which case F will have answered at random, and his
answer may have been in contradiction to one of the keys that has been used
by some Πi,j or Πj,i oracle. In such a case, E’s behavior is not specified, thus
E is not guaranteed to halt in that case. This problem can be circumvented as
in [7], by letting τ3(k) be a polynomial bound on E’s runtime under ordinary
circumstances and requiring that F gives up if he runs E for longer than τ3(k),
surmising that he must have missed an H2 query with input axjP‖IDi‖IDj‖Tl′ .

We conclude that the probability of F coming up with the correct value axjP
is at least

n1(k)
τ2
1 (k)τ2(k)

, (3)

where τ1(k) is a polynomial bound on the number of entities10. The quantity
in (3) is non-negligible. We conclude that the polynomial time adversary F has
succeeded in finding axjP given aP and xjP , with non-negligible probability,
contradicting the assumption that the CDH problem is hard.

10 We note that the bound (3) can be improved further, because they adversary can
limit its attention to H2 queries made by E where the ID’s included in the argument
are IDi and IDj , as opposed to guessing over τ 2

1 (k) queries.
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1 Introduction

Zero knowledge (ZK for short) proof, a proof that reveals nothing but the validity
of the assertion, is put forward in the seminal paper of Goldwasser, Micali and
Rackoff [18]. Since its introduction, especially after the generality demonstrated
in [17], ZK proofs have become a fundamental tools in design of some crypto-
graphic protocols. In recent years, the research is moving towards extending the
security to cope with today’s malicious communication environment. In particu-
lar, Dwork et al. [13] introduced the concept of concurrent zero knowledge, and
initiated the study of the effect of executing ZK proofs concurrently in some
realistic and asynchronous networks like the Internet. Though the concurrent
zero knowledge protocols have wide applications, unfortunately, they requires
logarithmic rounds for languages outside BPP in the plain model for the black-
box case [6] and therefore are of round inefficiency. In the Common Reference
String model, Damgaard [7] showed that 3-round concurrent zero-knowledge
can be achieved efficiently. Surprisingly, by developing non-black-box technique,
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Barak [1] constructed a constant round non-black-box bounded concurrent zero
knowledge protocol in the plain model though it is very inefficient.

Resettable ZK and the BPK model. Motivated by the application in which
the prover (such as the user of a smart card) may encounter resetting attack,
Canetti et al. [5] introduced the notion of resettable zero knowledge (rZK for
short). An rZK formalizes security in a scenario in which the verifier is allowed to
reset the prover in the middle of proof to any previous stage. Obviously, the no-
tion of resettable zero knowledge is stronger than that of concurrent zero knowl-
edge and therefore we can not implement such (black-box) protocols in constant
round in the plain model for non-trivial languages. To get constant round rZK,
the work [5] also introduced a very attracting model, the bare public-key model
(BPK). In this model, Each verifier deposits a public key in a public file and
stores the associated secret key before any interaction with the prover begins.
Note that no protocol needs to be run to publish the public key, and no author-
ity needs to check its property. Consequently the BPK model is considered as
a very weak set-up assumption compared to previously models such as common
reference model and PKI model.

Though the BPK model is very simple, the notion of soundness in this model
turned out to be more subtle. As Micali and Reyzin [20] pointed out, there are
four distinct notions of soundness: one time, sequential, concurrent and resettable
soundness, each of which implies the previous one. Moreover they also showed
that there is NO black-box rZK satisfying resettable soundness for non-trivial
language and the original rZK arguments in the BPK model of [5] do not seem to
be concurrently sound. Since then, a lot of effort has been devoted to construct
rZK with concurrent soundness. Several such protocols were suggested in some
stronger variants of the BPK model, and the 4-round (optimal) rZK arguments
with concurrent soundness in the BPK model was proposed by Di Crescenzo et
al. in [11].

However, all above rZK arguments in BPK model (even those rZK arguments
in stronger variants of BPK model) heavily rely on some stronger assumptions
that there exist cryptographic primitives secure against sub-exponential time
adversaries. To realize such protocols under some standard assumptions is an
interesting problem and has been explicitly posed by Di Crescenzo et al [11].
The first step towards weakening this kind of hardness assumptions was made
by Barak et al. [2]: by using non-black-box techniques, they obtained a constant-
round rZK argument of knowledge assuming only collision-free hash functions
secure against supperpolynomial-time algorithms1, but their approach fails to
achieve concurrent soundness. Thus, the existence of constant round rZK ar-
guments with concurrent soundness in BPK model under only polynomial-time
hardness assumption, is still left open.

Our results and techniques. In this paper we resolve the above open problem
by presenting a constant-round rZK argument with concurrent soundness in BPK

1 Using idea from[3], this results also holds under standard assumption that there exist
hash functions that are collision-resistent against all polynomial-time adversaries.
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model for NP under the standard assumptions that there exist hash functions
collision-resistant against polynomial time adversaries.

Most often, the proof of soundness for an argument goes by reduction, that
is, using the cheating prover strategy, we construct algorithm to break some
problems that is assumed to be hard. There are two obstacles in establishing
concurrent soundness in our setting: 1) In many cases, the reduction algorithm’s
goal is to use a cheating prover to break the cryptographic primitive specified
by the public key, but this algorithm seems to need itself knowledge of secret
key in order to be able to use the cheating prover’s power. Note that in the
typical paradigm for this kind of protocols, the prover must be convinced that
the verifier knows the secret key before showing his ability that we want to use.
2) The rewinding technique that commonly-used by reduction algorithm seems
to be helpless when the cheating prover strategy is used in black-box manner.
This is because the malicious verifier is also allowed to rewind the prover in real
interaction and will not benefit from this kind of interaction (guaranteed by the
resettable zero knowledge property).

One approach to overcoming these obstacles is to let the reduction algorithm
has more computational power than a polynomial time verifier, i.e. be a sub-
exponential time algorithm. However, on the other hand, we have to assume some
target problems to be more harder–they can not be solved in the running time of
the reduction algorithm–in order to justify the concurrent soundness. This is so-
called complexity leveraging technique initiated in [5] and also used in [11, 25].
Another one is to use non-black-box technique. In Barak et al.’s construction [2],
the verifier needs to proves the knowledge the secret key (a committed random
seed to a pseudorandom function)to the prover via a resettably-sound (non-
black-box) zero knowledge argument of knowledge. The sequential soundness
of their protocol proceeds by contradiction: If a prover is able to cheat with
non-negligible probability, we can construct an reduction algorithm that break
either the pseudorandomness of the pseudorandom function or the soundness of
the underlying parallel version of the basic proof of Hamilton Cycle. Though
this protocol can be built based on more general (polynomial time hardness)
assumption, it fails to obtain concurrent soundness: for the analysis of concurrent
soundness go through, the reduction algorithm has to simulate the prover’s view
in full concurrent setting without knowing the random seed to the pseudorandom
function, and completing such a simulation seems beyond the reach of current
techniques (we do not know so far how to construct constant round concurrent
zero knowledge for language outside BPP).

We adopt different approach to bypass those difficulties. First, we let each
verifier register two public keys and use a witness indistinguishable (WI) argu-
ment to prove that he knows one of secret keys corresponding to the public keys
(it is also used in [12, 25], and can be dated back to [14] in spirit). We note
that the WI is preserved under concurrent composition and, more important,
for the reduction algorithm (used to justify the concurrent soundness), knowl-
edge of a random secret key does not give rise to the first obstacle described
above any more because it still has chance to use a cheating prover to break the
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cryptographic primitive specified by the other public key. We note that this ap-
proach will result in a way to prove the soundness from different from the one
in [2]: we need to use a simulated public keys to justify the soundness (because
we need to know one of the secret keys).

To avoid the second obstacle, we use a constant round resettable WI argument
of knowledge [2] for the prover in which it proves the knowledge of the witness
for the statement to be proven or one of the secret keys (we stress this need a
little adjustment to avoid the malleable attack, see [12]). Note that this typically
involves in a resettably-sound non-black-box ZK argument in which the verifier
proves that a challenge matches the one he committed to in a previous step.
The major concern that arises here is that we need to run the simulator for
the underlying resettably-sound zero knowledge on a false statement in order to
show concurrent soundness, and as mentioned above such a simulation in the
concurrent setting seems beyond the limits of our current knowledge. The key
observation that allows for such a simulation (therefore enables the analysis of
concurrent soundness) is that we just need to simulate only one execution among
all concurrent executions of the resettably-sound zero knowledge argument for
justifying concurrent soundness, instead of simulating all these concurrent exe-
cutions, and this can be done easily (see section 3 for details).

2 Preliminaries

In this section we recall some definitions and tools that will be used later. Due
to space limitations, we refer readers to [16] for some basic primitives, such as
pseudorandom functions and commitments.

In the following we say that function f(n) is negligible if for every polynomial
q(n) there exists an N such that for all n ≥ N , f(n) ≤ 1/q(n).

The BPK Model. The bare public-key model(BPK model)assumes that:

– A public file F that is a collection of records, each containing a verifier’s
public key, is available to the prover.

– An (honest)prover P is an interactive deterministic polynomial-time algo-
rithm that is given as inputs a secret parameter 1n, a n-bit string x ∈ L, an
auxiliary input y, a public file F and a random tape r.

– An (honest) verifier V is an interactive deterministic polynomial-time algo-
rithm that works in two stages. In stage one, on input a security parameter
1n and a random tape w, V generates a key pair (pk, sk) and stores pk in
the file F . In stage two, on input sk, an n-bit string x and an random string
w, V performs the interactive protocol with a prover, and outputs ”accept
x” or ”reject x”.

Definition 1. We say that the protocol < P, V > is complete for a language L
in NP, if for all n-bit string x ∈ L and any witness y such that (x, y) ∈ RL,
here RL is the relation induced by L, the probability that V interacting with P
on input y, outputs ”reject x” is negligible in n.
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Malicious provers and Its attacks in the BPK model. Let s be a positive
polynomial and P ∗ be a probabilistic polynomial-time algorithm on input 1n.

P ∗ is a s-concurrent malicious prover if on input a public key pk of V , performs
at most s interactive protocols as following: 1) if P ∗ is already running i − 1
interactive protocols 1 ≤ i − 1 ≤ s, it can output a special message ”Starting
xi,” to start a new protocol with V on the new statement xi; 2) At any point
it can output a message for any of its interactive protocols, then immediately
receives the verifier’s response and continues.

A concurrent attack of a s-concurrent malicious prover P ∗ is executed in this
way: 1) V runs on input 1n and a random string and then obtains the key pair
(pk, sk); 2) P ∗ runs on input 1n and pk. Whenever P ∗ starts a new protocol
choosing a statement, V is run on inputs the new statement, a new random
string and sk.

Definition 2. < P, V > satisfies concurrent soundness for a language L if for
all positive polynomials s, for all s-concurrent malicious prover P ∗, the proba-
bility that in an execution of concurrent attack, V ever outputs ”accept x” for
x /∈ L is negligible in n.

The notion of resettable zero-knowledge was first introduced in [5]. The no-
tion gives a verifier the ability to rewind the prover to a previous state (after
rewinding the prover uses the same random bits), and the malicious verifier can
generate an arbitrary file F with several entries, each of them contains a pub-
lic key generated by the malicious verifier. We refer readers to that paper for
intuition of the notion. Here we just give the definition.

Definition 3. An interactive argument system < P, V > in the BPK model is
black-box resettable zero-knowledge if there exists a probabilistic polynomial-time
algorithm S such that for any probabilistic polynomial-time algorithm V ∗, for
any polynomials s, t, for any xi ∈ L, the length of xi is n, i = 1, ..., s(n), V ∗

runs in at most t steps and the following two distributions are indistinguishable:

1. the view of V ∗ that generates F with s(n) entries and interacts (even con-
currently) a polynomial number of times with each P (xi, yi, j, rk, F ) where
yi is a witness for xi ∈ L, rk is a random tape and j is the identity of the
session being executed at present for 1 ≤ i, j, k ≤ s(n);

2. the output of S interacting with on input x1, ...xs(n).

Witness Indistinguishable Argument of Knowledge (WIAOK) [15].
We will use 3-round WIAOK with negligible knowledge error as a component.
Let (a, e, z) be the three messages exchanged in an execution of a WIAOK, we
assume a special feature with the knowledge extraction: it is easy to extract
a witness form two different transcripts with same first message (a, e, z) and
(a, e′, z′). Note that we can obtain such a protocol by parallelizing the basic
proof of Hamiltonian Cycle [4] or uisng techiques form [8].

In addition, as required in [12], the WIAOK used by the verifier to prove that
it knows one of secret keys corresponding to its public key in our construction
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also needs to satisfy partial-witness-independence property: the message sent at
its first round should have distribution independent from any witness for the
statement to be proved. We note that the basic proof of Hamiltonian Cycle [4]
meets this requirement, and we also can establish this property using [9].

The basic 3-round proof of Hamiltonian Cycle is based on the existence of
one-way permutation families. If the commitment scheme used by the protocol
in [1] is implemented using the scheme in [21] from any pseudo-random generator
family, then the assumption can be reduced to the existence of one-way function
families, at the cost of adding one preliminary message (i.e., the first message
of the Naor’s commitment scheme) from the verifier. We stress that adding one
message does not affect the properties of WIAOK that we need.

3 A Simple Observation on Resettably-Sound Zero
Knowledge Arguments

Resettably-sound zero knowledge argument is a zero knowledge argument with
stronger soundness: for all probabilistic polynomial-time prover P ∗, even P ∗ is
allowed to reset the verifier V to previous state (after resetting the verifier V
uses the same random tape), the probability that P ∗ make V accept a false
statement x /∈ L is negligible.

In [2] Barak et al. transform a constant round public-coin zero knowledge
argument < P, V > for a NP language L into a constant round resettably-
sound zero knowledge argument < P, W > for L as follows: equip W with a
collection of pseudorandom functions, and then let W emulate V except that
it generate the current round message by applying a pseudorandom function to
the transcript so far.

We will use a resettably-sound zero knowledge argument as a building block
in which the verifier proves to the prover that a challenge matches the one that
he has committed to in previous stage. The simulation for such a sub-protocol
plays a important role in our security reduction, but there is a subtlety in the
simulation itself. In the scenario considered in this paper, in which the prover
(i.e., the verifier in the underlying resettably-sound zero knowledge argument) is
allowed to interact with many copies of the verifier and schedule all sessions at
his wish, the simulation seems problematic because we do not know how to sim-
ulate concurrent executions of the resettably-sound zero knowledge argument2.
However, fortunately, it is not necessary to simulate all the concurrent executions
of the underlying resettably-sound zero knowledge argument. Indeed, in order to
justify concurrent soundness, we just need to simulate only one execution among
all concurrent executions of the resettably-sound zero knowledge argument. We
call this property one-many simulatability. We note that Pass and Rosen [24]
2 Indeed, Barak also presented a constant round bounded concurrent ZK arguments,

hence we can obtain a constant round resettably-sound bounded concurrent ZK ar-
gument by applying the same transformation technique to the bounded concurrent
ZK argument. We stress that in this paper we do not require the bounded concurrent
zero knowledge property to hold for the resettably-sound ZK argument.
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made a similar observation (in a different context) that enables the analysis of
concurrent non-malleability of their commitment scheme.

Now we recall the Barak’s constant round public-coin zero knowledge argu-
ment [1], and show this protocol satisfies one-many simulatability, and then so
does the resettably-sound zero knowledge argument transformed from it.

Informally, Barak’s protocol for a NP language L consists of two subproto-
col: a general protocol and a WI universal argument. An real execution of the
general protocol generates an instance that is unlikely in some properly defined
language, and in the WI universal argument the prover proves that the state-
ment x ∈ L or the instance generated in general protocol is in the properly
defined language. Let n be security parameter and {Hn}n∈N be a collection of
hash functions where a hash function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let
C be a statistically binding commitment scheme. We define a language Λ as fol-
lows. We say a triplet (h, c, r) ∈ Hn × {0, 1}n × {0, 1}n is in Λ, if there exist a
program Π and a string s ∈ {0, 1}poly(n) such that z = C(h(Π), s) and Π(z) = r
within superpolynomial time (i.e., nω(1)).

The Barak’s Protocol [1]
Common input: an instance x ∈ L (|x| = n)
Prover’s private input: the witness w such that (x, w) ∈ RL

V → P : Send h ←R Hn;
P → V : Pick s ←R {0, 1}poly(n) and Send c = C(h(03n, s);
V → P : Send r ←R {0, 1}n;
P ⇔ V : A WI universal argument in which P proves x ∈ L or (h, c, r) ∈ Λ.

Fact 1. The Barak’s protocol enjoys one-many simulatability. That is, For every
malicious probabilistic polynomial time algorithm V ∗ that interacts with (ar-
bitrary) polynomial s copies of P on true statements {xi}, 1 ≤ i ≤ s, and
for every j ∈ {1, 2, ..., s}, there exists a probabilistic polynomial time algo-
rithm S, takes V ∗ and all witness but the one for xj , such that the output
of S(V ∗, {(xi, wi)}1≤i≤s,i�=j , xj) (where (xi, wi) ∈ RL) and the view of V ∗ are
indistinguishable.

It is easy to check the above fact. We can construct a simulator S = (Sreal, Sj) as
follows: Sreal, taking as inputs {(xi, wi)}1≤i≤s,i�=j , does exactly what the honest
provers do on these statements and outputs the transcript of all but the jth
sessions (in jth session xj ∈ L is to be proven), and Sj acts the same as the
simulator associated with Barak’s protocol in the session in which xj ∈ L is to
be proven, except that when Sj is required to send a commitment value (the
second round message in Barak’s protocol), it commits to the hash value of the
joint residual code of V ∗ and Sreal at this point instead of committing to the
hash value of the residual code of V ∗ (that is, we treat Sreal as a subroutine
of V ∗, and it interacts with V ∗ internally). We note that the next message of
the joint residual code of V ∗ and Sreal is only determined by the commitment
message from Sj , so as showed in [1], Sj works. On the other hand, the Sreal’s
behavior is identical to the honest provers. Thus, the whole simulator S satisfies
our requirement.
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When we transform a constant round public-coin zero knowledge argument
into a resettably-sound zero knowledge argument, the transformation itself does
not influence the simulatability (zero knowledge) of the latter argument be-
cause the zero knowledge requirement does not refer to the honest verifier (as
pointed out in [2]). Thus, the same simulator described above also works for the
resettably-sound zero knowledge argument in concurrent settings. So we have

Fact 2. The resettably-sound zero knowledge argument in [2] enjoys one-many
simulatability.

Despite the obviousness of the above facts, it is very useful in analysis of security
of some global system like ours, in which such protocols are used as subroutine
and all statement for those protocols are selected by the honest party on the fly.
We will show it in next section.

4 rZK Argument with Concurrent Soundness for NP in
the BPK Model under Standard Assumption

In this section we present a constant-round rZK argument with concurrent
soundness in the BPK model for all NP languages without assuming any subex-
ponential hardness.

For the sake of readability, we give some intuition before describe the protocol
formally.

We construct the argument in the following way: build a concurrent zero
knowledge argument with concurrent soundness and then transform this argu-
ment to a resettable zero knowledge argument with concurrent soundness. Con-
current zero knowledge with concurrent soundness was presented in [12] under
standard assumption (without using ”complexity leveraging”). For the sake of
simplification, we modify the flawed construction presented in [25] to get con-
current zero knowledge argument with concurrent soundness. Considering the
following two-phase argument in BPK model: Let n be the security parameter,
and f be a one way function that maps {0, 1}κ(n) to {0, 1}n for some function
κ : N → N. The verifier chooses two random numbers x0, x1 ∈ {0, 1}κ(n), com-
putes y0 = f(x0), y1 = f(x1) then publishes y0, y1 as he public key and keep x0

or x1 secret. In phase one of the argument, the verifier proves to the prover that
he knows one of x0, x1 using a partial-witness-independently witness indistin-
guishable argument of knowledge protocol Πv. In phase two, the prover proves
that the statement to be proven is true or he knows one of preimages of y0 and
y1 via a witness indistinguishable argument of knowledge protocol Πp.

Though the above two-phase argument does not enjoy concurrent soundness
(see [12]), it is still a good start point and we can use the same technique in
[12] in spirit to fix the flaw: in phase two, the prover uses a commitment scheme
Com1 to compute a commitments to a random strings s, c = Com1(s, r) (r is a
random string needed in the commitment scheme), and then the prover proves
that the statement to be proven is true or he committed to a preimage of y0 or
y1 using Πp.
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Given the above (modified) concurrent zero knowledge argument with concur-
rent soundness, we can transform it to resettable zero knowledge argument with
concurrent soundness by modifying the WIAOK Πp to be resettable (i.e. reset-
table WIAOK [2]). So we make the following adjustments: 1) using a statistically-
binding commitment scheme Com0, the verifier computes a commitment ce =
Com0(e, re) (re is a random string needed in the scheme) to a random string
e in the phase one, and then he sends e (note that the verifier does not send
re, namely, it does not open the commitment ce) as the second message (i.e the
challenge) of Πp and prove that e is the string he committed to in the first phase
using resettably-sound zero knowledge argument; 2) equipping the prover with
a pseudorandom function, whenever the random bits is needed in a execution,
the prover applied the pseudorandom function to what he have seen so far to
generate random bits.

Let’s Consider concurrent soundness of the above protocol. Imagine that a
malicious prover convince a honest verifier of a false statement on a session
(we call it a cheating session) in an execution of concurrent attack with high
probability. Then we can use this session to break some hardness assumption:
after the first run of this session, we rewind it to the point where the verifier
is required to send a challenge and chooses an arbitrary challenge and run the
simulator for this underlying resettably-sound zero knowledge proof. At the end
of the second run of this session, we will extract one of preimages of y0 and
y1 from the two different transcripts, and this contradicts either the witness
indistinguishability of Πv or the binding property of the commitment scheme
Com1. Note that in the above reduction we just need to simulate the single
execution of the resettably-sound zero knowledge argument in that cheating
session, and do not care about other sessions that initiated by the malicious
prover (in other sessions we play the role of honest verifier). We have showed the
simulation in this special concurrent setting can be done in a simple way in last
section.

The Protocol (rZK argument with concurrent soundness in BPK
model)

Let {prfr : {0, 1}∗ → {0, 1}d(n)}r∈{0,1}n be a pseudorandom function ensem-
bles, where d is a polynomial function, Com0 be a statistically-binding commit-
ment scheme, and let Com1 be a general commitment scheme (can be either
statistically-binding or computational-binding3). Without loss of generality, we
assume both the preimage size of the one-way function f and the message size
of Com1 equal n.

Common input: the public file F , n-bit string x ∈ L, an index i that specifies
the i-th entry pki = (f, y0, y1) (f is a one-way function) of F .
P ’s Private input: a witness w for x ∈ L, and a fixed random string (r1, r2) ∈
{0, 1}2n.
V ’s Private input: a secret key α (y0 = f(α) or y1 = f(α)).
3 If the computational-binding scheme satisfies perfect-hiding, then this scheme re-

quires stronger assumption, see also [23, 22].
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Phase 1: V Proves Knowledge of α and Sends a Committed Challenge to P .

1. V and P runs the 3-round partial-witness-independently witness indistin-
guishable protocol Πv in which V prove knowledge of α that is one of the
two preimages of y0 and y1. the randomness bits used by P equals r1;

2. V computes ce = Com0(e, re) for a random e (re is a random string needed
in the scheme), and sends ce to P .

Phase 2: P Proves x ∈ L.

1. P checks the transcript of Πv is accepting. if so, go to the following step.
2. P commits to a random string using Com1 and computes the first message a

of the 3-round witness indistinguishable argument of knowledge Πp in which
it proves either it knows the witness for x ∈ L or it committed to one preim-
age of y0 or y1. That is, P does the following: chooses a random string s, |s| =
n, and compute c = Com1(s, rs) by picking a randomness rs; forms a new re-
lation R′={(x, y0, y1, c, w

′) | (x, w′) ∈ RL∨(w′ = (w′′, rw′′)∧y0 = f(w′′)∧c =
Com1(w′′, rw′′)) ∨ (w′ = (w′′, rw′′) ∧ y1 = f(w′′) ∧ c = Com1(w′′, rw′′)))}; in-
vokes Πp in which P prove knowledge of w′ such that (x, y0, y1, c; w′) ∈ R′,
computes and sends the first message a of Πp.

All randomness bits used in this step is obtained by applying the pseudo-
random function prfr2 to what P have seen so far, including the common
inputs, the private inputs and all messages sent by both parties so far.

3. V sends e to P , and execute a resettably sound zero knowledge argument
with P in which V proves to P that ∃ re s.t. ce = Com0(e, re). Note that the
subprotocol will cost several (constant) rounds. Again, the randomness used
by P is generated by applying the pseudorandom function prfr2 to what P
have seen so far.

4. P checks the transcript of resettably sound zero knowledge argument is ac-
cepting. if so, P computes the last message z of Πp and sends it to V .

5. V accepts if only if (a, e, z) is accepting transcript of Πp.

Theorem 1. Let L be a language in NP , If there exist one-way permuta-
tions and hash functions collision-resistant(both against any polynomial time
adversary), then there exists a constant round rZK argument with concurrent
soundness for L in BPK model.

Remark on complexity assumption. We prove this theorem by showing
the protocol described above is a rZK argument with concurrent soundness. In-
deed, our protocol requires collision-resistant hash functions and one-way per-
mutations, this is because the 3-round WIAOK for NP assumes one-way
permutations and the resettably sound zero knowledge argument assumes
collision-resistant hash functions. However, we can build 4-round WIAOK for
NP assuming existence of one-way functions by adding one message (see also
discussions in section 2), and our security analysis can be also applied to this
variant. We also note that collision-resistant hash functions implies one-way
functions which suffices to build statistically-binding commitment scheme [21]
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(therefore computational-binding scheme), thus, if we proved our protocol is a
rZK argument with concurrent soundness, then we get theorem 1. Here we adopt
the 3-round WIAOK just for the sake of simplicity.

Remark on the scheme Com1. In contrast to [12], we show that computational
binding commitment scheme suffices to achieve concurrent soundness. In fact,
the statistically binding commitment scheme in [12] could also be replaced with
computational binding one without violating the concurrent soundness.

Proof. Completeness. Straightforward.

Resettable (black-box) Zero Knowledge. The analysis is very similar to the
analysis presented in [5, 11]. Here we omit the tedious proof and just provide
some intuition. As usual, we can construct a simulator Sim that extracts all secret
keys corresponding to those public keys registered by the malicious verifier from
Πv and then uses them as witness in executions of Πp, and Sim can complete
the simulation in expected polynomial time. We first note that when a malicious
verifier resets a an honest prover, it can not send two different challenge for a
fixed commitment sent in Phase 1 to the latter because of statistically-binding
property of Com0 and resettable soundness of the underlying sub-protocol used
by the verifier to prove the challenge matches the value it has committed to in
Phase 1. To prove the property of rZK, we need to show that the output of Sim
is indistinguishable form the real interactions. This can be done by construct-
ing a non-uniform hybrid simulator HSim and showing the output of HSim is
indistinguishable from both the output of Sim and the real interaction. HSim
runs as follows. Taking as inputs all these secret keys and all the witnesses of
statements in interactions, HSim computes commitments (at step 2 in Phase 2)
exactly as Sim does but executes Πp using the same witness of the statement
used by the honest prover. It is easy to see that the output of the hybrid simula-
tor is indistinguishable from both the transcripts of real interactions (because of
the computational-hiding property of Com1) and the output of Sim (because of
the witness indistinguishability of Πp), therefore, we proved the output of Sim
is indistinguishable form the real interactions.

Concurrent Soundness. Proof proceeds by contradiction.
Assume that the protocol does not satisfy the concurrent soundness property,

thus there is a s-concurrently malicious prover P ∗, concurrently interacting with
V , makes the verifier accept a false statement x /∈ L in jth session with non-
negligible probability p.

We now construct an algorithm B that takes the code (with randomness hard-
wired in)of P ∗ as input and breaks the one-wayness of f .

B runs as follows. On input the challenge f, y (i.e., given description of one-way
function, B finds the preimage of y), B randomly chooses α ∈ {0, 1}n, b ∈ {0, 1},
and guess a session number j ∈ {1, ..., s}(guess a session in which P ∗ will cheat
the verifier successfully on a false statement x. Note that the event that this
guess is correct happens with probability 1/s, so from now on, we assume the
guess is always right without loss of generality), then B registers pk = (f, y0, y1)
as the public key, where yb = f(α), y1−b = y. For convenience we let xb = α,
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and denote by x1−b one of preimages of y1−b (y1−b = y = f(x1−b)). Our goal is
to find one preimage of y1−b.

We write B as B = (Breal, Bj). B interacts with P ∗ as honest verifier (note
that B knows the secret key α corresponding the public key pk) for all but jth
session. Specifically, B employs the following extraction strategy:

1. B acts as the honest verifier in this stage. That is, it completes Πv using
α = xb as secret key, and commits to e, ce = Com0(e, re) in phase 1 then
runs resettably sound ZK argument in Phase 2 using e, re as the witness.
In particular, B uses Bj to play the role of verifier in the jth session, and
uses Breal to play the role of verifier in all other sessions. At the end of
jth session, if B gets an accepting transcript (a, e, z) of Πp, it enters the
following rewinding stage; otherwise, B halts and output ”⊥”.

2. Bj rewind P ∗ to the point of beginning of step 3 in Phase 2 in jth session,
it chooses a random string e′ �= e and simulates the underlying resettably
sound ZK argument in the same way showed in section 3: it commits to the
hash value of the joint residual code of P ∗ and Breal in the second round
of the resettably sound ZK argument (note this subprotocol is transformed
from Barak’s protocol) and uses them as the witness to complete the proof
for the following false statement: ∃ re s.t. ce = Com0(e′, re). If this rewinds
incurs some other rewinds on other sessions, Breal always acts as an honest
verifier on those sessions. When B get another accepting transcript (a, e′, z′)
of Πp at step 5 in Phase 2 in jth session, it halts, computes the witness from
the two transcripts and outputs it, otherwise, B plays step 3 in jth session
again.

We denote this extraction with EXTRA.
We first note that B’s simulation of P ∗’s view only differs from P ∗’s view in

real interaction with an honest verifier in the following: In the second run of Πp

in jth session B proves a false statement to P ∗ via the resettably sound zero
knowledge argument instead of executing this sub-protocol honestly. We will
show that this difference is computationally indistinguishable by P ∗, otherwise
we can use P ∗ to violate the zero knowledge property of the underlying resettably
sound zero knowledge argument or the computationally-hiding property of the
commitment scheme Com0. We also note that if the simulation is successful, B
gets an accepting transcript of Πp in stage 1 with probability negligibly close
to p, and once B enters the rewinding stage (stage 2) it will obtain another
accepting transcript in expected polynomial time because p is non-negligible. In
another words, B can outputs a valid witness with probability negligibly close
to p in the above extraction.

Now assume B outputs a valid witness w′ such that (x, y0, y1, c, w
′) ∈ R′,

furthermore, the witness w′ must satisfy w′ = (w′′, rw′′) and yb = f(w′′) or
y1−b = f(w′′) because x /∈ L. If y1−b = f(w′′), we break the one-way assumption
of f (find the one preimage of y1−b), otherwise(i.e., w′′ satisfies yb = f(w′′)),
we fails. Next we claim B outputs w′ = (w′′, rw′′) such that y1−b = f(w′′) with
non-negligible probability.
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Assume otherwise, with at most a negligible probability q, B outputs one
preimage of y1−b. Then We can construct a non-uniform algorithm B′ (incor-
porating the code of P ∗)to break the witness indistinguishability of Πv or the
computational binding of the commitment scheme Com1.

The non-uniform algorithm B′ takes as auxiliary input (y0, y1, x0, x1) (with
input both secret keys) and interacts with P ∗ under the public key (y0, y1). It
performs the following experiment:

1. Simulation (until B′ receives the first message a of Πp in jth session). B′

acts exactly as the B. Without loss of generality, let B′ uses x0 as witness
in all executions of Πv that completed before step 2 in Phase 2 of the jth
session. Once B′ receives the first message a of Πp in jth session, it splits
this experiment and continues independently in following games:

2. Extracting Game 0. B′ continues the above simulation and uses the same
extraction strategy of B. In particular, it runs as follows. 1) continuing to
simulate: B′ uses x0 as witness in all executions of Πv that take place during
this game; 2) extracting: if B′ obtained an accepting transcript (a, e0, z0)
at the end of the first run of Πp in jth session, it rewinds to the point
of beginning of step 3 in Phase 2 in jth session and replays this round by
sending another random challenge e′ �= e until he gets another accepting
transcript (a, e′0, z′0) of Πp, and then B′ outputs a valid witness, otherwise
outputs ”⊥”.

3. Extracting Game 1 : B′ repeats Extracting Game 0 but B′ uses x1 as wit-
ness in all executions of Πv during this game (i.e., those executions of Πv

completed after the step 2 in Phase 2 in the jth session). At the end of this
game, B′ either obtains two accepting transcripts (a, e1, z1), (a, e′1, z

′
1) and

outputs an valid witness, or outputs ”⊥”. Note that an execution of Πv that
takes place during this game means at least the last (third) message of Πv in
that execution has not yet been sent before step 2 in Phase 2 in jth session.
Since the Πv is partial-witness-independent (so we can decide to use which
witness at the last (third) step of Πv), B′ can choose witness at its desire to
complete that execution of Πv after the step 2 in Phase 2 in the jth session.

We denote by EXP0 the Simulation in stage 1 described above with its first
continuation Extracting Game 0, similarly, denote by EXP1 the same Simulation
with its second continuation Extracting Game 1.

Note that the P ∗’s view in EXP0 is identical to its view in EXTRA in which B
uses x0 (b = 0)as witness in all executions of Πv, so the outputs of B′ at the end
of EXP0 is identical to the outputs of B taking x0 as the secret key in EXTRA,
that is, with non-negligible probability p B′ outputs one preimage of y0, and
with negligible probability q it outputs one preimage of y1.

Consider B’s behavior in EXTRA when it uses x1(b = 1)as the secret key. The
behavior of B only differs from the behavior of B′ in EXP1 in those executions
of Πv that completed before the step 2 in Phase 2 in the jth session: B′ uses x0

as witness in all those executions, while B uses x1 as witness. However, the P ∗

cannot tell these apart because Πv is a witness indistinguishable and all those
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executions of Πv have not been rewound during both EXTRA and EXP1 (note
that B′ does not rewind past the step 2 in Phase 2 in the jth session in the
whole experiment). Thus, we can claim that at the end of EXP1, B′ outputs one
preimage of y1 with probability negligibly close to p, and it outputs one preimage
of y0 with probability negligibly close to q.

In the above experiment conducted by B′, the first message a sent by P ∗

in the jth session contains a commitment c and this message a (therefore c)
remains unchanged during the above whole experiment. Clearly, with probability
negligibly close to p2 (note that q is negligible), B′ will output two valid witness
w′

0 = (w0
′′, rw0′′) and w′

1 = (w1
′′, rw1′′) (note that w0

′′ �= w1
′′ except for a

very small probability) from the above two games such that the following holds:
y0 = f(w0

′′), y1 = f(w1
′′), c = Com1(w0

′′, rw0′′) and c = Com1(w1
′′, rw1′′). This

contradicts the computational-binding property of the scheme Com1.
In sum, we proved that if Com1 enjoys computational-binding and Πv is wit-

ness indistinguishable protocol with partial-witness-independence property, then
B succeeds in breaking the one-wayness of f . In another words, if the one-way
assumption on f holds, it is infeasible for P ∗ to cheat an honest verifier in
concurrent settings with non-negligible probability. �
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Abstract. Squared Euclidean Distance metric that uses the same equa-
tion as the Euclidean distance metric, but does not take the square root
(thus clustering with the Squared Euclidean Distance metric is faster
than clustering with the regular Euclidean Distance) is an efficient tool
for clustering databases. Since there appears to be no previous implemen-
tation of secure Squared Euclidean Distance protocols in the malicious
model, this paper studies two-party computation of Squared Euclid-
ean Distance protocols in the presence of malicious adversaries based
on state-of-the art homomorphic cryptographic primitives without using
Yao-style circuit. The security of our protocol is analyzed by comparing
what an adversary can do in the a real protocol execution to what it can
do in an ideal scenario. We show that the proposed scheme is provably
secure against malicious adversary assuming that the underlying homo-
morphic commitment is statistically hiding and computationally binding
and the homomorphic encryption scheme is semantically secure in the
common reference string model.

Keywords: Secure two-party computation, Squared Euclidean Distance,
Stand-alone and simulation-based model.

1 Introduction

Privacy-preserving clustering algorithms group similar databases populated at
distributed locations to improve data qualities and enable accurate data analysis
and thus provide fundamental security components for distributed data mining
with privacy concerns. Squared Euclidean Distance metric that uses the same
equation as the Euclidean Distance metric, but does not take the square root
(thus clustering with the Squared Euclidean Distance metric is faster than clus-
tering with the regular Euclidean Distance) is a common tool for clustering
databases.

Squared Euclidean Distance for computing k-clustering in hybrid
databases: let D = {d1, d2, · · · , dn} be a database set consisting of n objects.
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Each object di is described by the value of the l numerical attributes and par-
titioned into two disjoint subsets dA

i and dB
i . Let μA

j (resp. μB
j ) for 1 ≤ j ≤ k

denote Alice’s (resp., Bob’s) share of the j-th mean. The candidate cluster cen-
ters are given by μA

j +μB
j for 1 ≤ j ≤ k. For each object di, Alice and Bob

securely compute the Squared Euclidean Distance between the object and each
of the k cluster centers. The result of the distance calculation is learned as ran-
dom shares between Alice and Bob. Using the random shares, Alice and Bob
can further securely compute the closest cluster for each object in the database.
The described procedure continuous until the specified termination criteria is
satisfied. We refer to the reader [12], [14], [19] and [13] for more details.

General solution in the semi-honest model using Yao-style circuit: The
theory of general secure multiparty computation shows that any two-party func-
tion can be computed securely [3,20,21] and thus two participants can calculate
Squared Euclidean Distance even without help of any trusted third party in the
semi-honest model. That is, for fixed security parameter k (from which secure
oblivious transfers are derived), system parameters ι (from which a domain is
defined), and l (from which a dimension is defined), we can design a circuit for
computing of Squared Euclidean Distance protocols that uses O(ι2l) AND gates
and O(ι2l) XOR gates using the formulation of secure two-party evaluation of
Goldreich [10]. The communication complexity is O(ι2lk)-bit (using O(ι2l) obliv-
ious transfers). As a result, the cost of an implementation of Squared Euclidean
Distance protocols from Yao-style circuit invokes one oblivious transfer for each
wire of the circuit as described in [10] and [16]. Consequently, the number of
cryptographic operations performed is proportional to the size of the circuit
computing f(x) which implies that the computation complexity and communi-
cation complexity of general secure multiparty computation may be prohibitively
expensive even for relatively simple functions.

1.1 Efficient Computation of Squared Euclidean Distance in the
Semi-honest Model

Secure computation of Squared Euclidean Distance protocols in the semi-honest
model can be efficiently reduced that of shared-scalar-product protocols1. As a
result, the existence of privacy-preserving shared-scalar-product protocols in the
semi-honest model implies the existence of privacy-preserving Squared Euclidean
Distance protocols in the semi-honest model.

Squared Euclidean Distance protocols in the semi-honest model provide weak
security guarantees. Regarding malicious adversaries, it has been shown that
under suitable cryptographic assumptions, any multi-party function can be se-
curely computed [11] and [10]. However this methodology (Yao-style circuit +

1 Informally, an shared-scalar-product protocol states the following thing: there are
two participants Alice who holds her input vector (x1, · · · , xl) and Bob who holds
his input vector (y1, · · · , yl). They wish to compute random shares sA and sB of the
scalar-product protocol such that

�l
i=1 xiyi = sA + sB . At the end of the protocol,

Alice holds the value sA while Bob holds sB.
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compiler) comes at a price. These feasible results of secure computation typi-
cally do not yield protocols that are efficient enough to actually be implemented
and used in practice. Their importance is more in telling us that it is perhaps
worthwhile searching for other efficient solutions, because at least we know that
a solution exists in principle. Since there appears to be no previous implemen-
tation of secure Squared Euclidean Distance protocols in the malicious model
without using Yao-style circuit, we thus provide the following

Research problem: how to securely implement two-party computation of
Squared Euclidean Distance protocols in the presence of malicious adversaries
without using Yao-style circuit?

1.2 This Work

This paper studies secure two-party computation of Squared Euclidean Distance
protocols in the presence of malicious adversaries without using Yao-style circuit.
Informally, a two-party computation of Squared Euclidean Distance protocol
states the following thing: Alice who holds an input vector inpA =(x1, · · · , xl) and
Bob who holds an input vector inpB = (y1, · · · , yl), wish to compute

∑l
i=1(xi −

yi)2, where xi ∈ I and yi ∈ I (1 ≤ i ≤ l) and I is a prescribed interval, say,
I ={0, 1}ι. The output of Alice and Bob is Squared Euclidean Distance of two
input vectors (By Δ: =

∑l
i=1(xi − yi)2, we denote Squared Euclidean Distance

of two input vectors inpA and inpB).
Our security definition is standard (i.e., the standard definition for secure

multi-party computation, we refer to the reader [10] for more detail). That is,
the security of our protocol is analyzed by comparing what an adversary can do in
the a real protocol execution to what it can do in an ideal scenario that is secure
by definition. This is formalized by considering an ideal computation involving
an incorruptible trusted third party to whom the parties send their inputs. This
trusted third party computes the functionality on the inputs and returns to
each party its respective output. We will show that the two-party protocol for
computing Squared Euclidean Distance presented in this paper is provably secure
in the malicious model assuming that the underlying commitment is statistically
hiding and computationally binding and the homomorphic encryption scheme is
semantically secure in the common reference string model.

The computation complexity of our implementation is bounded by O(l) en-
cryptions (here we simply assume that the cost of a commitment is same as that
of an encryption) while the communication complexity is bounded by O(l(k +
|I| + s)), where k is a security parameter of Paillier’s encryption scheme, |I|
is a system parameter and s is a security parameter of Fujisaki-Okamoto com-
mitment scheme and thus our implementation is more efficient than the general
implementation using Yao-style circuit where the communication complexity is
O(|I|2lk) (see Section 4.3 for more details).

Road map: The rest of this paper is organized as follows: In Section 2, syn-
tax, functionality and security definition of two-party protocols for computing
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Squared Euclidean Distances are introduced and formalized. In Section 3, build-
ing blocks that will be used to implement the primitive are briefly sketched. In
Section 4, an implementation that does not emulate the circuit for computing
Squared Euclidean Distance in the malicious model is proposed. We are able to
show that the protocol is provably secure against malicious adversary assum-
ing that the underlying homomorphic commitment is statistically hiding and
computationally binding and the underlying homomorphic encryption scheme is
semantically secure. We conclude our work in Section 5.

2 Syntax, Functionality and Definition of Security

2.1 Syntax

A protocol π for computing Squared Euclidean Distance involves the following
two probabilistic polynomial time (PPT) Turing machines Alice and Bob.

– On input l and I (a pre-described interval, e.g., I ={0, 1}ι), Alice generates
an input vector inpA = (x1, x2, · · · , xl), xi ∈ I (1 ≤ i ≤ l);

– On input l and I, Bob generates an input vector inpB = (y1, y2, · · · , yl),
yi ∈ I (1 ≤ i ≤ l);

– On input inpA and inpB, Alice and Bob jointly compute squared Euclidean
distance (over the integer domain Z)

Δ =
l∑

i=1

(xi − yi)2

– The output of Alice is Δ; The output of Bob is Δ.

2.2 Functionality

By FSED, we denote the functionality of Squared Euclidean Distances. For given
system parameters l and I, the functionality FSED can be abstracted as follows:

– Alice has her input vector inpA = (x1, · · · , xl); Bob has his input vector
inpB = (y1, · · · , yl); Each participant sends the corresponding input vector
to FSED − an imaginary trusted third party in the ideal world via a secure
and private channel.

– Upon receiving inpA and inpB, FSED checks whether xi ∈ I and yi ∈
I (1 ≤ i ≤ l). If the conditions are satisfied, then FSED computes Δ =∑l

i=1(xi − yi)2;
If there is an invalid input xi ∈ inpA but xi /∈ I, then FSED chooses a
random string ri ∈r I and sets xi ← ri; Similarly, if there is an invalid input
yi ∈ inpB but yi /∈ I, then FSED chooses a random string ri ∈r I and sets
yi ← ri; Once the valid input vectors inpA and inpB are generated, FSED

computes Δ =
∑l

i=1(xi − yi)2.
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– If inpA =φ, then FSED chooses x1 ∈r I, · · ·, xl ∈r I uniformly at random and
sets inpA= {x1, · · · , xl}; Similarly, if inpB =φ, then FSED chooses y1 ∈r I,
· · ·, yl ∈r I uniformly at random and sets inpB= {y1, · · · , yl}. Once two input
vectors inpA and inpB are generated, FSED computes Δ =

∑l
i=1(xi − yi)2.

– The output of Alice is Δ. The output of Bob is Δ.

2.3 Security Definition

In this section, we briefly sketch the standard definition for secure two-party
computation and refer to the reader [10] and [15] for more details.

Execution in the ideal model: Let f=(f1, f2) be a two-party functionality,
and P1 and P2 be two parties. Let A be a non-uniform probabilistic polynomial
time machine, and let C ⊆ {1, 2} be the indices of a corrupted party, controlled
by an adversary A. An ideal execution of proceeds as follows:

– Inputs: each party obtains an input(the ith party’s input is denoted by xi,
i ∈ {1, 2}). The adversary A receives an auxiliary input denoted by σ.

– Send inputs to the trusted party: any honest party Pi sends its received
input xi to the trusted third party. The corrupted party controlled by A
may either abort, send its received input, or some other input to the trusted
party. This decision is made by A and may depend on the value xj for j ∈ C
and its auxiliary input σ. Denote the vector of inputs sent to the trusted
party by ω=(ω1, ω2). Notice that ω does not necessary equal x=(x1, x2);
If the trusted party does not receive valid messages, then it replies two party
with a special symbol ⊥ and the ideal execution terminates. Otherwise, the
execution proceeds to the next step.

– The trusted party sends output to A: the trusted party computes f(ω) and
sends fi(ω) to the party Pi, for i ∈ C;

– A instructs the trusted third party to continue or halt: A sends either continue
or halt to the trusted party. If it sends continue, the trusted party sends fj(ω)
to Pj , for j /∈ C. Otherwise, if it sends halt, the trusted party sends ⊥ to Pj ,
for j /∈ C.

– Outputs: an honest party always outputs the message it obtained from the
trusted party. The corrupted party outputs nothing. The adversary A out-
puts any arbitrary function of the initial input {xi} and the message fi(ω),
i ∈ C obtained from the trusted party.

The ideal execution of f on inputs x, auxiliary input σ to A and security
parameter k, denoted by IDEALf,A(σ),C(x, k) is defined as the output vector of
the honest party and the adversary A from the above ideal execution.

Execution in the real model: The adversary sends all messages in place of
the corrupted parity, and may follow an arbitrary polynomial-time strategy. In
contrast, the honest party follows the instructions of the protocol π for computing
f .
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The real execution of π on input x, auxiliary information σ to A and security
parameter k, denoted by REALπ,A(σ),C(x, k) is defined as the output vector of
the honest party and the adversary A from the real execution of π.

Definition 1. A protocol π is said to securely compute f with abort in the pres-
ence of malicious adversaries if for every non-uniform probabilistic polynomial
time machine A for the real model, there exists a non-uniform probabilistic poly-
nomial time machine simA for the ideal model, such that for every C ⊆ {1, 2},
every balanced vector x (for every i and j, |xi| =xj), and every auxiliary input
z ∈ {0, 1}∗:

{IDEALf,A(σ),C(x, k)}k∈N ≈ {REALπ,A(σ),C(x, k)}k∈N

where ≈ indicates computational indistinguishability.

3 Building Blocks

Our implementation of two-party computation of Squared Euclidean Distance
protocols in the presence of malicious adversaries will use the following state-of-
the-art cryptographic primitives:

Paillier’s public key encryption scheme: Paillier investigated a novel com-
putational problem called the composite residuosity class problem (CRS), and its
applications to public key cryptography in [17]. Our implementation of Squared
Euclidean Distance protocols heavily relies on Paillier’s public key encryption
scheme which is sketched below:

The public key is a k1-bit RSA modulus n = pq, where p, q are two large
safe primes. The plain-text space is Zn and the cipher-text space is Z∗

n2 . To
encrypt a ∈ Zn, one chooses r ∈ Z∗

n uniformly at random and computes the
cipher-text as EPK(a, r) = garn mod n2, where g = (1 + n) has order n in Z∗

n2 .
The private key is (p, q). It is straightforward to verify that given c =(1 + n)arn

mod n2, and trapdoor information (p, q), one can first computes c1:=c mod n,
and then compute r from the equation r=c

n−1modφ(n)
1 mod n; Finally, one can

compute a from the equation cr−n mod n2 =1 + an. The encryption function is
homomorphic, i.e., EPK(a1, r1) × EPK(a2, r2) mod n2 = EPK(a1 + a2 mod n,
r1 × r2 mod n).

Fujisaki-Okamoto commitment scheme: Let s and k2 be security parame-
ters. The public key is a k2-bit RSA modulus, where P , Q are two large safe
primes. We assume that neither the committer C nor the receiver R knows fac-
torization N . Let g1 be a generator of QRN and g2 be an element of large order
of the group generated by g1 such that both discrete logarithm of g1 in base
g2 and the discrete logarithm of g2 in base g1 are unknown by C and R. We
denote C(a, ra) = ga

1gra
2 mod N a commitment to a in base (g1, g2), where ra is

randomly selected over {0, 2sN}. This commitment scheme first appeared in [9]
and reconsidered by Damg̊ard and Fujisaki [5] is statistically secure commitment
scheme, i.e.,
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– C is unable to commit itself to two values a1, a2 such that a1 �= a2 in Z by
the same commitment unless R can factor N or solves the discrete logarithm
of g1 in base g2 or the the discrete logarithm of g2 in base g1;

– C(a, ra) statistically reveals no information to R, i.e., there is a simulator
which outputs simulated commitments to a which are statistically indistin-
guishable from true ones.

Notice that this commitment is homomorphic, i.e., C(a + b, ra + rb) = C(a, ra)
× C(b, rb). This property is useful when R wants to prove that the committed
value a ∈ [x, y].

Boudot’s protocol: With the help of Fujisaki-Okamoto commitment scheme,
an efficient protocol allows Alice to prove to Bob that a committed number x
belongs to the desired interval [a, b] (0 < a ∈ Z and a < b ∈ Z), has been
proposed by Boudot [2]. The idea behind Boudot’s protocol is that to achieve a
proof of membership without tolerance, the size of x is first enlarged, and then
Alice proves to Bob that the value 2T x lies in the interval < 2T a − 2T , 2T b +
2T > with tolerance (a proof with tolerance is easier than a proof without
tolerance, we refer the reader to [2] for further reference), and thus x ∈ [a, b].
Boudot’s proof technique is only asymptotically sound. When it is employed
the concrete parameter setting must be discussed to show that a certain degree
of soundness is obtained. Since Boudot’s protocol is implemented based on the
notion of Fujisaki-Okamoto commitment scheme, we here simply assume that the
security parameters are inherently adopted from Fujisaki-Okamoto commitment
scheme.

Proof of knowledge of encryptions: Given a cipher-text Enc(x) which is
computed from Paillier’s encryption scheme, a prover (say, Alice) wants to prove
that she knows x and x lies in a given interval I to Bob. There is efficient protocol
presented by Damg̊ard and Jurik already in [7]. The basic idea is the following:
given a=Enc(x, re), the prover provides a commitment b=Com(x, rc) which is
computed from Fujisaki-Okamoto commitment scheme, proves that the com-
mitment contains the same number as the encryption, and then uses Boudot’s
protocol [2] to prove that x ∈ I. More precisely,

– let T be the maximum bit length of x. The prover chooses at random u,
an integer of length T + 2k, where k is a security parameter. She sends
a=Enc(u, r′e), b=Com(u, r′c) to the verifier;

– the verifier chooses a l-bit challenge f ;
– the prover opens the encryption a′= a af mod n2 and the commitment b′=

bb
f

mod N , to reveal in both cases the number z =u+ fx, Re=r′e + fre and
Rc =r′c + frc. The verifier checks that the openings were correct.

4 Implementation and Proof of Security

4.1 Our Implementation

Our implementation of two-party computation of Squared Euclidean Distance
protocols in the presence of malicious adversaries consists of the following two
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stages: setup stage and secure computation stage. In the setup stage, a common
reference string σ and public key encryption schemes for two participants are
generated.

Description of Setup Stage

– A common reference string σ is derived from Okamoto-Fujisaki’s commit-
ment scheme (this commitment scheme first appeared in [9] and reconsidered
by Damg̊ard and Fujisaki in [5]. We stress that the use of Okamoto-Fujisaki’s
commitment scheme is not essential, it can be replaced by any homomor-
phic commitment with similar cryptographic properties. For simplicity, we
will make use of this commitment throughout the paper). In our protocol, a
common reference string σ is generated by an oracle and the resulting string
σ is used by both participants throughout the protocol. On input security pa-
rameters kC and s, an oracle generates the public key N = PQ, where P , Q
are large safe prime numbers (i.e., P=2P ′+1, Q=2Q′+1, P , Q, P ′ and Q′ are
large prime numbers) such that neither Alice nor Bob knows factorization N .
The oracle also generates two random generator g1 ∈r QRN and g2 ∈r QRN

such that the discrete logarithm of g1 in base g2 and the discrete logarithm
of g2 in base g1 are unknown by Alice and Bob. By C(a, ra) = ga

1gra
2 mod N ,

we denote a commitment to x in the bases g1 and g2, where ra is randomly
selected over {0, 2sN}, s is another security parameter. By (g1, g2, s, N), we
denote the common reference string σ.

– On input a security parameter kA, a kA-bit RSA modulus nA = pAqA for
Paillier’s encryption scheme EA is generated (by Alice) [17], where pA, qA

are two large safe primes. The plain-text space is ZnA and the cipher-text
space is Z∗

nA
2 . The public key of Alice pkA is (gA, nA) where gA=(1 + nA)

has order nA in Z∗
nA

2 . The private key skA is (pA, qA).
– Similarly, on input a security parameter kB, a kB-bit RSA modulus nB =

pBqB for Paillier is generated (by Bob), where pB, qB are two large safe
prime numbers. The plain-text space is ZnB and the cipher-text space is
Z∗

nB
2 . The public key of Bob pkB is (gB, nB) where gB=(1 + nB) has order

nB in Z∗
nB

2 . The private key skB is (pB, qB).

We stress that the size of each public key of Paillier’s encryption scheme
is sufficiently large so that all computations can be performed over the integer
domain. This is possible since the extension of Damg̊ard and Jurik [6] can achieve
this requirement. We thus simply assume that the public key size of the Paillier’s
encryption is sufficiently large throughout the paper.

High level description of our secure computation stage. For convenience
the reader, we briefly describe what achieves in each of the following steps speci-
fied in the secure computation stage. Without loss of generality, we assume that
Alice talks first in the following computations. At Step 1, Alice commits her in-
put vector inpA =(x1, · · · , xl), and then sends the encryption vectors EA(inpA)
(=(EA(x1), · · · , EA(xl))) to Bob, finally, Alice proves to Bob that the i-th com-
mitment and the i-th encryption hide the same value xi which lies in the correct
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interval I; At Step 2, Bob commits his input vector inpB=(y1, · · · , yl), and then
Alice and Bob jointly compute random shares (sA, sB) of the scalar product
computed from their input vectors such that sA + sB = Σl

i=1xiyi. At Step 3,
Alice proves to Bob that the value EB(αA − 2sA) is correctly computed, where
αA = Σl

i=1x
2
i ; Similarly, at Step 4 and Step 5, Bob proves to Alice that the value

EA(αB − 2sB) is correctly computed, where αB = Σl
i=1y

2
i ; Finally, the Squared

Euclidean Distance is computed from the Step 6.

Detail description of our secure computation stage. We now can describe
the detailed implementation below:

Step 1: Alice commits and encrypts her input vector and proves con-
sistency of the encrypted values

– Step 1.1: computes the commitments of her input vector {cA,i}={C(xi, rxi)}
(1 ≤ i ≤ l), where the Okamoto-Fujisaki’s commitment C is indexed by the
common reference string σ;

– Step 1.2: computes the encryptions of her input vector {eA,i}={EA(xi)}
(1 ≤ i ≤ l), where the Paillier’s encryption scheme EA is indexed by the
public key pkA;

– Step 1.3: sends (cA,i, eA,i) to Bob (1 ≤ i ≤ l);
– Step 1.4: proves to Bob that the commitment cA,i and the encryption eA,i

hide the same value xi and xi ∈ I (1 ≤ i ≤ l) by performing the following
computations [7]:
The prover Alice chooses ui ∈r {0, 1}|I|+k1, where k1 is a security parameter,
e.g., k1 =160-bit. and then sends EA(ui), C(ui) to the verifier Bob;
The verifier chooses a k1-bit challenge fi;
The prover opens the encryption EA(ui)eA,i

fi and the commitment
C(ui)c

fi

A,i, to reveal in both cases the number zi = ui + xifi. The verifier
checks the correctness of the opening.
The prover further proves to Bob that xi lies in the correct interval I by
running Boudot’s protocol [2].

Step 2: Bob commits and encrypts his input vector and proves con-
sistency of the encrypted values

– Step 2.1: verifies the correctness of the proofs; If both verifications are cor-
rect, then Bob continues the following computations, otherwise, Bob stops
the computation and outputs ⊥;

– Step 2.2: computes the commitments of his input vector {cB,i}={C(yi, ryi)}
and proves to Alice that he knows how to open the commitment cB,i and
yi ∈ I(1 ≤ i ≤ l);

– Step 2.3: chooses a random string sB ∈ {0, 1}2|I|+�log l�, computes the com-
mitment of c(sB) = C(sB, rsB ), and proves Alice he knows how to open the
commitment c(sB) and sB ∈ {0, 1}2|I|+�log l�;

– Step 2.4: computes
∏l

i=1 EA(xi)yiEA(1)sB ;
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– Step 2.5: proves to Alice that each exponent of
∏l

i=1 EA(xi)yiEA(1)sB to the
base of EA(xi) (1 ≤ i ≤ l) is equal to the hidden value of the commitment
cB,i and the exponent to the base EA(1) (1 ≤ i ≤ l) is equal to the hidden
value of c(sB) by performing the following computations (the technique de-
scribed below can be viewed as an extended version of Damg̊ard and Jurik
[7], and Cramer and Damg̊ard [4]).

Bob chooses ŝB ∈ {0, 1}2|I|+�log l�+k1 , ŷ1 ∈r {0, 1}|I|+k1, · · ·, ŷl ∈r

{0, 1}|I|+k1 uniformly at random, and then computes C(ŝB, rŝB ), C(ŷ1, rŷ1),
· · ·, C(ŷl, rŷl

); EA(sA) = EA(1)sBEA(x1)y1 · · · EA(xl)yl and EA(ŝA) =
EA(1)ŝB EA(x1)ŷ1 · · · EA(xl)ŷl .

Finally, Bob sends EA(sA), EA(ŝA), together with the proof that he knows
how to open the commitments C(ŝB), C(ŷi) and each ŷi lies in the correct
interval {0, 1}|I|+k1 (0 ≤ i ≤ l) and ŝB ∈ {0, 1}2|I|+�log l�+k1 to Alice.

Alice verifies the correctness of the proof. If it is incorrect, then she stops
the execution of the protocol; otherwise, she performs the following compu-
tations sA ← DA(EA(sA)), ŝA ← DA(EA(ŝA)).

Alice then chooses a random string f ∈ {0, 1}k1 uniformly at ran-
dom and sends it to Bob; Alice and Bob then computes: C(zsB )
= C(sB, rsB )fC(ŝB, rŝB ); C(z1) = C(y1, ry1)fC(ŷ1, rŷ1), · · ·, C(zl) =
C(yl, ryl

)fC(ŷl, rŷl
);

Bob opens C(zsB ), C(z1), · · ·, C(zl) to Alice. Alice checks the correctness
of all opening of the commitments, and also checks the validity of equation
ŝA + fsA = zsB + x1z1 + · · · + xlzl.

Step 3: Alice computes her random share for the scalar-product of
two input vectors and proves to Bob her random share is correctly
generated

– Step 3.1: if all proofs are correct, then Alice continues the following compu-
tations, otherwise, Alice stops the computation and outputs ⊥;

– Step 3.2: computes the commitment c(sA):= C(sA, rsA);
– Step 3.3: Alice computes cA,i2 :=C(x2

i , rx2
i
) (1 ≤ i ≤ l);

– Step 3.4: proves to Bob that the encrypted value of cA,i2 is the square of the
committed value of cA,i by performing the following computations [2,9]: for
each cA,i=C(xi, rxi), Alice computes ri = rxi − xirx2

i
(thus cA,i2 = cxi

A,ig
ri
2 );

Alice proves to Bob that cA,i2 is a commitment to xi in base (cA,i, g2) (Alice
has already proved to Bob that cA,i is a commitment to xi in base (g1, g2)
at the Step 1.4);
If all proofs are correct, Bob continues the following joint computations with
Alice; otherwise Bob stops and outputs ⊥.

– Step 3.6: αA ←
∑l

i=1 x2
i , and then computes the commitment C(αA, rαA)

←
∏l

i=1 cA,i2 ;
– Step 3.7: proves to Bob c(sA) and EA(sA) hide the same value;
– Step 3.8: computes EB(αA−2sA) and C(αA−2sA) ← C(αA, rαA) × c(sA)−2;

and proves that EB(αA − 2sA) and C(αA − 2sA) hide the same value.
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Step 4: Bob computes his share of the scalar-product of two input
vectors and thus obtains Δ

– Step 4.1: verifies the correctness of the proof; If it is correct, then Bob contin-
ues the following computations, otherwise, Bob stops the computation and
outputs ⊥;

– Step 4.2: (αA − 2sA) ← DB(EB(αA − 2sA)), and sets βA =(αA − 2sA);

Step 5: Bob proves to Alice his commitments and encryptions are
correctly generated that allows Alice to compute Δ

– Step 5.1: αB ←
∑l

i=1 y2
i ;

– Step 5.2: computes cB,i2 : =C(yi, ryi) (1 ≤ i ≤ l), and proves to Alice that
the committed value of cB,i2 is the square of the committed value of cB,i;

– Step 5.3: computes C(αB , rαB ) ←
∏l

i=1 cB,i2 ;
– Step 5.4: computes EA(αB +2sB) and C(αB +2sB) ← C(αB , rαB ) × c(sB)2

(the proofs that Bob knows how to open c(sB) and sB lies in the correct
interval are presented at the Step 2.3);

– Step 5.5: proves to Alice that EA(αB +2sB) and C(αB +2sB) hide the same
value.

Step 6: Alice obtains Δ

– Step 6.1: verifies the correctness of the proof; If it is correct, then Alice
continues the following computations, otherwise, Alice stops the computation
and outputs ⊥;

– Step 6.2: (αB + 2sB) ← DA(EA(αB + 2sB)), and sets βB = (αB + 2sB);
– Step 6.3: outputs Δ ← βA + βB;

This ends the description of our implementation.

4.2 The Proof of Security

Lemma 1. For every non-uniform probabilistic polynomial time A for the real
protocol which corrupts Alice, there exists a non-uniform probabilistic polyno-
mial time adversary simA (a simulator that creates views for malicious Alice
and honest Bob) such that the output vectors of the honest Bob and the adver-
sary A from the real execution of the protocol defined above is computationally
indistinguishable from the output of the honest Bob and the adversary simA from
the ideal execution.

Proof. The simulator simA is defined as follows: simA first generates a common
reference string σ which will be used in the real world protocol. That is, on
input security parameters kC and s, simA generates the public key N = PQ,
where P , Q are large safe prime numbers (i.e., P=2P ′ + 1, Q=2Q′ + 1, P , Q,
P ′ and Q′ are large prime numbers). simA also produces a random generator
g2 ∈r QRN , and then computes g1 ∈ QRN from the equation g1 =gλ

2 . Thus simB

knows the discrete logarithm of g1 in base g2. The common reference string σ=
(g1, g2, s, N). The auxiliary information is (P, Q, P ′, Q′, λ).

From the description of the real world protocol, we know what Alice proves
to Bob are the following things:
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– the knowledge of xi ∈ I (1 ≤ i ≤ l) at the Step 1.4;
– the knowledge of x2

i (1 ≤ i ≤ l) at the Step 3.4;
– the knowledge of sA at the Step 3.7;
– and the knowledge of βA (=αA − 2sA) at the Step 3.8.

simA extracts Alice’s input vector inpA=(x1, · · · , xl) (xi ∈ I, 1 ≤ i ≤ l) by
rewinding malicious Alice at the Step 1.4. simA then sends inpA to FSED and
obtains Δ from FSED. simA also extracts the knowledge of sA by rewinding
malicious Alice at the Step 3.7. Once simA obtains xi (1 ≤ i ≤ l) and sA, it can
simulate the proof of the knowledge of x2

i (1 ≤ i ≤ l) at the Step 3.6; the proof
of the knowledge of sA at the Step 3.7; and the proof of the knowledge of βA

at the Step 3.8. By the binding property of the underlying commitment scheme,
we know that the consistency of αA and βA is satisfied.

The rest work of simA is to simulate what Alice verifies in the real world
protocol. simA now first computes βB ∈ {0, 1}2|I|+�log l�+1 from the equation Δ
= βA + βB. simA then chooses y1 ∈ I, · · ·, yl ∈ I uniformly at random such that
αB−βB

2 =sB, where αB =
∑l

i=1 y2
i (if βB −αB is not an even number, then simA

re-performs the above computations until αB −βB is an even number). We stress
that sB ∈ {0, 1}2|I|+�log l� can simulated trivially since simA knows the auxiliary
information of the commitment scheme. For the fixed random string f ∈ {0, 1}k1

and sA, simA chooses ŝA ∈ {0, 1}2|I|+�log l�+k1+1, z1 ∈ {0, 1}2|I|+k1+1, · · ·, zl ∈
{0, 1}2|I|+k1+1 uniformly at random, and performs the following computations:

– computes C(sB , rsB ) and sets C(sB) ← C(sB , rsB );
– computes C(y1, ry1), · · ·, C(yl, ryl

);
– computes C(z1, rz1), · · ·, C(zl, rzl

), and sets C(z1) ← C(z1, rz1), · · ·, C(zl)
← C(zl, rzl

);
– computes zsB from the equation ŝA + fsA = zsB + x1z1 + · · · + xlzl;
– computes C(zsB , rzsB

) and sets C(zsB ) ← C(zsB , rzsB
);

– computes C(ŝB , rŝB ), C(ŷ1, rŷ1), · · ·, C(ŷl, rŷl
) from the following equations:

C(zsB ) = C(sB , rsB )f C(ŝB , rŝB ), C(z1) = C(y1, ry1)f C(ŷ1, rŷ1), · · ·, C(zl)
= C(yl, ryl

)f C(ŷl, rŷl
).

The requirement that ŝB ∈ {0, 1}2|I|+�log l�+k1 and ŷi ∈ {0, 1}|I|+k1 (0 ≤ i
≤ l) can be achieved trivially since simA holds the auxiliary information of the
underlying commitment scheme. It follows that the output vectors of the honest
Bob and the adversary A from the real execution of the protocol defined above
is computationally indistinguishable from the output of the honest Bob and the
adversary simA from the ideal execution.

Lemma 2. For every non-uniform probabilistic polynomial time A for the real
protocol which corrupts Bob, there exists a non-uniform probabilistic polynomial
time adversary simB (a simulator that creates views for honest Alice and mali-
cious Bob) such that the output vectors of the honest Alice and the adversary A
from the real execution of the protocol defined above is computationally indistin-
guishable from the output of the honest Alice and the adversary simB from the
ideal execution.
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Proof. The simulator simB is defined as follows: simB first generates a common
reference string σ which is used in the real world protocol. That is, on input
security parameters kC and s, simB generates the public key N = PQ, where
P , Q are large safe prime numbers (i.e., P=2P ′+1, Q=2Q′+1, P , Q, P ′ and Q′

are large prime numbers). simB also produces a random generator g2 ∈r QRN ,
and then computes g1 ∈ QRN from the equation g1 =gλ

2 . Thus simB knows the
discrete logarithm of g1 in base g2. The common reference string σ= (g1, g2, s, N).
The auxiliary information is (P, Q, P ′, Q′, λ).

From the description of the real world protocol, we know what Bob proves to
Alice are the following things:

– the knowledge of yi ∈ I (1 ≤ i ≤ l) at the Step 2.2;
– the knowledge of sB at the Step 2.3
– EA(sA) (=

∏l
i=1 EA(xi)yiEA(1)sB ) is correctly calculated with respect to

yi (1 ≤ i ≤ l) and sB at the Step 2.5;
– the knowledge of αB at the Step 5.3;
– and the knowledge of βB (=αB + 2sB) at the Step 5.4.

simB obtains yi ∈ I (1 ≤ i ≤ l) by rewinding Bob at the Step 2.2. simB

then sends inpB to FSED and obtains Δ from FSED. simB also extracts the
knowledge of sB by rewinding Bob at the Step 2.3. Once given yi, sB and Δ,
simB can compute αB =

∑l
i=1 y2

i , βB = αB + 2sB. By the binding property
of the underlying commitment scheme, we know that the consistency of αB and
βB is satisfied. simB then computes βA from the equation βA + βB =Δ. simB

further chooses x1 ∈ I, · · ·, xl ∈ I uniformly at random, and then computes sA

from the equation αA−2sA =βA such that sA =αA−βA

2 , where αA =
∑l

i=1 x2
i . We

stress that the simulation of sA that lies in a correct interval {0, 1}2|I|+�log l�+1

is trivial since simB has the auxiliary information of the commitment scheme.
For fixed f at the Step 2.5, simB chooses z1 ∈ {0, 1}|I|+k1+1, · · ·, zl ∈

{0, 1}|I|+k1+1 and zsB ∈ {0, 1}2|I|+�log l�+k1+1 uniformly at random and then
computes ŝA from the equation ŝA + fsA = zsB + x1z1 + · · · , xlzl. Further-
more, simB computes C(ŝB , rŝB ) = C(zsB ) C(sB , rsB )−f ; C(ŷ1, rŷ1) = C(z1)
C(y1, ry1)−f , · · ·, C(ŷl, rŷl

) = C(zl) C(yl, ryl
)−f ; Again, since simB holds the

auxiliary information of the commitment scheme, thus, the correctness of open-
ing for each commitment computed above can be simulated trivially. By rewind-
ing Bob, simB obtains two commitment vectors (z1, · · · , zl) and (z′1, · · · , z′l) such
that ŝA + fsA = zsB + x1z1 + · · · + xlzl, and ŝA + f ′sA = x1z

′
1 + · · · + xlz

′
l. As

a result, we have the following equation (f ′−f)sA =z′sB
−zsB + x1(z′1−z1) + · · ·

+ xl(z′l − zl). By applying the binding property of the underlying commitment
scheme, we know that sA =sB +

∑l
i=1 xiyi.

The rest work of simB is to simulate what Bob verifies in the real protocol.
Again since simB has the auxiliary information of the commitment scheme,
the view of Bob when he interacts with simB at the Step 1 and Step 3 can
be simulated trivially. It follows that the output vectors of the honest Alice
and the adversary A from the real execution of the protocol defined above is
computationally indistinguishable from the output of the honest Alice and the
adversary simB from the ideal execution.
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By combining two lemmas above, we have the following main result immediately.

Theorem 1. The two-party protocol for computing Squared Euclidean Distance
described above is secure in the malicious model assuming that the underlying
commitment is statistically hiding and computationally binding and the homo-
morphic encryption scheme is semantically secure in the common reference string
model.

4.3 Computation and Communication Complexity

We now consider the communication and communication complexity of our im-
plementation of Squared Euclidean Distance protocols. At the first step, Alice
computes l commitments and l encryptions, and then proves to Bob that the jth
commitment and the jth encryption hide the same values. Finally, Alice proves
to Bob each of committed value lies in I, which costs additional O(l) commit-
ments. Thus, the communication complexity is bounded by O(lkA) + O(lkC) +
l(k1 + |I| + s), where s is a security parameter in the Fujisaki-Okamoto com-
mitment scheme and k1 is a security parameter (say 160 bit of challenge string)
specified in our implementation. At the second step, Bob commits his input vec-
tor inpB=(y1, · · · , yl), and then Alice and Bob jointly compute random shares
(sA, sB) of the scalar product computed from their input vectors such that sA +
sB = Σl

i=1xiyi. Thus, the computation complexity at this step is O(l) and the
communication complexity is bounded by O(lkA) + O(lkB) + O(l(k1 + |I|+s)).
The rest of computations of Alice and Bob are both bounded by O(l), and
thus,the total communication complexity of both parties are bounded by O(lkA)
+ O(lkB) + O(l(k1 + |I|+s)). If we further assume that kA ≈ kB ≈ kC = k, and
the cost of an encryption is approximate to that of a commitment, then the com-
munication complexity is bounded by O(lkA) + O(l(|I| + s)) =O(l(k + |I| + s))
which is superior to the circuit-based solution where the communication com-
plexity is O(|I|2lk).

5 Conclusion

We have proposed a new protocol for computing Squared Euclidean Distance
that does not emulate the circuit of the function in the malicious model. We
have shown that our implementation is secure against malicious adversary in
the common reference string model assuming that the underlying commitment
is statistically hiding and computationally binding and the homomorphic en-
cryption scheme is semantically secure.
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Abstract. We propose a discrete-logarithm based non-interactive non-
malleable commitment scheme with an online knowledge extractor in the
random oracle and the public parameter model (need a third party to
distribute public parameters to both sender and receiver in advance).
Our scheme is statistically-secret computationally-binding. The funda-
mental technique we employ is the construction of non-interactive zero-
knowledge proofs of knowledge with online knowledge extractors from
Fiat-Shamir proofs of knowledge for relations with logarithmic chal-
lenge length presented by Fischlin in Crypto’05. Compared with pre-
vious works, our scheme is practical and the online knowledge extractor
is strictly polynomial-time.

1 Introduction

Commitment schemes are a basic ingredient in many cryptographic protocols.
Very informally, a commitment scheme involves two probabilistic polynomial-
time players, a sender and a receiver, and consists of two phases, the commit-
ment phase and the decommitment phase. In the commitment phase, the sender
with a secret input x engages in a protocol with the receiver. In the end of
this protocol, the receiver still does not know what x is, and subsequently, i.e.,
during the decommitment phase the sender can open only one possible value
of x. In general there are two types of commitment schemes: statistically-secret
and computationally-binding schemes, computationally-secret and statistically-
binding schemes. The number of rounds in the commitment phase is the total
number of messages exchanged in interaction (that is, both sender messages and
receiver messages). A commitment scheme with one round in the commitment
phase is called non-interactive.

The notion of non-malleability was first introduced in [5]. [5] points out that
adversary should be not able to generate a commitment in which the committed
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value has any non-trivial relation with another value in a known commitment.
In many applications non-malleable commitment schemes are required. [5] also
shows that the existence of a knowledge extractor for a commitment scheme
implies non-malleability, which provides a practical way that is also adopted by
our paper to prove non-malleability of a commitment scheme.

Commonly, knowledge extractors work by repeatedly rewinding the sender
to the step after having sent commitments and completing the executions with
independent random challenges to produce the committed message. However,
the rewinding strategy makes extractors of many known commitment schemes
run in expected polynomial-time instead of strictly polynomial-time ([5][9]). The
relaxed requirement (that allows for expected polynomial-time extraction) is
less than satisfactory for philosophical, extraction and technical considerations
(For details, see [2]). Furthermore [2] points out that expected polynomial-time
extractors allow for the attack that trade-offs between running time and success
probability, while strictly polynomial-time extractors rule out any such attack.
The extractors that need not rewinding sender are called online (Such extractors
are also called straight-line in some literatures). In this paper we will present a
non-interactive non-malleable commitment scheme with an online extractor that
runs in strictly polynomial-time in the random oracle and the public parameter
model.

1.1 Previous Works

The notion of non-malleability was first formalized and implemented by Dolev,
Dwork and Naor in [5]. Their main result is the first implementation of non-
malleable commitment based on any one-way function. The drawbacks of their
solution are that it requires at least logarithmic number of rounds in interaction
between sender and receiver and it uses costly zero-knowledge proofs and the
extractor runs in expected polynomial-time.

There are also several round-efficient non-malleable protocols known in the
shared random string model. Sahai [14] constructed a single-round, i.e., non-
interactive, non-malleable zero-knowledge proof system in this model. This
scheme was improved by De Santis, Di Crescenzo, Ostrovski, Persiano and Sa-
hai [6]. Di Crescenzo, Ishai and Ostrovsky [7] constructed in the shared random
string model a non-interactive commitment scheme that is non-malleable in a
weaker sense than [5] (non-malleable with respect to opening). Di Crescenzo,
Katz, Ostrovski, and Smith [8] constructed in the shared random string model
a non-interactive commitment satisfying the stronger notion of non-malleability
(non-malleable with respect to commitment) defined in [5]. Canetti and Fischlin
[4] constructed in the shared random string model a non-interactive univer-
sally composable commitment scheme which is a stronger notion than non-
malleability. Interestingly, it is impossible to construct universally composable
commitments in the plain model [4]. Barak [1] proposed the first const-round
non-malleable scheme without any shared random strings through his non-black-
box techniques. Barak and Lindell [2] pointed out that expected polynomial-time
extractors allow for the attack that trade-offs between running time and success
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probability, while strictly polynomial-time extractors rule out any such attack.
[2] shows that there exist constant-round zero-knowledge arguments of knowl-
edge with strictly polynomial-time extractors.

Based on algebraic assumptions, one can build a non-malleable commitment
scheme using non-interactive zero-knowledge proofs of knowledge of De Santis
and Persiano [15]. That is, [15] implements non-interactive zero-knowledge proofs
of knowledge assuming the existence of so-called ”dense” cryptosystems. But the
scheme uses inefficient zero-knowledge subprotocols.

Fischlin [11] proposed a discrete-log based non-malleable commitment scheme,
which is the improvement of Pederson’s non-interactive (but malleable) commit-
ment scheme [13] and Okamoto’s identification scheme [12]. Its commitment
phase needs three-round interaction and the knowledge extractor is expected
polynomial-time. With a stronger assumption, that of the existence of crypto-
graphic hash functions which behave like random oracles, Bellare and Rogaway
[3] showed how to implement non-malleable commitments in an efficient way.
However, [3] does not supply an efficient knowledge extractor to verify proofs of
knowledge.

In summary, in previous works either these schemes are too theoretical to
put into practice, or knowledge extractors need rewinding and are not strictly
polynomial-time. Recently, Fischlin [10] showed a construction converting
Fiat-Shamir proofs of knowledge with logarithmic challenge length into non-
interactive zero-knowledge proofs of knowledge with online extractors for rela-
tions in the random oracle model. The important figure of the online extractors
is that the extractors do not rewind senders and run in strictly polynomial-time.
Therefore they are efficient, which is the motivation of our work to be described
in the following.

1.2 Our Results

We propose a discrete-logarithm based non-interactive non-malleable commit-
ment scheme with an online knowledge extractor in the random oracle and
the public parameter model. Our scheme is statistically-secret computationally-
binding. Our results are obtained in three steps. The starting point of our work
is Okamoto’s discrete-log based identification scheme in [12], which challenge
length is not logarithmic in the security parameter. Hence firstly, we reduce the
challenge length in Okamoto’s scheme in [12] to the logarithm and thus show
that it is a Fiat-Shamir proof of knowledge for some relation with logarith-
mic challenge length. Secondly, we employ Fischlin’s work in [10] to convert it
into a non-interactive zero-knowledge proof of knowledge with an online knowl-
edge extractor for the relation, which makes the knowledge extraction procedure
more efficient. Thirdly, we propose our commitment scheme based on the non-
interactive zero-knowledge proof of knowledge. Compared with previous works,
our scheme is practical and the online knowledge extractor is strictly polynomial-
time.
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1.3 Organization

The rest of this paper is organized as follows. Section 2 contains notions and
definitions of non-interactive non-malleable commitment schemes as well as Fiat-
Shamir proofs of knowledge and non-interactive zero-knowledge proofs of knowl-
edge with online extractor for relations. Section 3 presents the details of our
results.

2 Preliminaries

2.1 Basic Notions

Unless stated otherwise all parties and algorithms are probabilistic polynomial-
time. Throughout this paper, we use the notion of uniform algorithms.

Definition 1. (Negligible and Noticeable Functions) A function ε(n) is said to
be negligible if ε(n) < 1

p(n) for every polynomial p(n) and sufficiently large n;
Denote by neg(n) some negligible function; A function which is not negligible is
called noticeable.

Definition 2. (Computational Indistinguishability) Two ensemblesX={Xn}n∈N

and Y = {Yn}n∈N are called computational indistinguishable if for all polynomial-
time algorithm A, |Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| is negligible.

Definition 3. (Statistical Differences) Given two random variables Xn and Yn,
statistical differences of Xn and Yn is defined as
Δ(n) = 1

2

∑
α
|Pr(Xn = α)− Pr(Yn = α)|.

Definition 4. (Statistical Indistinguishability) Two ensembles X = {Xn}n∈N

and Y = {Yn}n∈N are called statistically indistinguishable if their statistical
difference is negligible.

We introduce the discrete-logarithm assumption in the following, which states
that computing logarithm in groups like Z

∗
p or elliptic curves is intractable. We

simplify and consider the discrete-log problem with respect to prime order sub-
groups of Z

∗
p only. Also the assumption can be transferred to other prime order

groups like elliptic curves. Suppose there is an efficient algorithm IndexGen(1k)
generating a random prime p, an k-bit prime q with q|p− 1, and a generator g
of a subgroup Gq of order q. Then:

Definition 5. (Discrete Logarithm Assumption) For any probabilistic polyno-
mial time algorithm A, the inversion probability Pr[A(1k, p, q, g, gx mod p) = x]
is negligible in k, where the probability is taken over the choice of (p, q, g) ←
IndexGen(1k), x ∈R Zq and A’s internal random coins.
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2.2 Non-interactive Non-malleable Commitment Schemes

Denote by k the security parameter. Assume that the messages of the sender and
the adversary are taken from a space D. Abusing notations, we view D also as
an efficiently computable distribution, and write x ∈R D for a randomly drawn
message according to D.

Definition 6. (Non-Interactive Statistically-Secret Commitment Scheme) A
tuple (S,R, T ) of probabilistic polynomial-time algorithms S (Sender), R (Re-
ceiver), T (Trusted party) is called a non-interactive statistically-secret compu-
tationally -binding commitment scheme (in the public parameter model) if:

1.(Completeness) For all k ∈ N and message mk ∈ Dk, let comk ← S(mk, σ)
denote the commitment for mk where σ ← T (1k) is public parameters,
Pr[R(comk, σ) = accept] ≥ 1− neg(k) (in commitment phase) and
Pr[R(mk, comk,σ) = accept] = 1 (in decommitment phase).

2.(Statistically-Secret) For any sequences (mk)k∈N and (m′
k)k∈N of messages

mk,m
′
k ∈ Mk, the corresponding commitments (comk)k and (com′

k)k are
statistically indistinguishable; If they are identically distributed we say that
the scheme provides perfectly-secret.

3.(Computationally-Binding) For any probabilistic polynomial-time S∗, the prob-
ability that comk ← S∗(σ) R(comk, σ) = accept (in commitment phase),
(mk,m

′
k) ← S∗(comk,σ) R(mk, comk,σ) = R(m′

k, comk,σ) = accept (in
decommitment phase), is negligible (over the internal random coins of all
parties).

We follow [9] to briefly show non-malleability. Denote by R any interesting rela-
tion approximator. The definition on non-malleable commitment comes up with
the well known idea of defining secure encryption, namely, we will demand that
for any adversary A transforming the sender’s commitment successfully, there
should be an adversary simulator A′ that finds a commitment to a related mes-
sage at almost the same probability as A but without the sender’s help.

Let PubPar be the public parameters that are generated by a trusted party
according to a publicly known efficiently samplable distribution, Hist be a-priori
information that the adversary has about m. On input PubPar the adversary
A then picks the adversarial parameters AdvPar for D and R. The sender S
is initialized with m ∈R D(AdvPar). Now A, given Hist(m), mounts a Man-In-
The-Middle (MIM) attack with S(m) and R. In cases of interactive commitment
schemes, the adversary might gain advantage from interaction. In non-interactive
cases, all the adversary can do is to modify a given commitment. Denote by
pcom(A, D,R) the probability that, at the end of the commitment phase, the
protocol execution between A and R constitutes a valid commitment for some
message m∗ satisfying R(AdvPar,Hist(m),m,m∗). Let popen(A, D,R) denote
the probability that A is able to successfully open the commitment after S has
decommitted.

In a second experiment, a simulator A′ tries to commit to a related mes-
sage without the help of the sender. That is, A′ gets as input random public
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parameters PubPar, generates adversarial parameters AdvPub’ and then, given
Hist(m) for some (m,Hist(m)) ∈R D(AdvPar′), it commits to R without inter-
action with S(m). Let pcom(A′, D,R) denote the probability that this is a valid
commitment to some related message m′ under PubPar with respect to relation
R(AdvPar′,Hist(m), ·, ·). Let popen(A′, D,R) denote the probability that A′ sim-
ply outputs a correct decommitment (without reference to public parameters,
commitment and decommitment). So far we can bring forward the notion of
non-malleability concluded in [9].

Definition 7. (Non-Malleability) A non-interactive statistically-secret compu-
tationally -binding commitment scheme is called:

a) non-malleable with respect to commitment if for every adversary A there exists
a simulator A′ such that for all samplable messages space D, all interesting
relations R |pcom(A, D,R)− p′open(A′, D,R)| is negligible.

b) non-malleable with respect to opening if for every adversary A there exists
a simulator A′ such that for all samplable messages space D, all interesting
relations R |popen(A, D,R)− p′open(A′, D,R)| is negligible.

c) non-malleable with respect to DDN if for every adversary A there exists a
simulator A′ such that for all samplable messages space D, all interesting
relations R |pcom(A, D,R)− p′com(A′, D,R)| is negligible.

As [9] shows, non-malleability with respect to commitment implies non-
malleability respect to opening and with respect to DDN.

2.3 Two Alternative Models for Zero-Knowledge Proofs of
Knowledge

Definition 8. ([10]) A Fiat-Shamir proof of knowledge (with l(k)-bit chal-
lenges) for relation W is a pair (P, V ) of probabilistic polynomial-time algorithms
P = (P0, P1), V = (V0, V1) with the following properties.

1.(Completeness) For any parameter k, any (x,w) ∈Wk, any (com, ch, resp) ←
(P (x,w), V0(x)), it holds V1(x, com, ch, resp) = 1.

2.(Commitment Entropy) For parameter k, for any (x,w) ∈Wk, the min-entropy
of com P0(x,w) is superlogarithmic in k.

3.(Public Coin) For any k, any (x,w) ∈ Wk any com ← P0(x,w) the challenge
ch ← V0(x, com) is uniform on {0, 1}l(k).

4.(Unique Responses) For any probabilistic polynomial-time algorithm A, for
parameter k and (x, com, ch, resp, resp′) ← A(1k) we have, as a func-

tion of k, Pr[V1(x, com, ch, resp) =V1(x, com, ch, resp′) = 1 ∧ resp �= resp′] is
negligible.
5.(Special Soundness) There exists a probabilistic polynomial-time algorithm K,

the extractor, such that for any k, any (x,w) ∈ Wk, any pair (com, ch, resp),
(com, ch′, resp′) with V1(x, com, ch, resp) = V1(x, com, ch′, resp′) = 1 and
ch �= ch′, for w′ ← K(x, com, ch, resp, ch′, resp′) it holds (x,w′) ∈ Wk.
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6.(Honest-Verifier Zero-Knowledge) There exists a probabilistic polynomial-time
algorithm Z, the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial-time algorithms D = (D0, D1) the following distributions
are computationally indistinguishable:
- Let (x,w, δ) ← D0(1k), and (com, ch, resp) ← (P (x,w), V0(x)) if (x,w) ∈
Wk, and (com, ch, resp) ← ⊥ otherwise. Output D1(com, ch, resp, δ).
- Let (x,w, δ) ← D0(1k), and (com, ch, resp) ← Z(x,Yes) if (x,w) ∈ Wk,
and (com, ch, resp) ← Z(x,No) otherwise. Output D1(com, ch, resp, δ).

We obtain the stronger properties of honest-verifier perfect/statistical zero-
knowledge if above two distributions are identical/statistically indistinguishable.

Definition 9. ([10]) A pair (P, V ) of probabilistic polynomial-time algorithms
is called a non-interactive zero-knowledge proof of knowledge for relation W with
an online extractor (in the random oracle model) if the following holds.

1.(Completeness) For any oracle H, any (x,w, δ) ← DH(1k) and any π ←
PH(x,w) we have Pr[V H(x, π) = 1] ≥ 1− neg(k).

2.(Zero-Knowledge) There exist a pair of probabilistic polynomial-time algo-
rithms Z = (Z0, Z1), the zero-knowledge simulator, such that for any pair
of probabilistic polynomial-time algorithms D = (D0, D1), the following dis-
tributions are computationally indistinguishable:
- Let H be a random oracle, (x,w, δ) ← DH

0 (1k), and π ← PH(x,w) if
(x,w) ∈Wk, and π ← ⊥ otherwise. Output DH

1 (π, δ).
- Let (H0, σ) ← Z0(1k), (x,w, δ) ← DH0

0 (1k), and (H1, π) ← Z1(σ, x,Yes) if
(x,w) ∈Wk, and (H1, π) ← Z1(σ, x,No) otherwise. Output DH1

1 (π, δ).
We obtain the stronger properties of perfect/statistical zero-knowledge if above
two distributions are identical/statistically indistinguishable.

3.(Online Extractor) There exists a probabilistic polynomial-time algorithm K,
the online extractor, such that the following holds for any algorithm A. Let
H be a random oracle, (x, π) ← AH(1k) and QH(A) be the sequence of queries
of A to H and H ′s answers. Let w ← K(x, π,QH(A)). Then, as a function
of k, Pr[(x,w) /∈Wk ∧ V H(x, π) = 1] is negligible.

[10] proposes a construction that converts Fiat-Shamir proofs of knowledge with
logarithmic challenge length to non-interactive zero-knowledge proofs of knowl-
edge with online knowledge extractors for relations, which does not need any
rewinding and produces much shorter proofs than the tree-based solutions while
having comparable extraction error and running time characteristics. The con-
struction is showed as follows.

Construction 1: Let (PFS, VFS) denote an interactive Fiat-Shamir proof of
knowledge with challenges of l = l(k) = O(log k) bits for relation W . Define the
parameters b, u, Sum, n (as functions of k) for the number of test bits, repetitions,
maximum sum and trial bits such that bu = ω(log k), 2n−b = ω(log k), b, u, n =
O(log k), Sum = O(u) and b ≤ n ≤ l. Define the following non-interactive proof
system (P, V ) for relation W in the random oracle model, where the random
oracle H maps to b bits.
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Prover: The prover PH on input (x,w) first runs the prover PFS(x,w) in
u independent repetitions to obtain u commitments com1, · · · , comu. Let
−−→com = (com1, · · · , comu). Then PH does the following, either sequentially
or in parallel for each repetition i. For each chi = 0, 1, 2, · · · , 2t− 1 (viewed
as t-bit strings) it lets PFS compute the final responses respi = respi(chi)
by rewinding, until it finds the first one such that H(x,−−→com, i, chi, repsi) =
0b; if no such tuple is found then PH picks the first one for which the
hash value is minimal among all 2n hash values. The prover finally outputs
π = (comi, chi, respi)i=1,2,···,u.

Verifier: The verifier V H on input x and π = (comi, chi, respi)i=1,2,···,u accepts
if and only if V1,FS(x, comi, chi, respi) = 1 for each V1,FS(x, comi, chi, respi)
= 1 and if

∑u
i=1H(x,−−→com, i, chi, respi) ≤ Sum.

Theorem 1. ([10]) Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowl-
edge for relation W . Then (P, V ) in Construction 1 is a non-interactive zero-
knowledge proof of knowledge for relation W (in the random oracle model) with
an online extractor.

3 Our Results

Our results are presented by following three steps. The starting point of our
work is Okamoto’s discrete-log based identification scheme in [12], which chal-
lenge length is not logarithmic. In Section 3.1 we reduce the challenge length in
his scheme to the logarithm of the security parameter. Then we prove that this
variation of Okamoto’s scheme is a Fiat-Shamir proof of knowledge for some re-
lation with logarithmic challenge length. In Section 3.2 we employ the technique
in [10] to convert this variation into a non-interactive zero-knowledge proof of
knowledge for the relation with an online extractor, based on which we propose
our commitment scheme in Section 3.3.

3.1 The Discrete-Log Based Fiat-Shamir Proof of Knowledge for
Relation W with Logarithmic Challenge Length

Let Gq be a cyclic group of prime order q and g0, h0 are two random generators
of Gq. Assume that computing the discrete logarithm logg0

h0 is intractable. Let
k denote the security parameter which represents the length of description of Gq

and Zq. Then k = O(log q). Let p be a small number such that p = O(log q).
Define relation W = {(gm

0 h
r
0, (m, r)) : m ∈ Z

∗
q , r ∈ Zq}. Okamoto’s well known

discrete-log based identification scheme in [12] is a proof of knowledge for rela-
tion W in which verifier randomly chooses a challenge from Zq. This means the
bit length of challenges viewed as strings is O(k) in Okamoto’s scheme. Hence
in order to apply Construction 1 in Section 3.2 we let verifier randomly choose
a challenge from Zp, i.e., reduce the challenge length to O(log k) bits. Denote
by (PFS, VFS) the variation of Okamoto’s. We describe the details of (PFS, VFS)
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in Protocol 3.1 and prove that it is a Fiat-Shamir proof of knowledge with log-
arithmic challenge length later.

Protocol 3.1 (PFS, VFS) = (P0, P1, V0, V1): The Fiat-Shamir proof of knowledge
for W with logarithmic challenge length.

Common input: Gq, p, q, g0, h0, M ∈ Gq.
The private input to the prover: The witness (m, r) satisfying M = gm

0 h
r
0.

P0: The prover first randomly chooses s, t ∈ Zq. Compute S = gs
0h

t
0 and send S

to the verifier.
V0: The verifier randomly chooses a challenge c ∈ Zp. Send c to the prover.
P1: After receiving c, the prover computes y = s+ cm mod q, z = t+ cr mod q.

Then send y and z to the receiver.
V1: Upon receiving the response y and z, the verifier determines whether accepts

or not. The verifier accepts iff SM c = gy
0h

z
0. Otherwise reject it.

From Protocol 3.1 we can see that it is from Zp, instead of Zq in Okamoto’s
[12], that the verifier chooses a random challenge in step V0. Since p = O(k),
then Zp can be described using O(log k) bits. This implies that the bit length of
challenges, viewed as strings, is O(log k). Furthermore, we have Theorem 2.

Theorem 2. (PFS, VFS) in Protocol 3.1 is a Fiat-Shamir proof of knowledge for
relation W with O(log k)-bit challenges. Specially, (PFS, VFS) is honest-verifier
perfect zero-knowledge.

Proof. We have shown that the challenge length is O(log k) bits. Then in the
following we show that completeness, commitment entropy, public coin, unique
responses, special soundness and honest-verifier perfect zero-knowledge, accord-
ing to Definition 8, are satisfied.

Completeness. Completeness is obviously satisfied. Whenever (M, (m, r)) ∈Wk,
for any s, t and challenge c the prover can easily compute y = s + mc mod q
and z = s+ rc mod q if he knows (m, r). Consequently, SM c = gs

0h
t
0 · gmc

0 hrc
0 =

gs+mc
0 ht+rc

0 = gy
0h

z
0.

Minimal Entropy. Since both s and t are randomly chose from Zq, S is uniform
distributed in Gq. Since q = O(2k), then the entropy of uniform distribution on
Gq is O(k) which is superlogarithmic in k.

Public Coin. Since c is uniform chose from Zp, then public coin property is sat-
isfied.

Unique Response. Suppose there exists a probabilistic polynomial-time algorithm
A and (M,S, c, y, z, y′, z′) = A(1k) such that Pr[V1(M,S, c, y, z)) = V1(M,S, c,
y′, z′)) = 1∧ (y, z) �= (y′, z′)] is noticeable. Then we can construct a reduction B
to solve the discrete-log problem. The input to B are g0, h0 and the task of B
is to compute logg0

h0. B invokes oracle A and A responses (M,S, c, y, z, y′, z′)
with noticeable probability such that Pr(V1(M,S, c, y, z)) = V1(M,S, c, y′, z′)) =
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1 ∧ (y, z) �= (y′, z′)] holds. That is to say, (y, z) �= (y′, z′) and SM c = gy
0h

z
0,

SM c = gy′

0 h
z′

0 . Then gy
0h

z
0 = gy′

0 h
z′

0 . Denote logg0
h0 by x. Then B gains

gy′+xz′

0 = gy+xz
0 . This implies that y′ + xz′ = y + xz(modq). Therefore B is

able to compute x = (y − y′)(z′ − z)−1 mod q with the same noticeable proba-
bility, which contradicts the discrete-log assumption.

Special Soundness. We construct a probabilistic polynomial-time algorithmK to
extract knowledge. For any k and (M, (m, r)) ∈ Wk, suppose there exist a pair
(M, c, y, z) and (M, c′, y′, z′) such that V1(M,S, c, y, z)) = V1(M,S, c′, y′, z′) = 1.
Let K obtain the input (M,S, c, y, z, c′, y′, z′). Since c �= c′, then (y, z) �= (y′, z′).
Since y = s+ cm mod q and y′ = s+ c′m mod q, then y−y′ = (c− c′)m(mod q).
Hereafter, K is able to compute m = (y− y′)(c− c′)−1 mod q as well as r in the
same way.

Honest-Verifier Perfect Zero-Knowledge. We provide a zero-knowledge simulator
Sim for the case of (M, (m, r)) ∈ Wk. The case of (M, (m, r)) /∈ Wk is trivial.
Moreover, for every (M, (m, r)) ∈ Wk an equivalent way to prove (perfect/
statistical) zero-knowledge is to show that (S, c, y, z), in a real implementation of
Protocol 3.1, and (S′, c′, y′, z′), generated by Sim onM , are (identical/statistically
indistinguishable) computationally indistinguishable. In the tuple (S, c, y, z) of a
real implementation of Protocol 3.1, we have that S is uniform distributed on Gq,
y, z are uniform distributed on Zq and c is uniform distributed on Zp. In order
to generate (S′, c′, y′, z′) with input M such that (S, c, y, z) and (S′, c′, y′, z′) are
identical distributions, Sim works as follows: First randomly generates y′, z′ ∈ Zq

and c′ ∈ Zp. Then Sim computes S′ = (gy′

0 h
z′

0 )
/
M c′ and outputs (S′, c′, y′, z′).

Then it is easy to verify that (S, c, y, z) and (S′, c′, y′, z′) are identical distribu-
tions and that (S′, c′, y′, z′) makes the verifier to acceptM . Hence honest-verifier
perfect zero-knowledge is satisfied. $%

3.2 The Non-interactive Zero-Knowledge Proof of Knowledge with
an Online Knowledge Extractor for Relation W

In this subsection we bring forward the non-interactive zero-knowledge proof of
knowledge with an online extractor for relationW based on (PFS, VFS) described
in Protocol 3.1 according to Construction 1.

Assume that k,Gq, p, q, g0, h0,m, r,W have the same meaning as Section 3.1
shows. Set parameters b, u, Sum = O(log p) such that bu = ω(log p), p

/
2b =

ω(log p) and b ≤ log p. Let H be the random oracle that maps to b bits. Then
we propose (P, V ) in Protocol 3.2 according to Construction 1.

Protocol 3.2 (P, V ): The non-interactive zero-knowledge proof of knowledge
for W with an online extractor in the random oracle model.

(PFS, VFS) = (P0, P1, V0, V1) as Protocol 3.1 shows.
Common input: Gq, p, q, g0, h0, b, u, Sum, M ∈ Gq.
Private input to the prover: (m, r).



A Discrete-Logarithm 163

Prover: The prover P runs P0 in Protocol 3.1 in u independent repetitions
to obtain S1, · · · , Su. Let S = (S1, · · · , Su). PH does the following: For
each i = 1, 2, · · · , u and each ci = 0, 1, · · · , p − 1, it let P1 compute the
final response yi and zi by rewinding, until it finds the first one such that
H(M,S, i, ci, yi, zi) = 0b; if no such tuple is found then PH picks the
first one for which the hash value is minimal among all p hash values. The
prover finally sends π = (Si, ci, yi, zi)i=1,2,···,u to the verifier.

Verifier: The verifier V H on input M and π = (Si, ci, yi, zi)i=1,2,···,u accepts
if and only if V1(M,Si, ci, yi, zi) = 1 for each i = 1, 2, · · · , u and if∑u

i=1H(M,S, i, ci, yi, zi) ≤ Sum.

Theorem 3. (1) (P, V ) in Protocol 3.2 is a non-interactive zero-knowledge
proof of knowledge for W with an online knowledge extractor in the random
oracle model. (2) In particular, (P, V ) is statistical zero-knowledge.

Since (PFS, VFS) is a Fiat-Shamir proof of knowledge for W with O(log k)-bit
challenges and Protocol 3.2 is built according to Construction 1, as a result of
Theorem 1, (1) of Theorem 3 comes into existence immediately.

From Theorem 2, (PFS, VFS) is honest-verifier perfect zero-knowledge. Accord-
ing to [10], we have that if the Fiat-Shamir proof of knowledge is honest-verifier
perfect zero-knowledge, then the converted non-interactive zero-knowledge proof
of knowledge is statistical zero-knowledge. As a direct result, (P, V ) is statistical
zero-knowledge.

Theorem 3 shows that the knowledge extractor of (P, V ) is strictly polynomial-
time and does not need any rewinding. That is, for any adversary A and its out-
put (M,π), if (M,π) is valid, the knowledge extractor is able to find (m, r) when
input (M,π,QH(A)) with the probability negligible close to the probability that
(M,π) is valid even without rewinding A, where QH(A) denotes the sequence of
queries of A to H and H ′s answers. Hence the knowledge extraction procedure
is efficient.

3.3 The Non-interactive Non-malleable Commitment Scheme with
an Online Knowledge Extractor

In this subsection we propose the non-interactive non-malleable commitment
scheme with an online knowledge extractor (S,R, T ) based on (P, V ) in Proto-
col 3.2, where T denotes the trusted party that generate public parameters for
sender and receiver. Assume that k,Gq, p, q, g0, h0,m, r,W, b, u, Sum,H have the
same meaning as Section 3.2 shows. Then our commitment scheme is described
as Protocol 3.3 shows.

Protocol 3.3 (S,R, T ): Our commitment scheme in the random oracle model.
(P, V ), H as Protocol 3.2 shows.
σ = (Gq, p, q, g0, h0,m, r, b, u, Sum) generated by T (1k).
Input to receiver R: σ.
Input to sender S: σ and m ∈ Zq.
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Commitment phase
Sender: S randomly chooses r ∈ Zq and computes M = gm

0 h
r
0. Run PH

to compute π = (Si, ci, yi, zi)i=1,2,···,u and send (M,π) to receiver as the
commitment.

Receiver: Upon receiving (M,π), R runs V H to determine whether V H(M)
accepts π or not. If V H accepts, R accepts the commitment. Otherwise
R rejects (M,π) as the commitment.

Decommitment phase
Sender: S sends m and r to R.
Receiver: Upon receiving m and r, R determines whether m and r is valid

opening or not. R accepts iff M = gm
0 h

r
0. Otherwise R rejects m and r.

Theorem 4. (S,R, T ) in Protocol 3.3 is a non-interactive non-malleable (with
respect to commitment) statistically-secret and computationally-binding commit-
ment scheme with an online knowledge extractor (in the random oracle model).

Proof. We show that completeness, statistically-secret, computationally-binding
and non-malleability, according to Definition 6, 7, are satisfied.

Completeness. Whenever S randomly chooses r and runs PH to generate the
commitment (M,π) for message m, then according to completeness of (P, V ),
we have Pr[V H(M,π, σ) = 1] ≥ 1 − neg(k). Hence in the commitment phase
Pr[R(M,π, σ) = accept] ≥ 1−neg(k). In decommitment phase since M = gm

0 h
r
0,

Pr[R(m, r,M, π, σ) = accept] = 1 consequently.

Statistically-Secret. Denote by ((M,π))k and ((M ′, π′))k two sequence commit-
ments for any two different sequences (m)k and (m′)k. Since (r)k and (r′)k are
identical random ensembles, then (M)k and (M ′)k are identical random ensem-
bles. According to Theorem 3, (P, V ) is statistical zero-knowledge for relationW .
Then for any same sequence in (M)k and (M ′)k, (π)k and (π′)k are statistically
indistinguishable, which is a corollary of the fact that both (π)k and (π′)k are
statistically indistinguishable from the output of the zero-knowledge simulator.
Therefore (π)k and (π′)k are statistically indistinguishable for random ensembles
(M)k and (M ′)k. Thus ((M,π))k and ((M ′, π′))k are statistically indistinguish-
able.

Computationally-Binding. Suppose that these exists a probabilistic polynomial-
time S∗ that can reveal different values (m, r) and (m′, r′) in opening for the same
valid commitment (M,π) with noticeable probability such thatR(m, r,M, π, σ)=
R(m′, r′,M, π, σ) = accept. Then S∗ is able to solve the discrete-log problem
with the same noticeable probability, which contradicts the discrete-log assump-
tion. In fact, since R accepts both (m, r) and (m′, r′) as correct opening, then
gm
0 h

r
0 = gm′

0 hr′

0 . Denote logg0
h0 by x. Then S∗ gains gm′+xr′

0 = gm+xr
0 . This

implies that m′+xr′ = m+xr( mod q). Therefore x = (m−m′)(r′−r)−1 mod q.

Non-Malleability. We show that (S,R, T ) has a knowledge extractor in the first.
That is to say, we show that there exists a knowledge extractor K which can find
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the committed message. K works as following shows. For any message m, any
adversaryA randomly chooses r ∈ Zq and computesM .A sends his commitment
(M,π) to K. Then K calls the knowledge extractor K ′ of the proof of knowledge
(P, V ) to findm and r in the random oracle model. Finally,K outputsm. Denote
by pcom(A) the probability that A succeeds in outputting a commitment after
seeing some commitment (M,π), by p(K ′) the probability that K ′ finds m and
r. Then according to the online extractor property of Definition 9, we have
|p(A)− p(K ′)| is negligible. Let p(K) denote the probability that K succeeds in
finding m. Then p(K) = p(K ′). Hence |p(A)− p(K)| is also negligible.

Furthermore, since the online knowledge extractor K ′ of (P, V ) is strictly
polynomial-time and therefore is more efficient than those expected polynomial-
time extractors which need to rewind adversaries in order to find secrets. As an
inherited character, K is also an online extractor which is strictly polynomial-
time and thus more efficient.

[5] provides a general construction of a non-malleability simulator A′ from
knowledge extraction procedure. We briefly review the construction of A′ for
our case. Let D denote any sampleable distribution on Zq and R denote any
relation approximator. A′ prepares the public parameters as required for the
extraction procedure, invokes the adversary A to obtain AdvPar and sets Ad-
vPar’=AdvPar. Then the honest sender S is given a secret message m ∈R

D(AdvPar′) and A′ receives Hist(m) which is forward to A for the black-box
simulation.

For the extraction procedure, A′ randomly chooses m0 ∈ D(AdvPar′) and
computes (M,π) as a commitment form0. Since the commitment is statistically-
secret it holds that even if m0 does not match the a-priori information Hist(m)
A can not be aware of this. Then A′ sends (M,π) to A. If A can output a related
commitment (M ′, π′) to A′, then A′ calls the knowledge extractor K to find the
committed value (K ′ outputs the correct decommitment.). Since |p(A, D,R) −
p(K)| is negligible, we have that |pcom(A, D,R) − popen(A′, D,R)| is negligible.
According to [9], this implies that both |popen(A, D,R) − popen(A′, D,R)| and
|pcom(A′, D,R)− popen(A′, D,R)| are negligible. So our scheme is non-malleable
with respect to commitment, opening and DDN simultaneously. $%
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Abstract. A multi-secret sharing scheme allows several secrets to be shared
amongst a group of participants. In 2005, Shao and Cao developed a verifiable
multi-secret sharing scheme where each participant’s share can be used several
times which reduces the number of interactions between the dealer and the group
members. In addition some secrets may require a higher security level than oth-
ers involving the need for different threshold values. Recently Chan and Chang
designed such a scheme but their construction only allows a single secret to be
shared per threshold value.

In this article we combine the previous two approaches to design a multiple
time verifiable multi-secret sharing scheme where several secrets can be shared
for each threshold value. Since the running time is an important factor for prac-
tical applications, we will provide a complexity comparison of our combined
approach with respect to the previous schemes.

Keywords: Secret Sharing Scheme, Threshold Access Structures, Share Verifia-
bility, Chinese Remainder Theorem, Keyed One-Way Functions.

1 Introduction

In 1979, Blakley and Shamir independently invented (t, n)-threshold secret sharing
schemes in order to facilitate the distributed storage of secret data in an unreliable envi-
ronment [1, 18]. Such a scheme enables an authority called dealer to distribute a secret
s as shares amongst n participants in such a way that any group of minimum size t can
recover s while no groups having at most t−1 members can get any information about s.

Sometimes, however, several secrets have to be shared simultaneously. A basic idea
consists of using a (t, n)-threshold scheme as many times as the number of secrets.
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This approach, however, is memory consuming. As noticed by Chien et al. [4], multi-
secret sharing schemes can be used to overcome this drawback. In such a construction,
multiple secrets are protected using the same amount of data usually needed to protect
a single secret. Multi-secret sharing schemes can be classified into two families: one-
time schemes and multiple time schemes [12]. One-time schemes imply the dealer must
redistribute new shares to every participant once some particular secrets have been re-
constructed. Such a redistribution process can be very costly both in time and resources,
in particular, when the group size n gets large as it may be the case in group-oriented
cryptography [6].

Several constructions of multiple time schemes have been achieved [4, 25]. Never-
theless they have the drawback that a dishonest dealer who distributes incorrect shares
or a malicious participant who submits an invalid share to the combiner prevents the se-
crets from being reconstructed. The idea of robust computational secret sharing schemes
was introduced by Krawczyk [14] to deal with this problem. Several such protocols
were developed. Harn designed a verifiable multi-secret sharing scheme [10] which
was extended by Lin and Wu [15]. In [3], Chang et al. recently improved that construc-
tion even further by providing resistance against cheating by malicious participants and
reducing the computational complexity with respect to [10, 15]. The security of that
scheme relies on the intractability of both factorization and discrete logarithm problem
modulo a composite number. In [25], another multi-secret sharing scheme was devel-
oped by Yang et al. As [4], its security is based on the existence of keyed one-way func-
tions introduced by Gong in [9]. Shao and Cao recently extended Yang et al.’s scheme
by providing the verification property and reducing the number of public values[19].

It may occur that the same group of n participants share several secrets related to dif-
ferent threshold values according to their importance. As an example, consider that an
army commander requests a strike to be executed and transmits the order to a group of
10 generals. One can imagine that any pair of officers can reconstruct the coordinates
of the target and then initialize the process by mobilizing the appropriate equipment
(plane, submarine, missile) but only subsets of 8 out of 10 generals can get access to the
bomb activation code and launch the strike. Recently Chan and Chang designed such
a construction [2] but it only allows a single secret to be shared per threshold value.

In this article, we propose a generalization of [2, 19] by introducing a Verifiable
Multi-Threshold Multi-secret Sharing Scheme (VMTMSS) where several secrets can
be shared per threshold value. The security of our multiple time scheme is guaranteed
as soon as keyed one-way functions and collision resistant one-way functions exist. In
the previous situation, our VMTMSS would enable any pair of generals to have access
to target location, launch time, type of weapon to be used while any subset of 8 out of
10 officers can recover the bomb code as well as the commander’s digital signature [20]
as the approval for the strike. This example also emphasizes the need for computational
efficiency. Therefore we will also provide an analysis of the computational cost of our
construction.

This paper is organized as follows. In the next section we will recall the polynomial
interpolation problem as well as Garner’s algorithm since they will have an important
role in our construction. In Sect. 3, we will describe our multi-secret sharing scheme
and prove its soundness. In Sect. 4, we will analyze the computational complexity of
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our approach and compare it to the cost of the two constructions from [2, 19]. The last
section will summarize the benefits of our construction.

2 Preliminaries

In this part we recall two problems which will play an important role in proving the
soundness and efficiency of the scheme we describe in Sect. 3.

2.1 Interpolating Points

Assume that we are given λ points (x1, y1), . . . , (xλ, yλ) such that the xi’s are distinct
in a field K. The Lagrange interpolating polynomial Lλ(X) is the only polynomial of
degree at most λ − 1 passing through the previous λ points. Algorithm 4.6.1 from [8]

computes the λ coefficients of Lλ(X) using 5 (λ−1)2

2 field operations in K.
We now consider that we work over the finite field Z/pZ for some prime number

p. In this field an addition/subtraction requires O(log2 p) bit operations and a multi-
plication needs O(log2

2 p) bit operations. Using Algorithm 14.61 and Note 14.64 from
[16], an inversion can be performed in O(log2

2 p) bit operations as well. Therefore the
λ coefficients of Lλ(X) can be obtained using O(λ2 log2

2 p) bit operations.

2.2 Solving the Chinese Remainder Problem

We first recall the Chinese Remainder Theorem (CRT):

Theorem 1. Let m1, . . . , mλ be λ coprime integers and denote M their product. For
any λ-tuple of integers (v1, . . . , vλ), there exists a unique x in Z/MZ such that:

⎧⎪⎨
⎪⎩

x ≡ v1 mod m1

...
...

x ≡ vλ mod mλ

Solving the Chinese remainder problem is reconstructing the unique x in Z/MZ once
v1, . . . , vλ and m1, . . . , mλ are given. This can be achieved thanks to Garner’s algo-
rithm [16]. Based on Note 14.74, its running time is O(λ log2

2 M) bit operations.

3 Our Multi-secret Sharing Scheme

We assume that we have n participants P1, . . . , Pn and � distinct threshold values
t1, . . . , t�. Consider we have � distinct prime numbers p1, . . . , p�. For each i in
{1, . . . , �} we denote Si 1, . . . , Si ki the ki secrets of the (ti, n)-threshold scheme. With-
out loss of generality we can assume that those ki secrets belong to Z/piZ. We first
introduce the following definition:

Definition 1. A function f : IR+ → IR+ is said to be negligible if:

∀α > 0 ∃ζ0 ∈ IR+ : ∀ζ > ζ0 f(ζ) < ζ−α

We have the following definition adapted from Definition 13.2 [20].
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Definition 2. A threshold multi-secret sharing scheme for threshold value t is a method
of sharing k secrets S1, . . . , Sk among a set of n participants {P1, . . . , Pn} in such a
way that the following properties are satisfied:
(i) (soundness) If at least t participants pool their shares together then they recover the
whole k secrets S1, . . . , Sk.
(ii) (secrecy) If at most t − 1 participants pool their shares together then they do not
recover the whole k secrets with non-negligible probability as a function of the secret’s
size.

The reader may notice that Definition 13.2 is related to perfect secrecy since it is there
assumed that the coalition of t− 1 participants does not know anything about the secret
value (i.e. all values are equally probable). This cannot be held here as several secrets
will be shared using the same polynomial. Nevertheless we will see that t − 1 partici-
pants cannot recover the whole k secrets with good probability. We can generalize the
previous definition as follows:

Definition 3. A multiple-threshold multi-secret sharing scheme for threshold values
t1, . . . , t� is a method of sharing k1 + · · · + k� secrets S1 1, . . . , S� k�

among a set of n
participants {P1, . . . , Pn} in such a way that the following properties are satisfied:
(i) (soundness) For each i ∈ {1, . . . , �}, if at least ti participants pool their shares to-
gether then they recover the whole ki secrets Si 1, . . . , Si ki .
(ii) (secrecy) For each i ∈ {1, . . . , �}, if at most ti − 1 participants pool their shares
together then they do not recover the whole ki secrets Si 1, . . . , Si ki with non-negligible
probability as a function of the secret’s size.

A verifiable multiple-threshold multi-secret sharing scheme (VMTMSS) is a multiple-
threshold multi-secret sharing scheme for which the validity of the share can be publicly
verifiable. Let us introduce the following definition from [9]:

Definition 4. A function f(·, ·) that maps a key and a second bit string of a fixed length
is a secure keyed one-way hash function if it satisfies the following five properties:

P1: Given k and x, it is easy to compute f(k, x).
P2: Given k and f(k, x), it is hard to compute x.
P3: Without knowledge of k, it is hard to compute f(k, x) for any x.
P4: Given k, it is hard to find two distinct values x and y such that f(k, x) = f(k, y).
P5: Given (possibly many) pairs (x, f(k, x)), it is hard to compute k.

Remark, however, this secure keyed one-way function is not equivalent to the two-
variable one-way function defined by He and Dawson in [11] contrary to what claimed
Chien et al. [4]. Indeed the collision resistance property P4 of the keyed one-way func-
tion is not a requirement for the functions created by He and Dawson (see Definition 1
in [11]).

We assume that we have � such functions f1, . . . , f� whose respective domains are
D1, . . . , D�. Without loss of generality we can assume that the prime numbers
p1, . . . , p� are chosen such that: ∀i ∈ {1, . . . , �} fi(Di) ⊂ Z/piZ. We also assume:
∀i ∈ {1, . . . , �} Di ⊂ Z/piZ × Z/piZ. We need to use a collision resistant hash func-
tion H [17]. As in [13], it will be used to check the validity of the shares.
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Our approach will consist of two steps. First we will treat each (ti, n)-threshold
scheme separately. We build a polynomial Fi(X) whose degree and coefficients will be
determined similarly to [25]. Second we will combine the � polynomials F1(X), . . . ,
F�(X) using the following result obtained by extending Corollary 3.2 from [2]:

Corollary 1. (Polynomial form of CRT) Let m1, . . . , mλ be λ coprime integers and
denote their product by M . For any λ-tuple of polynomials (A1(X), . . . , Aλ(X)) from
Z/m1Z[X ] × · · · × Z/mλZ[X ], there exists a unique polynomial A(X) in Z/MZ[X ]
such that:

⎧
⎪⎨
⎪⎩

A(X) ≡ A1(X) mod m1

...
...

A(X) ≡ Aλ(X) mod mλ

(1)

In addition: deg(A(X)) = max
i∈{1,...,λ}

(deg(Ai(X))).

Proof. In [2], Chan and Chang proved the existence of such a polynomial A(X). What
remains to demonstrate is its uniqueness and the value of its degree.

Let A(X) be a polynomial from Z/MZ[X ] solution of (1) and denote α its degree. The
ring isomorphism:

Z/MZ � Z/m1Z × · · · × Z/mλZ (2)

involves α = max
i∈{1,...,λ}

(deg(Ai(X))) since (2) implies an element μ is congruent to 0

in Z/MZ if and only if μ is congruent to 0 in each Z/miZ for i ∈ {1, . . . , λ}.

Let A(X) and Ã(X) be two solutions of (1). Since their degree is α, we can write them
as:

A(X) :=
α∑

i=0

ai X i and Ã(X) :=
α∑

i=0

ãi X i

where the ai’s and ãi’s are elements of Z/MZ. Since these polynomials are solutions
of (1) and due to (2), we deduce: ∀i ∈ {0, . . . , α} ai ≡ ãi mod M . 	


The previous proof involves that A(X) can be computed from A1(X), . . . , Aλ(X) us-
ing Garner’s algorithm α+1 times. We will now present the details of our construction.

3.1 Scheme Construction

Our construction consists of three algorithms: SetUp, ShareConstruction and SecretRe-
construction. The first two algorithms will be run by the dealer while the last one will
be executed by the combiner. As in [4, 19], SetUp will only be run once while Share-
Construction will be called each time new secrets are to be shared. The private elements
distributed to the n participants by the dealer when running SetUp will ensure that our
VMTMSS is a multiple time scheme.
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SetUp
Input: The group size n and � distinct prime numbers p1, . . . , p�.
1. For each i ∈ {1, . . . , �}, generate n distinct elements of Z/piZ denoted si 1, . . . , si n.
2. Use Garner’s algorithm as: ∀j ∈ {1, . . . , n} Sj := Garner(s1 j , . . . , s� j , p1, . . . , p�).
3. Distribute Sj to participant Pj over a secure channel for each j ∈ {1, . . . , n}.
Output: The n private values S1, . . . , Sn which will be used by the participants to check
the validity of their pseudo-shares.

We have the following observation concerning [4, 19]. Each of the n participants Pi

receives a secret value si. The dealer chooses a random element r and evaluates the
pseudo-shares f(r, s1), . . . , f(r, sn) where f is the keyed one-way function used in
those schemes. He builds a polynomial h(X) whose k lowest degree coefficients rep-
resent the k secrets to be shared. Finally he publishes r, h(f(r, s1)), . . . , h(f(r, sn))
so that the combiner can verify the validity of shares. In order to ensure the multiple
time property of their construction, a new value r is generated each time a new set of k
secrets is to be shared. If r is chosen such that f(r, si0) is 0 then Pi0 can recover one of
the secrets as the constant term of the polynomial h(X) from the list of public elements
since: h(0) = h(f(r, si0)). Even if the probability of such an event is negligible when
the domain of f is large, it is still easy to deal with this problem by shifting each coef-
ficient of the polynomial h(X) by one position and setting up the new constant term as
a random element. This is at the cost of publishing an extra point to reconstruct h(X)
since its degree has increased by 1.

We will now introduce our algorithm ShareConstruction. We first introduce the follow-
ing notation:

∀i ∈ {1, . . . , �} δi :=
{

0 if ti ≥ ki

ki − ti otherwise

Notice that δi can be computed as soon as both ti and ki are known.

ShareConstruction
Input: The group size n, the prime numbers p1, . . . , p�, the threshold values t1, . . . , t�,
the number of secrets k1, . . . , k�, the corresponding secrets S1 1, . . . , S1 k1, . . . , S� 1, . . . ,
S� k�

, the functions f1, . . . , f�, the elements s1 1, . . . , s� n from SetUp and the collision
resistant hash function H .

1. For each i ∈ {1, . . . , �}, pick uniformly at random an element ri from Z/piZ. Use
Garner’s algorithm as: R := Garner(r1, . . . , r�, p1, . . . , p�).
2. Do the following:

2.1. Compute fi(ri, si j) for i ∈ {1, . . . , �} and j ∈ {1, . . . , n}.
2.2. Compute the hashes H(fi(ri, si j)) for i ∈ {1, . . . , �} and j ∈ {1, . . . , n} and
publish them as table TH.
2.3. Use Garner’s algorithm as: ∀j ∈ {1, . . . , n} Pj := Garner(f1(r1, s1 j), . . . ,
f�(r�, s� j), p1, . . . , p�).

3. For each i ∈ {1, . . . , �} do the following:
3.1. Pick uniformly at random an element Ci from Z/piZ.
3.2. If ti > ki then:
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Pick uniformly at random ui 1, . . . , ui δi from Z/piZ.

Build the polynomial: Fi(X) := Ci +
ki

Σ
j=1

Si j Xj +
ti−ki

Σ
j=1

ui j Xj+ki

Else

Build the polynomial: Fi(X) := Ci +
ki

Σ
j=1

Si j Xj

4. Denote D := max
i∈{1,...,�}

(deg(Fi(X))). For each i ∈ {1, . . . , �}, write Fi(X) as:

Fi(X) :=
D

Σ
j=0

Fi j Xj where: ∀j ∈ {deg(Fi(X)) + 1, . . . , D} Fi j = 0. Use Garner’s

algorithm as: ∀j ∈ {0, . . . , D} Fj := Garner(F1 j , . . . , F� j , p1, . . . , p�).

5. Build the polynomial F(X) as: F(X) :=
D

Σ
j=0

Fj Xj and compute F(P1), . . . , F(Pn).

6. Do the following:
6.1. For each i ∈ {1, . . . , �}, generate an element ai from Z/piZ distinct from
si 1, . . . , si n.
6.2. Use Garner’s algorithm as: A := Garner(f1(r1, a1), . . . , f�(r�, a�), p1, . . . , p�).
6.3. Compute F(A).

7. For each i ∈ {1, . . . , �} such that δi > 0 do the following:
7.1. Generate δi elements s′i 1, . . . , s

′
i δi

such that si 1, . . . , si n, ai, s
′
i 1, . . . , s

′
i δi

are
n + 1 + δi distinct elements of Z/piZ.
7.2. Compute fi(ri, s

′
i 1), . . . , fi(ri, s

′
i δi

).
7.3. Compute Fi(fi(ri, s

′
i 1)), . . . , Fi(fi(ri, s

′
i δi

)).
8. Publish the table T containing R, F(P1), . . . , F(Pn), (A, F(A)) as well as the
couples (fi(ri, s

′
i 1), Fi(fi(ri, s

′
i 1))), . . . , (fi(ri, s

′
i δi

), Fi(fi(ri, s
′
i δi

))) for each i such
that δi > 0.
Output: The table TH which will be used to verify the pseudo-shares and the table T
which will be used to reconstruct the secrets of our VMTMSS.

Notice that (A, F(A)) is the extra point needed to overcome the problem from [19].
We also remark that any participant Pj can compute the pseudo-shares fi(ri, si j) from
the public value R and his secret element Sj since:

{
ri = R mod pi

si j = Sj mod pi

Using this information any participant can verify the validity of his pseudo-shares by
checking their � hashes from table TH. Similarly the combiner can check the validity
of any pseudo-share submitted during the secret reconstruction process using TH as
well. Notice, however, that the prime numbers p1, . . . , p� should be large enough in
order to prevent an exhaustive search to be performed by an adversary who would
compute H(ζ) (where ζ ∈ Z/piZ) until finding a match amongst the n elements
H(fi(ri, si 1)), . . . , H(fi(ri, si n)). Figure 1 represents the previous two algorithms.
The construction of polynomials F1(X), . . . , F�(X) and F(X) is depicted on Fig. 2.

We will now design SecretReconstruction which is run be combiner to recover the
secrets. We assume that Pj1 , . . . , Pjti

are the ti participants wishing to reconstruct the
ki secrets of the (ti, n)-threshold scheme.
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Moduli p1 · · · p�

s1 1 · · · s� 1

s1 n · · · s� n

Random
...

...

a1 · · · a�

s′
1 1 · · · s′

� 1

s′
1 n · · · s′

� n

Elements
...

...

r1 · · · r�

f1(r1, s1 1)
Pseudo

· · · f�(r�, s� 1)

f1(r1, s1 n)
Shares · · · f�(r�, s� n)

...
...

� �Garner

� �Garner

� �Garner

� �Garner

� �Garner

p1 × · · · × p�

S1

Sn

...

R

P1

Pn

...

� �F(X)

� �F(X)

F(P1)

F(Pn)

...

p1 × · · · × p�

f1(r1, a1) · · · f�(r�, a�) � �Garner A � �F(X) F(A)

f1(r1, s
′
1 1) · · · f�(r�, s

′
� 1)

f1(r1, s
′
1 δ1

) · · · f�(r�, s
′
� δ�

)

...
...

�

�
F1(X)

�

�
F�(X)

F1(f1(r1, s
′
1 1))· · ·F�(f�(r�, s

′
� 1))

F1(f1(r1, s
′
1 δ1))· · ·F�(f�(r�, s

′
� δ�

))

...
...

Extra Point

Additional

Couples

Of

Points

(δi > 0)

� �

Fig. 1. Representation of SetUp and ShareConstruction

SecretReconstruction
Input: The threshold value ti, the number of secrets ki, the prime numbers p1, . . . , p�,
the public table T as well as the pseudo-shares of the ti participants fi(ri, si j1), . . . ,
fi(ri, si jti

).
1. Compute xti+1 := A mod pi and yti+1 := F(A) mod pi. For each λ ∈ {1, . . . , ti},
compute yλ := F(Pjλ

) mod pi.
2. If δi = 0 then:

2.1. Reconstruct the Lagrange interpolating polynomial passing through the points
(fi(ri, si j1), y1), . . . , (fi(ri, si jti

), yti), (xti+1, yti+1).

2.2. Write the polynomial obtained as:
ti

Σ
j=0

μj Xj and return μ1, . . . , μki .

Else
2.3. Reconstruct the Lagrange interpolating polynomial passing through the points
(fi(ri, si j1), y1), . . . , (fi(ri, si jti

), yti),(xti+1, yti+1), (fi(ri, s
′
i 1),Fi(fi(ri, s

′
i 1))),

. . . , (fi(ri, s
′
i δi

), Fi(fi(ri, s
′
i δi

))).

2.4. Write the polynomial obtained as:
k i

Σ
j=0

μj Xj and return μ1, . . . , μki .

Output: The ki secrets μ1, . . . , μki of the (ti, n)-threshold scheme.
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Moduli

S1 1 · · · S1 k1

S� 1 · · · S� k�

p1

...
p�

...
...

F� max(t�,k�)

F1 0 · · · F1 max(t1,k1)

F� 0 · · ·

...
...

F1(X)
...

F�(X)

}

}

F� D

F1 0 · · · F1 D

F� 0 · · ·

...
...

FDF0 · · ·
︸ ︷︷ ︸

F(X)

p1

...
p�

p1 × · · · × p�

Garner Garner

Fig. 2. Construction of Polynomials by the Dealer

3.2 Security Analysis

In this section, we have to demonstrate that our VMTMSS verifies the properties from
Definition 3. In particular we have to argue that the table of hashes TH and the table
of extra points T do not leak too much information about the secrets. We have the
following result for our construction:

Theorem 2. The reconstruction algorithm SecretReconstruction is sound.

Proof. We have to demonstrate that, for any value i in {1, . . . , �}, the elements output
by SecretReconstruction are the ki secrets of the (ti, n)-threshold scheme whatever the
family of ti participants is.

Let i be any element of {1, . . . , �}. Consider Pj1 , . . . , Pjti
a family of ti participants.

Due to Steps 2, 4 and 5 of ShareConstruction2, we have the following result:

∀i ∈ {1, . . . , �} ∀λ ∈ {1, . . . , ti} Fi(fi(ri, si jλ
)) = F(Pjλ

) mod pi

Due to Property P4 of fi, Step 1 of SetUp and Step 6.1 of ShareConstruction, the el-
ements fi(ri, si j1), . . . , fi(ri, si jti

), fi(ri, ai) are distinct with overwhelming proba-
bility. Since fi(ri, ai) = A mod pi = xti+1, the ti + 1 points (fi(ri, si j1), y1), . . . ,
(fi(ri, si jti

), yti), (xti+1, yti+1) have different abscissas in Z/piZ. We have two cases
to consider:

First Case: δi = 0. We can interpolate the previous ti + 1 points as in Sect. 2.1 and
denote Lti+1(X) the corresponding Lagrange polynomial obtained at Step 2.1 of Se-
cretReconstruction. It should be noticed that the polynomial Fi(X) defined at Step 3.2
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of ShareConstruction passes through the same points and has degree at most ti (it is
exactly ti if the highest degree coefficient is different from 0). Due to the uniqueness of
such a polynomial (see Sect. 2.1) we get: Lti+1(X) = Fi(X). Thus the ki coefficients
returned at Step 2.2 of SecretReconstruction are the ki secrets of the (ti, n)-threshold
scheme: Si 1, . . . , Si ki .

Second Case: δi > 0. Using table T , we obtain δi additional points:
(fi(ri, s

′
i 1), Fi(fi(ri, s

′
i 1))), . . . , (fi(ri, s

′
i δi

), Fi(fi(ri, s
′
i δi

))). This leads to a total of
ti + 1 + δi = ki + 1 points have different abscissas. We can interpolate those ki + 1
points as in Sect. 2.1 and denote Lki+1(X) the corresponding Lagrange polynomial
obtained at Step 2.3 of SecretReconstruction. As Fi(X) passes through the same points
and has degree at most ki (it is exactly ki if the secret Si ki is different from 0) we get:
Lki+1(X) = Fi(X). Thus the ki coefficients returned at Step 2.4 of SecretReconstruc-
tion are the ki secrets of the (ti, n)-threshold scheme: Si 1, . . . , Si ki . 	


Theorem 3. Our VMTMSS achieves secrecy.

Proof. Let i be any integer in {1, . . . , �}. Assume that ti − 1 participants pool their
pseudo-shares together and use public knowledge from tables T and TH. The partici-
pants are denoted Pj1 , . . . , Pjti−1 . Since H is a collision resistant hash function, H is a
one-way function. Therefore with overwhelming probability, the only information the
colluders learn from table TH is the pseudo-shares of the non-colluding members are
different from theirs. Nevertheless this fact was already known to each of the n par-
ticipants due to Step 1 of SetUp, property P4 and (2). So table TH does not give any
extra-information to the colluders with overwhelming probability. We have two cases
to consider.

First Case: δi = 0. The colluders have to determine the ti + 1 coefficients of Fi(X)
(Step 3.2 of ShareConstruction). Using the same technique as in the proof of Theorem 2,
they can obtain ti points Fi(X) goes through from their pseudo-shares and the point
(A, F(A)) from T . Consider the set:

E := {(fi(ri, si j), Fi(fi(ri, si j))) : j /∈ {j1, . . . , jti−1}}

The elements of E represent the points owned by the non-colluding members. It should
be noticed that the n values Fi(fi(ri, si 1)), . . . , Fi(fi(ri, si n)) are known to each
group participant since they can be obtained by reductions modulo pi from elements
F(P1), . . . , F(Pn) contained in T . We will see that the probability the colluders can
construct an element of E is negligible as a function of the length of pi.

Due to Property P4 of the function fi the colluders know, with overwhelming probabil-
ity, that the abscissas of the elements of E belong to:

fi(Di) \
{
fi(ri, si j1), . . . , fi(ri, si jti−1), A mod pi

}

We would like to draw the reader’s attention to the following point. Once Fi(fi(ri, si μ))
is given, there may be more than one value x such that Fi(x) = Fi(fi(ri, si μ)). In the



Verifiable Multi-secret Sharing Schemes for Multiple Threshold Access 177

worst case we can have up to n − ti + 1 such values for x which happens when all the
ordinates of the elements of E are equal. Thus:

Prob((x, Fi(fi(ri, si μ))) ∈ E, x is built by the colluders) ≤ n + 1
|fi(Di)| − n

Second Case: δi > 0. The colluders have to determine the ki +1 coefficients of Fi(X)
(Step 3.2 of ShareConstruction). As before, they can obtain ti + δi points Fi(X) goes
through from their pseudo-shares and the δi + 1 points from T . As previously we get:

Prob((x, Fi(fi(ri, si μ))) ∈ E, x is built by the colluders) ≤ n + 1
|fi(Di)| − ki

Without loss of generality, we can assume that the range of fi represents a non-
negligible part of Z/piZ. At the same time, we can consider that the group size n and
ki is small in comparison to pi so that there exists Ci, independent from pi, such that,
in both cases, we have:

Prob((x, Fi(fi(ri, si μ))) ∈ E, x is built by the colluders) ≤ Ci

pi

Therefore it is sufficient to pick the smallest of the � primes to be 80 bits long to ensure
computational secrecy for our scheme. �

4 Complexity Survey

As claimed in Sect. 1, the computational and storage costs represent key factors to take
into account when implementing a protocol as a part of a commercial application. In
this part we study the cost of our construction and compare it to the schemes from
[2, 19]. In this section we denote M the product of the � prime numbers p1, . . . , p�. We
assume that picking random elements from the sets Z/p1Z, . . . , Z/p�Z has a negligible
computational cost.

4.1 Cost of Our Construction

Computational Cost at the Dealer. Based on Sect. 2.2, SetUp can be executed in
O(n � log2

2 M) bit operations.
ShareConstruction performs n + D + 3 calls to Garner’s algorithm which results in

O((n+D) � log2
2 M) bit operations. In addition there are n+1 polynomial evaluations

over Z/MZ. Using Horner’s rule each of them can be done via D additions and D multi-
plications in Z/MZ. Based on Sect. 2.1, this represents a total of O(n D log2

2 M) bit op-
erations. There are also δi polynomial evaluations over Z/piZ. If we
denote Δ := max

i∈{1,...,�}
δi then the δ1 + · · · + δ� polynomial evaluations cost

O

(
ΔD log2

2

(
max

i∈{1,...,�}
pi

))
bit operations. Since each prime number pi is less than
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M , the total cost of ShareConstruction is O([D (� + n + Δ) + n �] log2
2 M) bit opera-

tions. Furthermore the collision resistant hash function H is run n � times while each
keyed one-way function fi is run n + δi times.

Computational Cost at the Combiner. Notice that the cost of SecretReconstruction
depends on the threshold value ti. We have ti + 2 reductions modulo pi of elements
Z/MZ. This can be done using Euclid’s divisions in O(ti (log2 M log pi)) bit opera-
tions. In addition an interpolating polynomial passing through ti +1+ δi points is to be
build over Z/piZ. We know from Sect. 2.1 this can be achieved in O((ti + δi)

2 log2
2 pi)

bit operation. Since pi ≤ M , we deduce that SecretReconstruction runs in
O((ti + δi)

2 log2 M log2 pi) bit operations.

Storage of Public Elements. Denote size(x) the number of bits used to represent the

natural integer x. We have size(x) = log2 x� + 1. We define ρ :=
�

Σ
i=1

δi size(pi) and

ρ′ :=
�

Σ
i=1

size(pi). We also denote H the bitsize of a digest produced by the collision

resistant hash function. First, storing TH requires n � H bits. Second, T contains n + 3
elements from Z/MZ and 2 δi elements from Z/piZ for each i ∈ {1, . . . , �}. Thus the
size of T is (n + 3) size(M) + 2 ρ bits. As a consequence the size of public elements
represents a total of n (� H+ size(M))+3 size(M)+2 ρ bits. Notice, however, that the
sender must buffer all the elements s1 1, . . . , s� n from Step 1 of SetUp which represents
n ρ′ bits.

4.2 Efficiency Comparison

The parameters of the schemes are depicted in Table 1. Notice that the construction by
Chan and Chang does not allow flexibility in the number of secrets to be shared. Indeed
when we iterate that construction λ times (with the same threshold values) then the total
number of secrets has to be λ �. Therefore we restrict our comparison to the scheme by
Shao and Cao as it enables to choose the number of secrets per threshold independently
from the total number of thresholds. Remark that our construction can be seen as exten-
sion of Chan and Chang’s approach providing flexibility. To have an accurate survey, we
assume that Shao and Cao’s construction is iterated � times (one iteration per family of
ki secrets). The results of our comparison are summarized in Table 2.

The reader can notice that ρ′ is slightly larger than size(M) so, a priori, our tech-
nique does not provide any significant size benefit from � iterations of Shao and Cao’s
construction. As noticed in [2], however, the latter approach requires each participant
to keep multiple shares which can create a share management problem. In our construc-

Table 1. Parameters of the Three VMTMSS

Our Scheme Chan-Chang’s Scheme [2] Shao-Cao’s Scheme [19]
Thresholds � � 1

Secrets per Threshold ki 1 k

Size Private Values size(M) bits size(p) bits size(p) bits
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Table 2. Computational Complexity of the Three VMTMSS

Our Scheme Shao-Cao’s Scheme [19]
Size Private Values size(M) bits ρ′ bits

Set-up n � random elements n � random elements
Phase

n calls to Garner
Share δi pol. eval. in each Z/piZ n + δi pol. eval. in each Z/piZ

Creation n + 1 pol. eval. in Z/MZ

Process
n � calls to H max(ti, ki) exp. in each Z/piZ

n + δi calls to each fi n calls to each fi

n + D + 3 calls to Garner
Pseudo-Share 1 call to H max(ti, ki) exp. in each Z/piZ

Validity max(ti, ki) exp. in Z/pi−1
2 Z

Verification max(ti, ki) mult. in Z/piZ

Secret 1 polynomial reconstruction 1 polynomial reconstruction
Recovery

ti + 2 reductions modulo pi

Storage Public n (�H + size(M)) + 3 size(M) + 2 ρ (n + 1) ρ′ + 2 ρ +
�

Σ
i=1

ti size(pi)

Elements bits bits
Storage Sender n ρ′ bits n ρ′ bits

tion, each participant holds a single ”master” share which can be used to recreate the
share for each (ti, n)-scheme. We now have two points to consider.

First, the pseudo-share verification process from [19] is expensive. Indeed verifying
a single pseudo-share roughly costs 2 max(ti, ki) exponentiations in Z/piZ. Even if
each of them can be performed in O(log3

2 pi) bit operations using the fast exponentia-
tion. algorithm [17], the coefficient max(ti, ki) is prohibitive for large thresholds ti. In
addition, when the communication channel is under attack of malicious users flooding
the combiner with incorrect values, the coefficient max(ti, ki) may result in success-
ful denial-of-service attacks as the computational resources needed to identify correct
shares amongst forgeries become too large. This problem does not happen with our
construction as only a single hash as to be computed to validate/discard a share. Notice
that each participant first needs to perform 2 reductions modulo pi and 1 call to fi to
construct his pseudo-share from his secret value and the public element R. However
this is at the cost of running 2 n + D + 3 times Garner’s algorithm at the dealer during
the set-up and share construction phases.

Second, our pseudo-share verification process requires n� hashes to be published
as table TH. If we use SHA-256 as collision resistant hash function then TH is rep-
resented over 256 n � bits. On the other hand, the construction by Shao and Cao is
secure provided that the discrete logarithm problem over each Z/piZ is intractable. For
achieve security, it is suggested to use 1024-bit moduli or larger [16]. If we assume
that the different thresholds are roughly equal to the same value t then the coefficient
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�

Σ
i=1

ti size(pi) is approximately 1024 � t bits. Therefore the storage of our public ele-

ments less expensive as soon as t ≥ n
4 , i.e. the construction by Shao and Cao provides

better space efficiency only for small threshold values.

5 Conclusion

In this paper, we generalized the approaches from [2, 19] by designing a multiple time
verifiable secret sharing scheme allowing several secrets to be shared per threshold
value. As in [19], our construction allows any number of secrets to be shared per thresh-
old value. In addition, we showed that our pseudo-share verification process was much
faster than in [19] while the storage requirements were smaller. We would like to point
three facts. First, we assumed that the threshold values were different (see Sect. 3). Nev-
ertheless our techniques could also be employed if some threshold ti is used τi times
provided that different primes pi 1, . . . , pi τi are used respectively. Second, the security
of our scheme is based on the random oracle model for the collision resistant hash func-
tion H . Most hash functions used in practice are considered heuristically collision resis-
tant. Recently several such functions were successfully attacked [21, 22, 23, 24, 26]. In
order to maintain the security of our protocol, we suggest to use a hash function whose
security has be proved to be linked to a computationally difficult problem such as Very
Smooth Hash [5] or Gibson’s discrete logarithm-based hash function [7]. Nevertheless
this may result into larger digests or increased running time. Finally the main drawback
of our construction is that we are only able to deal with threshold schemes and our
approaches cannot be directly generalized to non-threshold access structures.
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Abstract. A hierarchical key sharing model in ad-hoc is presented and a
key management protocol based on this model is designed. Nodes were di-
vided into two parts in the network, server nodes and ordinary nodes. The
shares hold by server nodes include more information than ordinary ones.
Key reconstruction is implemented by collaboration of k nodes(including
at least k1 server nodes). Key share distribution, key reconstruction, key
share refreshing and recovery are discussed in this paper. The presented
protocols improve the availability and enhance the security compared
with the existing partially and fully distributed schemes respectively.

Keywords: ad-hoc network, verifiable secret sharing, hierarchical secret
sharing, key management.

1 Introduction

Ad-hoc network can provide the users anytime and anywhere communications,
which makes it become an ideal candidate for many applications both on mili-
tary and civilian field. However, the use of wireless links gives chances to attacks
ranging form passive eavesdropping to active message replay, impersonation and
distortion. Nodes are easier to be compromised due to relatively poor physical
protection. Security measures should be adopted to protect the ad-hoc commu-
nications.

Key management is a foundation for security service. Most of the security
mechanisms such as digital signature, public key certification, identity authen-
tication require some kind of cryptographic keys. As Menezes et al proposed in
[1], the purpose of key management is to:

– Initialize system users within a domain.
– Generate, distribute and install keying material.
– Control the use of keying material.
– Update, revoke and destroy keying material.
– Store, recover and archive keying material.

� The work was partially supported by hi-tech research and development programm
of China (2007AA01Z431).

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 182–191, 2008.
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Traditional centralized key management is not appropriate to ad- hoc network.
No single node is trustworthy in an ad-hoc network because of low physical
security and availability.

There are several researches on key management in ad hoc network[2]. The
solution proposed by Hubaux[3] provides a public key management solution sim-
ilar to PGP[4] in the sense that certificates are issued by the users themselves
without the involvement of any certification authority. It is suitable for long-
term networks. Basagni[5] provides a distributed key management system based
on symmetric encryption. The solution provides group authentication, message
integrity and confidentiality. Balfanz’s scheme [6] is based on what the authors
call demonstrative identification and is similar to the concept of imprinting in-
troduced by Stanjo and Anderson[7]. It requires that the nodes be in a close
proximity of each other during the initial bootstrapping.

The solution proposed by Zhou[8] distribute the key services to n special nodes
called servers. Any k + 1 of these nodes collaborate to complete the functions
of CA. There are many drawbacks in this scheme. First, how can a node find
enough servers in need of certification service as there are circumstances while all
his neighbors are not server nodes. Secondly, Zhou did not address the problem
how to maintain the availability of the service when some server nodes leave .
In Luo’s scheme[9] , every node hold a share of the secret key. This approach is
vulnerable since adversaries can compromise arbitrary k + 1 nodes to reveal the
service key.

While distributed key management fit appropriately to the characteristic of
no centralized authority in ad-hoc network, it should be improved to enhance
the security of key management. Based on hierarchical threshold secret sharing,
we proposed a fully distributed key management scheme for ad-hoc networks.
In our scheme, nodes are partitioned into two levels: server nodes and ordinary
nodes. Server nodes hold key shares of more information than ordinary nodes
hold. Any l1 server nodes and l2 ordinary nodes (l1 ≥ k1, l2 ≥ k − l1, k1, k
are threshold number) cooperate to reconstruct the system’s secret key. This
improves the availability of the key service in ad-hoc compared with Zhou’s.
Nodes do not need to find k + 1 server nodes to get service(in some cases it is
not easy to communicate with so many server nodes). It only needs to find k1

server nodes and k − k1 ordinary nodes. While this scheme reduce the risk of
distributing key shares to all nodes as Luo’s scheme in which compromising of
any k nodes will leak the system’s secret key. We assume that server nodes are
more reliable and securer than ordinary nodes.

Hierarchical key management scheme is beneficial in some applications. In
military environment, nodes could be composed of unmanned aerial vehicles
(UAVs), trucks tanks, and soldiers. Obviously, UAVs have strong communica-
tion and computation power, while soldiers have limited power. All of the fighting
units on land are capable of being broken down or compromised. So they should
be in different level in key management. Another example is when stockhold-
ers of a company are attending a meeting communicating through their laptops
or PDAs and need to make an investment decision. Some of the attenders are
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employees and some of them can be department managers or members of direc-
torate. They all hold a share of the key of the account . In a word, they ought
to hold key share of different level according to their principalship and so they
can play a different part in the decision.

CONTRIBUTION. We introduce hierarchical module in ad-hoc and present a
hierarchical secret sharing scheme.The major properties are:

– we improve the utility of key service and do not reduce the security.
– the scheme is proactive.
– Key management is distributed to all nodes. No previously proposed sharing

schemes can provide all these property together.

PAPER STRUCTURE. In the following section we compare related sharing
schemes. Section 3 presents system model and notations used in this paper, Sec-
tion 4 details our generic constrction.Finally we conclude our work and discuss
some future work.

2 Hierarchical Secret Sharing

Hierarchy secret sharing was proposed by Tass. Our hierarchy secret sharing
scheme use the concept of hierarchy access structure and a two dimensional
polynomial for secret sharing and verifying.

Definition 1. Let U be a set of n participants and assume that U = U1

⋃
U2

and U1

⋂
U2 = ∅. Let k = {k1, k2}, 0 < k1 < k2. Then the (k, n)-hierarchical

threshold problem is to assign each participant u ∈ U a share of a given secret s
such that the access structure is

Γ = {V ⊂ U : |V
⋂

(
i⋃

j=1

Uj)| ≥ ki, for i = 1, 2} (1)

If σ(u) stands for the shares assigned to u ∈ U , and for any V ⊂ U ,σ(V ) =
{σ(u) : u ∈ V }, then

H(s|σ(V )) = 0 ∀V ∈ Γ (accessibility) (2)

while
H(s|σ(V )) = H(s) ∀V /∈ Γ (perfect security) (3)

Hierarchical (k, n) secret sharing scheme: Let Fp be a finite field of large
size and p be a prime number. Assume k = {k1, k2} and k = k2 is the overall
number of participants that are required for the recovery of the secret.

Let V = {v1, · · · , v|V |} ⊂ U , assume that

v1, · · · , vl1 ∈ U1

vl1+1, · · · , vl2 ∈ U2

(4)
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Then V is authorized if and only if li ≥ ki for i = 1, 2. Let

r(x) = (1, x, · · · , xk−1)

r(k1)(x) =
d

d(k1)
(1, x, · · · , xk−1)

a = (a0, · · · , ak−1)T , then the share of each is σ(u) = r(u) · a for u(u ∈ U1)(each
participant is identified by u, u ∈ Fp ) and σ(u) = r(k1)(u) ·a for u(u ∈ U2). The
recovery of the secret is to solve the unknown vector a in Mva = σ, where

Mv = (r(v1), · · · , r(vl1); r
(k1)(vl1+1), · · · , r(k1)(vl2 ))

T (5)

σ = (σ(v1), σ(v2), · · · , σ(vl2))
T

The above Birkhoff interpolation does not have unique solution in general.
The following theorem describe when it has an unique solution and how secret
sharing scheme satisfy accessibility and perfect security(for details see [10]).

Theorem 1. If for any minimal authorized subset V ⊂ Γ , Mv �= 0 in Fp.Then
conditions 2 and 3 hold.

Theorem 2. Let (k, n) be a hierarchical secret sharing scheme. Assume that
the participants in U were assigned identities in Fp in a monotone manner, let
N = {maxu|u ∈ U}. Assume that 2−k · (k + 1)(k+1)/2 · N (k−1)k/2 < p, then the
hierarchical secret scheme satisfies conditions 2 and 3.

Tassa’s secret sharing scheme based on Birkoff interpolation solved the problem
of hierarchical sharing, but it can’t prevent cheating when dealer sends wrong
shares to participants in share distribution or some participants provide wrong
shares in key reconstruction. Since the wireless link is prone to be attacked, we
should ensure that every node receive correct shares. This can be done by using
verifiable Feldman’s VSS[11] based on ECC.

3 System Models

Here we consider n nodes ad-hoc wireless network composed of n1 server nodes
and n2 ordinary nodes. Assume that the capabilities of nodes in the network are
diverse in terms of power source, CPU performance and memory size etc. Server
nodes should be equipped superiorly and have strong capability. Also suppose
that all nodes are capable of performing the necessary public key computation
and they are equipped with PKI certificates by an off-line trusted authority. so
they can authenticate each other and establish secure links. Let um, um ∈ Fp

present the identity of node m. Then the set of n nodes could be considered
as U = U1

⋃
U2 where U1 is the subset of server nodes and U2 is the subset of

ordinary nodes. In order to get a unique solution when the nodes in an authorized
subsets pull out their shares, the conditions in Theorem 2.2 should be satisfied.
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Our key management is designed for a long time existing network. We consider
a moveable adversary who can compromise and control at most k1 − 1 nodes in
a certain period of time. To defend against the adversary, key shares should
be proactively refreshed. Thus the operation time of system is partitioned into
period. The execution time of refreshed protocols is between two sharing intervals
At the end of a interval and beginning of the next interval is share refreshing
time. When refreshing protocols finished, according to proactive secret sharing’s
definition[12] the shares hold by the adversaries would be of no use in the next
period.

4 Hierarchical Key Management

Key management can be grouped as certificate related service and system main-
tenance service. The system maintenance service includes incorporating joining
nodes into the key management, i.e. providing them with shares of the sys-
tem’s secret key. It also includes proactively updating the shares of the system’s
private key to protect it from being compromised. Here we emphasize on the
steps required to setup and maintain the distributed key management. At the
beginning, dealer initialize each node off-line using hierarchical secret sharing
algorithm in 4.1. In the running of ad-hoc network, authorized subset plays the
role of dealer. Let E be a secure elliptic curve over Fp and Q be a point over E.
Assume ECDLP on E is hard.

4.1 Key Distribution

During the period of share refreshing, key distribution protocol is executed by a
subset of server nodes independently.

Step 1: Dealer select a random polynomial F (x, y) ∈ Fp[X ]

F (x, y) =
k−1∑
i=0

k−1∑
j=0

fijx
iyj

where f0,0 = s, fk−1,k−1 �= 0
Step 2: Dealer compute a verification matrix F

F = (fijQ)k×k = (Fij)k×k

Step 3: Dealer sends shares to all nodes:

∀ui, dealer → ui, 〈dist, ud, Cert,F, ε(Ai,Bi)〉k

a) For ui ∈ U1,

Ai(y) = F (ui, y) =
k−1∑
t=0

aity
t, Bi(x) = F (x, ui) =

k−1∑
t=0

bitx
t
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b) For ui ∈ U2,

Ai(y) = F (k1)
x (ui, y) =

k−1∑
t=0

aity
t, Bi(x) = F (k1)

y (x, ui) =
k−1∑
t=0

bitx
t

where Ai = (ai0, ai1, . . . , ai,k−1) and Bi = (bi0, bi1, . . . , bi,k−1) are the coef-
ficient vector of Ai(y) and Bi(x) respectively, si = Ai(0) is ui’s key share.

Step 4: Either server nodes or ordinary nodes ui verify their shares by checking
that if:

aijQ =
k−1∑
t=0

Ftj(ui)t, bijQ =
k−1∑
t=0

Fjt(ui)t

for ui ∈ U1, j = 0, 1, · · · , k − 1

aijQ =
k−1∑
t=k1

(
t

k1

)
k1!Ftj(ui)t−k1 , bijQ =

k−1∑
t=k1

(
t

k1

)
k1!Fjt(ui)t−k1

for ui ∈ U2, j = 0, 1, · · · , k − 1 − k1.
Step 5 : If verification fails, ui will ask dealer to send its share again:

ui → dealer, 〈share − request, ui, Cert〉k

Step 6: If ui receives wrong share again, it will make an accusation against
dealer.

4.2 Key Reconstruction

This protocol is to construct the system’s key for an authorized subset.

Step 1: The server node ui require key reconstruction will send the message:

ui → ∀uj, 〈Reconstruct, ui, Cert〉k

Step 2: Every node uj , when receiving the Reconstruct message, send its share
to ui:

∀uj → ui, 〈Reconstructed, uj, Cert, ε(sj)〉k

Step 3: Upon receiving the share sj from uj , ui verify if

sjQ =
k−1∑
t=0

Ft0u
t
j

for uj ∈ U1 or

sjQ =
k−1∑
t=k1

(
t

k1

)
(k1)!Ft0u

t−k1
j

for uj ∈ U2

Step 4: Node ui put together all these verified shares, and figure out an autho-
rized subset in hierarchical access structure to reconstruct the secret.

Theorem 3. Any authorized subset of nodes V ⊂ U satisfies condition accessi-
bility (2) and (4).
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4.3 Share Refreshing

Share refreshing is needed after a period of time to resist mobile adversary. At
the end of a period, all server nodes are likely to flood a refreshing message to
all nodes. Then it locate k server nodes (assume P = {u1, u2, · · · , uk}) to refresh
the key share of every node. The problem is that any k of the server nodes may
include compromised nodes. These nodes may not follow the protocol correctly.
To overcome this circumstance these k nodes should exchange their certificates
before share refreshing and check if the certificates is on the CRL. When inter-
active verification finished, these k nodes start share refreshing protocol.

Step 1: Each ui ∈ P create a two dimensional polynomial Fi(x, y) satisfied
Fi(0, 0) = 0 and apply share distribution protocol as in 4.1.

Step 2: For uj ∈ U , when all the subshares send by ui ∈ P pass the verification,
uj add the new subshares to old share. Then u′

js new share is:

A′
j(y) = Aj(y) +

k∑
i=1

Aij(y), uj

B′
j(x) = Bj(x) +

k∑
i=1

Bij(x), uj (6)

F′ = (Fts +
k∑

i=1

Fits)k×k

In this section we only consider the server nodes to be responsible for share
refreshing. In fact, any k nodes including server nodes and ordinary nodes can
cooperate to complete it.

Theorem 4. Participants in the authorized set can reconstruct the secret with
these new shares.

4.4 Share Recovery

Node can lost his share or ruin it due to disk crash or intrusion of bad program.
A more general case is that a new node call for joining in the network. Node need
to restore its shares or get its shares by asking nodes of an authorized subset for
help.

Step 1: Node ui broadcast a message to all nodes:

∀uj , ui → uj

〈Recover − request, ui, Cert〉k

Step 2: When node uj receiving the message, uj respond to node ui’s request:
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a) ui is an ordinary node:

uj → ui, 〈Recover − response, uj, Cert,F, ε(A(k1)
j (ui), B

(k1)
j (ui))〉k (7)

b) ui is a server node:

uj → ui, 〈Recover − response, uj , Cert,F, ε(Aj(ui), Bj(ui))〉k (8)

Step 3: Node ui verify uj’s share according to ui’s and uj’s identity:
a) ui is a server node and uj is an ordinary node:

Aj(ui)Q =
k−1∑
t=k1

k−1∑
s=0

Fts

(
t

k1

)
(k1)!(uj)t−k1(ui)s (9)

Bj(ui)Q =
k−1∑
t=0

k−1∑
s=k1

Fts

(
s

k1

)
(k1)!(ui)t(uj)s−k1 (10)

b) ui is an ordinary node and uj is a server node :

A
(k1)
j (ui)Q =

k−1∑
t=0

k−1∑
s=k1

Fts

(
s

k1

)
(k1)!(uj)t(ui)s−k1 (11)

B
(k1)
j (ui)Q =

k−1∑
t=k1

k−1∑
s=0

Fts

(
t

k1

)
(k1)!(ui)t−k1(uj)s (12)

c) Both ui and uj are server nodes:

Aj(ui) =
k−1∑
t=0

k−1∑
s=0

Fts(uj)t(ui)s

Bj(ui) =
k−1∑
t=0

k−1∑
s=0

Fts(ui)t(uj)s

d) Both ui and uj are ordinary nodes:

A
(k1)
j (ui) =

k−1∑
t=k1

k−1∑
s=k1

(
t

k1

)(
s

k1

)
Fts((k1)!)2(uj)t−k1(ui)s−k1 (13)

B
(k1)
j (ui) =

k−1∑
t=k1

k−1∑
s=k1

(
t

k1

)(
s

k1

)
Fts((k1)!)2(ui)t−k1(uj)s−k1 (14)
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Step 4: Upon receiving enough shares, ui could recovery its share. Suppose that
V = {u1, · · · , ul1 , ul1+1, ul2} is the subset of nodes that response to him.If V
is an authorized subset,then we may obtain shares satisfying equations(15)
and (18):

Mv · Ai = σiA (15)

where Ai = (ai0, ai1, · · · , ai,k−1),

σiA = (B1(ui), · · · , Bl1(ui), Bl1+1(ui), · · · , Bl2(ui))ui ∈ U1 (16)

σiA = (B(k1)
1 (ui), · · · , B(k1)

l1
(ui), B

(k1)
l1+1(ui), · · · , B(k1)

l2
(ui))ui ∈ U2 (17)

r(v) · Bi = σiB (18)

where Bi = (bi0, bi1, · · · , bi,k−1),

σiB = (A1(ui), · · · , Al1(ui), Al1+1(ui), · · · , Al2(ui))ui ∈ U1 (19)

σiB = (A(k1)
1 (ui), · · · , A(k1)

l1
(ui), A

(k1)
l1+1(ui), · · · , A(k1)

l2
(ui))ui ∈ U2 (20)

Theorem 5. Using shares received from an authorized set, ui can recovery its
polynomial Ai(y) and Bi(x).

5 Conclusion

This paper investigate the problem of key management in ad-hoc network. We
provided some protocols for key distribution, key share refreshing and share re-
covery with a traditional hierarchical sharing scheme. Since our module depends
on different security level nodes,we improve the utility of key service and enhance
the security of our schemes. The other aspect of key management as certificate
related services including certificate renewal and revocation are not discussed
here. It will be studied in our next paper.As for the feasibility for hierarchical
key management scheme,it still be challenging problem.
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Abstract. Pixel expansion has been a major issue of visual secret sharing (VSS) 
schemes. A number of probabilistic VSS schemes with minimum pixel 
expansion have been proposed for black-and-white (binary) secret images. This 
paper presents a probabilistic (n, n)-VSS scheme for grayscale images. Its pixel 
expansion is significantly smaller than that of previous methods. The 
construction of the shadow images (shares) is based on the Boolean XOR 
operation. 

Keywords: Visual secret sharing; Probabilistic schemes; Pixel expansion. 

1   Introduction 

Visual secret sharing (VSS) schemes [1] have been proposed to encode a secret image 
into n “shadow” (“share”) images to be distributed to n participants. The secret can be 
visually reconstructed only when k or more shares are available. No information will be 
revealed with any k-1 or fewer shares. VSS schemes were extended from binary images 
to color and grayscale images. Several (n, n)-VSS schemes were designed for special n 
values. Rijmen and Preneel [2] and Yang [3] focus on (2, 2)-VSS schemes and Hou [4] 
were mainly on (2, 2) and (4, 4) schemes. In a visual cryptography scheme, every pixel 
of the original secret image is expanded to m  sub-pixels in a shadow image. A great 
effort has been directed toward reducing this pixel expansion. Verheul and Van Tilborg 
[5] introduced a general construction for a color (k, n)-VSS scheme. Based on the 
scheme in [5], Blundo et al. [6] and Yang and Laih [7] provided different construction 
for a color (k, n)-VSS scheme, also including color (n, n)-VSS scheme. Cimato et al. [8] 
presented a characterization of a c-color (k, n)-visual threshold scheme with optimal 
contrast. This scheme included a constructive proof of the optimality for a (n, 
n)-threshold scheme and obtained a lower bound for pixel expansion. The result is the 
same as the (n, n) -threshold scheme of [7] and it shows that the (n, n)-threshold scheme 
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of [7] is optimal. Blundo et al. [9] defined and analyzed schemes for grayscale images, 
and provided a necessary and sufficient condition to construct such schemes for general 
access structures. The minimum relative differences can be obtained in any (n, 
n)-visual cryptography scheme for grayscale images. Iwamoto and Yamamoto in [10] 
presented a method that any (n, n)-VSS scheme for grayscale images can be 
constructed based on a polynomial representation of the basic matrices. The minimum 
pixel expansion of the (n, n)-VSS scheme for grayscale image in [10] is equal to the 
result in [9], namely 12)1( −⋅−≥ ngm  where g is the number of grey levels. The 
deterministic VSS schemes mentioned above have achieved minimum pixel expansion 
m and relative difference α (=1/ m ), but the value of m  can still be quite large, partly 
because m  is proportional to the exponential of n. To further reduce pixel expansion, a 
number of probabilistic visual cryptography schemes (ProbVSS schemes) have been 
proposed in [11-14]. These schemes were designed for the case of 2=g , i.e., for black 
and white images. In the reconstructed secret image, the probability of white pixels in a 
white area is higher than that in a black area. Therefore small areas, instead of 
individual pixels, of the secret image can be recovered accurately. With the trade-off in 
resolution, probabilistic schemes can achieve zero pixel expansion ( m =1), and the 
relative difference (the contrast parameter) is the same as the ones in the deterministic 
schemes. Recently, Wang et al. [15] proposed a deterministic (n, n)-secret sharing 
scheme for grayscale image, the scheme uses simple Boolean operations and has no 
pixel expansion. 

In this paper, we propose a probabilistic (n, n)-visual secret sharing scheme for 
grayscale images. This scheme is an extension of the previously proposed deterministic 
(non-visual) (n, n)-secret sharing scheme in [15]. Its pixel expansion m  is g-1, 
independent of n. The generation of the shadow images is based on Boolean operations 
OR and Exclusive-OR, and the reconstruction operation uses OR, as in other VSS 
schemes. The quality of the reconstructed image, measured in “Average Contrast” 
between consecutive grey levels, is equal to that between black and white in the 
probabilistic schemes proposed for binary images. 

2   The Proposed Grayscale (n, n) Scheme 

2.1   Quality Measures 

Since the existing probabilistic schemes were only proposed for binary images, the 
contrast between black and white pixels was naturally chosen as an important quality 
measure. Our proposed scheme is for grayscale images. We use the expected contrast 
between two pixels with consecutive grey levels in the original image to indicate the 
quality. We define it as “Average Contrast” in detail below. 

Let ),( jiU  be a pixel in the reconstructed image. This pixel corresponds to pixel 

ijs  in the original secret image. The appearance of ),( jiU  depends on the Hamming  
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weight of the m vector: H(U). Because of the randomness of the shadow images, H(U)  
is a random variable. We are interested in the average Hamming weight for all pixels 

kkij jiUU |),(| =  with corresponding pixels in the original secret image taking grey 

level k, namely, }1,,1,0{, −∈= gkksij . With )(h
ijA  representing the (i, j)-th 

pixel in the h-th shadow image, the reconstruction results is 

=ijU )1(
ijA  OR )2(

ijA  OR … OR )(n
ijA                               (1) 

Let ))|((Prob tUHP kijt ==  be the probability of )|( kijUH  taking value t 

with }1,,1,0{ −∈ gt , the expected value of )|( kijUH  

is ∑
−

=

⋅=
1

0

))|((
g

t
tkij PtUHE . We now define Average Grey kβ  and Average 

Contrast kα  for the reconstructed image as 

mUHE kijk /)|((=β  where m  is the pixel expansion factor,                             (2) 

1−−= kkk ββα                                                                                                         (3) 

2.2   Construction of the Shares 

The secret image S is represented by an integer matrix of size HW × . HWijsS ×= ][  

where }1,,1,0{ and,,,2,1,,,2,1 −∈== gsHjWi ij . Each pixel of S  

can take any one of g different colors or grey levels.  
In the construction of the shadow images, each pixel of S is coded as a binary string 

of 1−g  bits.  

For ksij = , its code form is 11
1 10 −−−

− = kkgk
gb  that is a string of kg −  zeros and 

1−k  ones. The order of the bits does not matter. For example, 14
16

−
−b  can be written as 

00111, or 01101, or equivalently 11010. 
We have 2=g  for a binary image, and 256=g  for a grayscale image with one 

byte per pixel. In a color image with one byte per pixel, the pixel value can be an index 
to a color table, thus 256=g . 

In a color image using an RGB model, each pixel has three integers: R (red), G 
(green) and B (blue). If each R, G or B takes value between 0 and 255, we 

have 3256=g . 

Now, the description of the proposed scheme is given below. 
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Input: 
The secret image S, }{ ijsS =  in the coded 

form }{ ijcC = . 

Output: The shadow images nFF ,,1  

Shadow 
Generation: 

Randomly generate 1−n  matrices )1()1( ,, −nRR  of 

size HW ×  where 

}.12,,0{},{ 1)()()( −∈= −ghhh rrR  
( )

.}{

,1,,2,}{

,}{

)1()(

)()1()(

)1()1(1

SRaA

nhRRaA

RaA

nn
ij

n

hhh
ij

h

ij

⊕==

−=⊕==

==

−

−  

Basic construction matrix is 

ijB =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

)(

)(

)(

)1(

n
ij

ij

aT

aT

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

)(

)1(

n
ij

ij

V

V

 where the transform T 

converts a binary string of 1−g  bits into a row vector 

of 1−g  components. The h-th component of the 

vector is the h-th bit in the input string. The h-th row of 
the basic matrix is used to construct the share 

image hF . 

Revealing: nFFU ++= 1  where “+” is the Boolean “OR”. 

 

2.3   Proof of the Construction 

Since the random matrices )1()1( ,, −nRR  are all distinct, the matrices nAA ,,1  

are also all distinct and all random, therefore each share does not reveal any 
information of S and security of the scheme is ensured. The quality of the scheme 
depends on the quality of the reconstructed image U. We now look at a pixel of the 

reconstructed image nFFU ++= 1 . Theorem 1 states the average grey and 

average contrast of U. 
 

Theorem 1. The proposed algorithm is a probabilistic (n, n)-VSS scheme with Pixel 
expansion 

( )1−= gm , 
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Average Grey 

)1/()]1())(
2

1
1[(/))((

1
−−+−−== − gkkgmUHE

nkβ , 

and Average Contrast 

)1(2

1
11 −

=−= −− gnkkk ββα . 

Proof.   
Let m be the pixel expansion, we have ( )1−= gm  according to the construction of 

the shares above. 

Since )()( )()1( naTaTU ++= , we have  

)()()()()()()( )1()1()2()2()1()1( sTrTrTrTrTrTrTU nnn ⊕+⊕+⊕+= −−−  

Substituting )( )(irT  with iV , we get 

0112211 VVVVVVVU nnn ⊕+⊕++⊕+= −−− . 

Here, 0V  is the coded form the original secret image S. That is, 

11
0 10 −−= kgV for ks = . Since 21211211 VVVVVVVV +=+=⊕+  

and 3221 VVVV ⊕++ 321 VVV ++= , we have 

)( 011221 VVVVVVU nnn ⊕+++++= −−− . 

This can be rewritten as 

)( 011 VVVWU nn ⊕++= −−   where 221 −+++= nVVVW . 

We know that )( 011 VVV nn ⊕+ −−  must have at least 1−k  bits being 1. That is 

)( 011 VVV nn ⊕+ −−  can be written as 11 −− kkgx  where each of the kg −  bits, 

denoted by x, may take value 0 or 1. Therefore, 11 11 −−−− =+= kkgkkg yxWU  also 

has at least 1−k  bits being 1. The probability for each y bit to be 1 is 
12

1
1 −−=

n
p  

since every of such bit depends on 1−n  random matrices. The total number of 1’s 

among these kg −  bits (the Hamming weight of the vector) is a random variable with 

a binomial distribution, and the expected value of the Hamming weight is  

)()()
2

1
1(

1
kgpkg

n
−=−×− − .                              (4) 

It follows that the expected Hamming weight of the entire 1−g  vector is 

)1()()
2

1
1())((

1
−+−×−= − kkgUHE

n
,                         (5) 
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Thus the Average Grey is 

               )1/()]1())(
2

1
1[(/))((

1
−−+−−== − gkkgmUHE

nhβ          (6) 

And the Average Contrast of the reconstructed image is 

            
)1(2

1
11 −

=−= −− gnkkk ββα                                              (7) 

The following example will help in illustrating the technique employed in the previous 
theorem. 

Example 1. An application of the proposed grayscale (3, 3)-VSS with 3=g . 

The secret image is shown in Figure 1(a). The three shadow images (shares) are in 
parts (b), (c), and (d). And the reconstructed image is in Fig. 1(e). 

 

(a) Original secret image 

      
 

   (b) Share 1                  (c) Share 2 
 

      

     (d) Share 3                  (e) Reconstructed the secret image 

Fig. 1. Application example of the grayscale (3, 3)-VSS scheme 
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3   The Size of Recognizable Regions 

With a probabilistic scheme, small regions (not individual pixels) of the secret image 
are correctly reconstructed. The smaller such regions can be, the better this scheme is. 
We now discuss the minimum size of the region that can be correctly recognized in an 
analysis similar to that in [12]. 

Consider a region of N pixels with the SAME grey level ( ksij = ) in the original 

secret image, and we are interested in the appearance of this region in the reconstructed 

image. The Average Grey of each of these N pixels is represented by kX  and kX  has 

a binomial distribution with xμ  and 2
xσ . The total visual effect of the region is closely 

related to ∑
=

=
N

i

i
kXZ

1

)( . In the construction of the shadow images, all the pixels are 

treated separately from other pixels, thus the N pixels are independent, therefore, we 
have 

[ ])1()()()()(
1

)(

1

)( −+−==== ∑∑
==

kkgpNNXEXEZE x

N

i

i
k

N

i

i
k μ  

where
12

1
1 −−=

n
p , 

[ ]))(1()()()( 2

1

)(

1

)( kgppNNkXVarXVarZVar x

N

i

i
N

i

i
k −−==== ∑∑

==

σ  

Using a Gaussian distribution to approximate the above binomial distribution, we 
can obtain the lower bound for N. According to Empirical Rule [12], about 99.73% of 
all values fall within three standard deviations of the mean. Hence, to recognize a 
region of grey level k, the region size should satisfy 

dNkkkk ⋅++>− −− 11 33 σμσμ , 

that is 

[ ]
[ ] NdkgpNpkkgpN

kgpNpkkgpN

++−−+−++−

>−−−−+−

)1)(1(3)2()1(

))(1(3)1()(
 

[ ] )1)(1(3))(1(31 +−−+−−>−+− kgpNpkgpNpdpN  

( )
dp

kgkgppN
N

−−
+−+−⋅−⋅

>
1

)1()()1(3
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therefore 
2

1

1
)1(9 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−
+−+−

⋅−>
dp

kgkg
ppN                                                          (8) 

When kg = , the above inequality becomes 

2)1(

)1(9

dp

pp
N

−−
−>                                                                                                      (9) 

Which indicates the minimum size of a recognizable region between grey level g and 
grey level 1−g . When 2=g , the above is the minimum region size in a binary 

image. In the (k, n) probabilistic VSS scheme proposed in [12], the minimum region 
size is 

N Yang > 9× 

2

10

1100 )1()1(
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
−+−

dpp

pppp
.                                                                  (10) 

With  1p = 0 and 0p = 
12

1
−n

, it becomes  

N Yang > 
2

0

00

)(

)1(9

dp

pp

−
−××

                                                                                       (11) 

Comparing Equation (9) and (11), we have the following observations: 
The minimum size of a recognizable region between grey level g and grey level 

1−g  of the proposed scheme is the same as that between black and white region in the 

(n, n)-Prob-VSS scheme of the (k, n) )-Prob-VSS scheme of [12]. 
When our proposed scheme is applied to binary images, i.e., 2=g , its minimum 

region size is the same as that in [12]. 

4   Conclusions 

This paper proposes a probabilistic (n, n) visual secret sharing scheme for grayscale 
images. Its pixel expansion factor is 1−g  where g is the number of grey levels. This is 

significantly smaller than the previous result )1(2 1 −×− gn . When applied to binary 

images, it has the same minimum size for recognizable regions as that of the Prob-VSS 
scheme of [12]. We are currently investigating the approaches for a probabilistic (k, 
n)-visual secret sharing scheme for grayscale images. 
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Abstract. Algebraic attacks have been applied to several types of clock-
controlled stream ciphers. However, to date there are no such attacks in
the literature on mutually clock-controlled ciphers. In this paper, we
present a preliminary step in this direction by giving the first alge-
braic analysis of mutually clock-controlled feedback shift register stream
ciphers: the bilateral stop-and-go generator, A5/1, Alpha 1 and the
MICKEY cipher. We show that, if there are no regularly clocked shift
registers included in the system, mutually clock-controlled feedback shift
register ciphers appear to be highly resistant to algebraic attacks. As a
demonstration of the weakness inherent in the presence of a regularly
clocked shift register, we present a simple algebraic attack on Alpha 1
based on only 29 keystream bits.

Keywords: stream cipher, algebraic attacks, clock-control.

1 Introduction

Algebraic attacks on stream ciphers were first introduced by Courtois and Meier
[14] where the keystream is used to solve a system of multivariate polynomial
equations related to the initial states of the cipher. Many regularly clocked feed-
back shift register (FSR) based stream ciphers have since fallen to algebraic
attacks [2,11,12,13,17,8], whereas irregularly clocked stream ciphers have been
more resistant. There are, to our knowledge, only three papers in the literature
dealing with algebraic attacks on irregularly clocked stream ciphers [14, 1, 22].
In the current paper, we focus on an analysis of mutually clock-controlled FSR-
based stream ciphers where the clocking is irregular.

The standard algebraic attack as presented in [14] uses the output of a cipher
to generate relational equations between the initial state bits. The monomials
in these equations are then treated as new variables in order to linearize the
system. If the result is an over-defined system of linear equations (often sparse),
Gaussian elimination techniques [20] are then applied to determine the initial
state bits. When constructing a cipher, the hope is that the time to solve the
system generated is greater than that of exhaustive search.

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 201–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A variation on the above idea is to first discover a function which, when mul-
tiplied by the function describing the initial state relations, significantly reduces
the degree, leading to a faster Gaussian solution. Several papers have addressed
the issue of finding multipliers algorithmically [19,7,3,15] and [24], but at present,
none of these guarantees an efficient determination of a low degree multiple for
very large systems of equations of high degree such as those produced by irregular
clocking ciphers.

Guessing some initial state bits in order to reduce the number of monomials
generated is a method that has been used to successfully attack some ciphers
[1, 14]. In Section 5, we apply this guessing method to Alpha 1 targeting its
regularly clocked register. We use only 29 bits of keystream to break the cipher
in less than brute force time indicating a surprising weakness in the cipher.

In Section 2, we define what we mean by a mutually clock-controlled feedback
shift register and state a number of theoretical results which indicate that these
are in general highly immune to the standard algebraic attack. Sections 3, 4,
5 and 6 respectively present an analysis of the four ciphers bilateral stop-and-
go [23], A5/1 [9], Alpha 1 [16] and the MICKEY family [4,5,6]. We conclude in
Section 7.

2 Algebraic Presentation

In irregularly clocked stream ciphers, one cannot tell from the output which
registers clocked and which did not. However, knowledge of the architecture of
the system permits us to write equations representing the clocking. The more
complex the clocking mechanism is, the more complex the equations (high de-
gree, large number of monomials) are. Mutually clocking registers is one way of
adding complexity. By this we mean that (at least) two registers depend on bits
of at least two registers in the cipher for their clocking determination. The four
ciphers mentioned at the end of Section 1 are examples.

Definition 1. A Mutually Clock-Controlled FSR-based stream cipher
is a stream cipher consisting of two or more FSRs where at least two FSRs use
bits from each other for clocking. We denote such a stream cipher by MCFSR.

Assume that we have an MCFSR with just two registers R1 and R2 of size l
and m respectively and that the clocking of each register depends on bits from
both registers. We can express this dependence by a function g(xi, yi) of bits xi

from R1 and yi from R2. The function g maps to binary pairs indicating whether
or not the corresponding register clocks, as indicated in Table 1. It is usually
not practicable to allow the situation in which neither R1 nor R2 clocks, so this
situation is often changed to both registers clocking. Any permutation of the
above list can of course also be chosen.

Based on the table, one can easily incorporate the clocking mechanism into
the internal state of each register. Letting x represent the first bit of g(xi, yi)
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Table 1. Description of clocking

g(xi, yi) Register to be clocked

0 0 R1 and R2
0 1 R2 not R1
1 0 R1 not R2
1 1 R1 and R2

and y the second, the effect of the clocking mechanism or the internal state of
registers R1 and R2 at time t can be described as follows:

R1t
i = R1t−1

i

[
(xt−1 + 1)(yt−1 + 1) + xt−1(yt−1 + 1) + xt−1yt−1 + 1

]

+R1t−1
i−1

[
(xt−1 + 1)(yt−1 + 1) + xt−1(yt−1 + 1) + xt−1yt−1

]
(1)

R2t
i = R2t−1

i

[
(xt−1 + 1)(yt−1 + 1) + (xt−1 + 1)yt−1 + xt−1yt−1 + 1

]

+R2t−1
i−1

[
(xt−1 + 1)(yt−1 + 1) + (xt−1 + 1)yt−1 + xt−1yt−1

]
(2)

Despite the fact that the clocking mechanism used is very simple, the clocking
of each register is nonlinear with degree increasing quickly as time t increases.

The following theorem and its corollaries describe the strengths of this situa-
tion. For simplicity, we often reduce to the case of two registers.

Theorem 1. An MCFSR with two registers of size l and m will generate equa-

tions of degree equal to l + m and a maximum of
l+m∑
j=1

(
l + m

j

)
monomials.

Proof: Label the bits of register 1 (R1), xi and the bits of register 2 (R2), yi.
Assume that the clocking of Ri can be described by a nonlinear function fi of
degree d that takes as input some values of xi and yi and determines which
register is to be clocked. Assume also that the output of the system is given
by some combination of the outputs of the two registers. We can write the j′th
internal state of each register as

Rkt
j = Rkt

j(f(xi, yi)t + 1) + Rkt
j−1(f(xi, yi)t) (3)

for k = 1, 2. At time t = 1, each position Rij contains an expression of minimum
degree d. At time t = 2, the degrees of the expressions in Rij doubles; this
continues until the degree reaches the size of the internal state size of the cipher,
which is l + m. Thus the maximum degree of the equations generated from the
system is l + m (which can always be achieved assuming the cipher is permitted
to keep producing output) and the maximum number of monomials is

M =
l+m∑
j=1

(
l + m

j

)
(4)
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The complexity of solving such a system of equations in an MCFSR using this
linearization approach is therefore at least

⎡
⎣

l+m∑
j=1

(
l + m

j

)⎤
⎦

ω

(5)

�
where 2.807 ≤ ω ≤ 3 [20], which is greater than the complexity of exhaustive
search using currently known best algorithms for solving equations.

As noted in the introduction, guessing some initial state bits may assist an
attack. In the corollary following, we easily describe the impact of such guessing.

Corollary 1. Guessing u bits of the internal state bits of a mutually clocked
controlled stream cipher reduces the overall degree of the equations by u.

Proof: One can see from equation (5) of Theorem 1 that each guess of u bits
reduces the degree of the equations by u. In addition, the complexity of algebraic
attacks using the guessing approach will be

2u

⎡
⎣

(l+m−u)∑
j=1

(
(l + m − u)

j

)⎤
⎦

ω

(6)

�
Corollary 2. The existence of a regularly clocked register in an MCFSR reduces
the complexity of the algebraic attack to less than exhaustive key search, assuming
that the key size is the same as the total number of initial state bits.

Proof: Let l be the total number of bits from regularly clocked registers, and k
the key size. Then guessing all k − l bits from the irregularly clocked registers

produces only linear equations in
(

l
1

)
= l monomials using the procedure of

the proof of Theorem 1. The overall attack complexity is then

2k−llω < 2k if l is at least 4. (7)

�
One might conjecture that increasing the number of clock-control bits used in an
MCFSR would increase the level of complexity of the corresponding equations.
The following corollary shows that this is only partly true.

Corollary 3. Increasing the number of clock-control bits in an MCFSR may
increase the degree of the equations generated during the first outputs but does
not increase the maximum degree of the equations generated.

Proof: Equation (3) shows that the maximum degree of the equations generated
is independent of the number of clock-control bits. �
As mentioned in the Introduction, multiplier functions may exist which can
reduce the degrees of the functions under consideration. However, the larger the
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system of equations generated, and the higher the degrees of these equations,
the more difficult it is to find such multipliers. Thus, one of the strategies for
choosing FSR-based ciphers which are immune to algebraic attack is to make
sure that the number and degree of equations generated is high. MCFSRs appear
to have both properties.

3 The Bilateral Stop-and-Go Generator

This section applies the analysis of Section 2 to the bilateral-stop-and-go gener-
ator. We start by a description of the cipher followed by an algebraic analysis.

3.1 Description of the Bilateral Stop and Go Generator

The bilateral Stop-and-Go generator is one of the first known examples of a
mutually clock-controlled stream cipher [23]. It consists of two linear feedback
shift registers (LFSRs), R1 and R2 of the same length l. Both LFSRs control
their own clocking using two bits from each LFSR in the following way. Let a, b
and c, d be pairs of bits from R1 and R2 respectively. If (a, b) = (0, 1), then
clock only R1. On the other hand, if (c, d) = (0, 1) �= (a, b), then clock only R2,
otherwise clock both registers. Since there are 4 bits controlling the clocking of
R1, it can be seen that R1 is clocked with probability equal 13/16 whereas R2
is clocked with 3/4 probability. To the best of our knowledge, there is only one
correlation attack on this cipher by Golić [21] which requires l keystream bits
with O(2l+3log2l) operations.

3.2 Algebraic Analysis of the Bilateral Stop and Go Generator

Let the output of register R1 be R1l and R2 be R2l. Based on the description
of the way registers R1 and R2 are clocked, we can describe the effect of the
clocking mechanism on the internal state of each register described by a binary
truth table of all the clocking possibilities respectively as follows

R1t
i = R1t−1

i ((at−1bt−1ct−1dt−1 + at−1bt−1dt−1 + bt−1ct−1dt−1 + bt−1dt−1 +
ct−1dt−1 + dt−1) + R1t−1

i−1((a
t−1bt−1ct−1dt−1 + at−1bt−1dt−1 +

bt−1ct−1dt−1 + bt−1dt−1 + ct−1dt−1 + dt−1 + 1) (8)

Thus R11 is given by

R1t
1 = R1t−1

1 ((at−1bt−1ct−1dt−1 + at−1bt−1dt−1 + bt−1ct−1dt−1 + bt−1dt−1 +
ct−1dt−1 + dt−1) + FeedbackA((at−1bt−1ct−1dt−1 + at−1bt−1dt−1 +
bt−1ct−1dt−1 + bt−1dt−1 + ct−1dt−1 + dt−1 + 1)

Similarly R2t
i can be represented as

R2t
i = R2t−1

i (at−1bt−1 + bt−1) + R2t−1
i−1(a

t−1bt−1 + bt−1 + 1) (9)
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And the R2t
1 position is given by

R2t
1 = R2t−1

1 (at−1bt−1 + bt−1) + FeedbackB(at−1bt−1 + bt−1 + 1)

The output of the generator at time t is:

zt = R1t
l + R2t

l

For the purpose of our paper, we will substitute the values for R1t
l and R2t

l using
equations 8 and 9 respectively and expand it as follows:

zt =f t =at−1bt−1ct−1dt−1R1t−1
i + at−1bt−1ct−1dt−1R1t−1

i−1 + at−1bt−1dt−1R1t−1
i

+bt−1ct−1dt−1R1t−1
i + at−1bt−1dt−1R1t−1

i−1 + bt−1ct−1dt−1R1t−1
i−1

+bt−1dt−1R1t−1
i + ct−1dt−1R1t−1

i + bt−1dt−1R1t−1
i−1 + ct−1dt−1R1t−1

i−1

+at−1bt−1R2t−1
i +at−1bt−1R2t−1

i−1+dt−1R1t−1
i +dt−1R1t−1

i−1 + bt−1R2t−1
i

+bt−1R2t−1
i−1 + R1t−1

i−1 + R2t−1
i−1. (10)

The output function f is initially of degree 5, however, because of the nonlinear
update function of each register, the degree tends to increase. According to
Theorem 1, the maximum degree of the equations generated from this cipher is
d = 2l and the number of monomials expected to appear is given by equation 4.
Clearly, trying to recover the internal state of such generators using the standard
algebraic attack will usually require complexity much worse than exhaustive
search on the internal state size.

3.3 Reducing the Overall Degree of the Equations

In this section, we analyse the applicability of two approaches used in reduc-
ing the overall degree of the equations on our cipher. As Corollary 1 shows,
guessing any u bits for u ≤ 2l will result in the following attack complexity
2u

∑2l−u
i=1

(
2l−u

i

)ω
. In fact, guessing the internal state bits of R1 has the same ef-

fect as guessing the internal state bits of R2 since both registers are of the same
length. In order to get an algebraic attack that is less complex than exhaus-
tive key search when some bits are guessed, the following relations must hold
2u

∑2l−u
i=1

(
2l−u

i

)ω
< 22l. However, it can be seen that this relation will never hold

true for any of its parameters; therefore, the guessing approach is not suitable.
In the other approach, the attacker aims to find annihilators or multiples that

will reduce the overall degree of the equations. By looking at the output given
by equation 10, one can see that there exist many multiples and annihilators for
the output function. Table 2 below lists the number of multiples of g found on
the output and the number of h such that h = gf .

Note that the number 0 in Table 1 indicates that there exist many degree 4
multiples of g such that fg = 0. If we multiply both sides of equation 10 with
at−1 what remains is the following expression:

fg = fat−1

= at−1ct−1dt−1R1t−1
i + at−1ct−1dt−1R1t−1

i−1

+at−1dt−1R1t−1
i + at−1dt−1R1t−1

i−1 + at−1R1t−1
i−1 + at−1R2t−1

i−1. (11)
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Table 2. Number of multiples of g found

Degree of g Degree of h Total Number of g and h

1 4 4

2 3 and 4 10

3 3 and 4 42

4 0 and 4 48

This multiplication eliminates many terms of different degrees. In particular, the
multiple eliminates the effect of bt−1. However, the degree of such multiples keeps
increasing, so reducing the possibility of an algebraic attack. Note also that we
have observed that multiplying the output of the generator with

∏
(xi+1), where

xi runs the contents bits through R1, then the overall degree of the equations
can be reduced from 2l to l + 1.

4 A5/1

4.1 Description of A5/1

A5/1 consists of three short binary LFSRs of lengths 19, 22 and 23, denoted
by R1, R2 and R3, respectively. The three LFSRs have the following primitive
feedback polynomials:

f1(x) = x19 + x5 + x2 + x + 1

f2(x) = x22 + x + 1

f3(x) = x23 + x15 + x2 + x + 1

At time t, denote the output of register Ri as Rit and the output keystream
of A5/1 as zt. The output of A5/1 is given as the XOR of the output of the
three LFSRs. The LFSRs are clocked in an irregular fashion, determining a type
of stop/go clocking with a majority rule as follows. Each register has a certain
clocking tap used to determine its clocking and the clocking of other registers.
R1t

9, R2t
11 and R3t

11 are the bits taken from R1, R2 and R3 as input to the
majority function. The majority function is given by

M t = (R1t
9R2t

11 + R1t
9R3t

11 + R2t
11R3t

11)

R1 gets clocked if R19 agrees with the majority function. Similarly, register R2
gets clocked if R2t

11 agrees with the majority function. Finally, register R3 gets
clocked if R3t

11 agrees with the majority function.

4.2 Algebraic Analysis of A5/1

Based on the clocking mechanism used in A5/1, it is possible to rewrite the inter-
nal states of the three registers so they take into account the clocking mechanism



208 S. Al Hinai, L.M. Batten, and B. Colbert

in place, which as a result will produce valid relations that hold true for every
clock. Each ith stage in R1 is replaced by:

R1t
i = R1t−1

i (R1t−1
9 + M t−1) + (R1t−1

i−1(1 + R1t−1
9 + M t−1)) (12)

and the left most position is given by

R1t
1=R1t−1

1 (R1t−1
9 +M t−1)+((R1t−1

19 +R1t−1
18 +R1t−1

17 +R1t−1
14 )(1+R1t−1

9 +M t−1)).

Similarly for R2, each ith stage in R2 is replaced by:

R2t
i = R2t−1

i (Bt−1
11 + M t−1) + (R2t−1

i−1(1 + R2t−1
11 + M t−1)) (13)

and the left most position is given by

R2t
1 = R2t−1

1 (R2t−1
11 + M t−1) + ((R2t−1

21 + R2t−1
22 )(1 + R2t−1

11 + M t−1)).

Finally, each ith stage in R3 is replaced by:

R3i = R3t−1
i (R3t−1

11 + M t−1) + (R3t−1
i−1(1 + R3t−1

11 + M t−1)) (14)

and the left most position is given by

R3t
1=R3t−1

1 (R3t−1
11 +M t−1)+((R3t−1

23 +R3t−1
22 +R3t−1

21 +R3t−1
8 )(1+R3t−1

11 +M t−1)).

The output is given by
z = R1t

19 + R2t
22 + R3t

23

and zt can be described as follows

zt = f t = R1t−1
19 R1t−1

9 R2t−1
11 + R1t−1

9 R1t−1
18 R2t−1

11 + R1t−1
9 R2t−1

22 R2t−1
11 +

R1t−1
9 R2t−1

11 R2t−1
21 + R1t−1

9 R2t−1
11 R3t−1

23 + R1t−1
19 R1t−1

9 R3t−1
11 +

R1t−1
9 R1t−1

18 R3t−1
11 + R1t−1

9 R2t−1
22 R3t−1

11 + R1t−1
19 R2t−1

11 R3t−1
11 +

R1t−1
18 R2t−1

11 R3t−1
11 + R2t−1

22 R2t−1
11 R3t−1

11 + R1t−1
9 R2t−1

21 R3t−1
11 +

R2t−1
11 R2t−1

21 R3t−1
11 + R1t−1

9 R3t−1
23 R3t−1

11 + R2t−1
11 R3t−1

23 R3t−1
11 +

R1t−1
9 R2t−1

11 R3t−1
22 + R1t−1

9 R3t−1
11 R3t−1

22 + R2t−1
11 R3t−1

11 R3t−1
22 +

R1t−1
19 R1t−1

9 + R1t−1
9 R1t−1

18 + R2t−1
22 R2t−1

11 R2t−1
11 R2t−1

21 +
R3t−1

23 R3t−1
11 + R3t−1

11 R3t−1
22 + R1t−1

18 + R2t−1
21 + R3t−1

22 . (15)

4.3 Reducing the Overall Degree of the Equations

Using the guessing approach, the complexity of the approach varies depending
on which registers are guessed and which registers are solved for. Table 3 lists
the results for all possibilities one can take. It can be seen from Table 3, that
the best result obtained is by guessing R2 and R3 and solving for the internal
state of register 1. However, the complexity is still much higher than exhaustive
key search.
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Table 3. Algebraic attacks on A5/1 with the guessing approach

Guessed Register Max degree of equations Total Attack Complexity

R1 45 ≈ (219.2182.5) = 2201.5

R2 42 ≈ (222.2169.7) = 2191.7

R3 41 ≈ (223.2165.4) = 2188.4

R1 and R2 23 ≈ (241.288.7) = 2129.7

R1 and R3 22 ≈ (242.284.5) = 2126.5

R2 and R3 19 ≈ (245.271.8) = 2116.8

As for the approach which is based on finding low degree multiples, the fol-
lowing was found. It is clear that the degree of the output function is initially 3.
But as the internal state of each register in the ciphers is nonlinearly updated,
the degree of the generated equations will increase. Based on Theorem 1, the
maximum degree of the equations generated from A5/1 is d = l + m + n = 64
and the number of monomials expected to appear is given by equation 4. Clearly,
trying to recover the internal state of such generators using the classical alge-
braic attack will require complexity much worse than exhaustive search on the
internal state size.

We have not found any multiplier functions g of degree 1 or 2, however, we
have found 9 functions of degree 3 such that fg = 0. But as expected, the
degree of these functions increases. Interestingly though, some of these functions
eliminate the effect of one or more registers.

5 Alpha 1

5.1 Description of Alpha 1

Alpha 1 is based on four binary linear LFSRs of lengths 29, 31, 33 and 35 bits,
which are denoted as R1, R2, R3 and R4 respectively.

The LFSRs have the following feedback polynomials:

f1(x) = x29 + x27 + x24 + x8 + 1

f2(x) = x31 + x28 + x23 + x18 + 1

f3(x) = x33 + x28 + x24 + x4 + 1

f4(x) = x35 + x30 + x22 + x11 + x6 + 1

At time t, denote the output of register Ri as Rit and the output keystream
of Alpha 1 as zt. The keystream bit is a function of the output bit of each of the
four registers.

zt = f(R1t, R2t, R3t, R4t)
zt = R1t + R2t + R3t + R4t + (R2tANDR3t). (16)

Let Rij denote the jth stage of LFSRi. While R1 is regularly clocked, R2, R3
and R4 are clocked in a stop/go fashion according to the following majority rule.
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Alpha 1 employs two majority rule functions, M1t and M2t, and uses pairs of
clocking taps from R2, R3, and R4 to control the three registers clocking, where
M1t and M2t are respectively given by

M1t = R2t
11R3t

23 + R2t
11R4t

12 + R3t
23R4t

12

and
M2t = R2t

22R3t
11 + R4t

25R2t
22 + R3t

11R4t
25.

R2 is clocked if R2t
11 agrees with M1t and R2t

22 agrees with M2t. R3 is clocked
if R3t

23 agrees with M1t and R3t
11 agrees with M2t. Finally, R4 is clocked if R4t

12

agrees with M1t and R4t
25 agrees with M2t.

5.2 Algebraic Attack on Alpha 1

Before we describe our attack, we show how to obtain relationships between the
internal states of the cipher with the output that takes into account the irregular
clocking used. As R1 is regularly clocked, then each ith stage in R1 is replaced
by:

R1t
i = R1t−1

i−1.

Each ith stage in R2 is replaced by: R2t
i =

R2t−1
i (R2t−1

11 +R2t−1
23 +M t−1

1 +M t−1
2 )+R2t−1

i−1(R2t−1
11 +R2t−1

23 +M t−1
1 +M t−1

2 +1)

and the left most position is given by R2t
1 =

R2t−1
1 (R2t−1

11 + R2t−1
23 + M t−1

1 + M t−1
2 ) + ((1 + R2t−1

11 +
R2t−1

23 + M t−1
1 + M t−1

2 )(R2t−1
31 + R2t−1

28 + R2t−1
23 + R2t−1

18 )).

Each ith stage in R3 is replaced by: R3t
i =

R3t−1
i (R3t−1

23 +R3t−1
11 +M t−1

1 +M t−1
2 )+R3t−1

i−1(R3t−1
23 +R3t−1

11 +M t−1
1 +M t−1

2 +1)

and the left most position is given by

Rt
1 = R3t−1

1 (R3t−1
23 + R3t−1

11 + M t−1
1 + M t−1

2 ) +
((R3t−1

23 + R3t−1
11 + M t−1

1 + M t−1
2 + 1)(R3t−1

33 + R3t−1
28 + R3t−1

24 + R3t−1
4 )).

Finally, each ith stage in R4 is replaced by: R4t
i =

R4t−1
i (R4t−1

12 +R4t−1
25 +M t−1

1 +M t−1
2 )+R4t−1

i−1(R4t−1
12 +R4t−1

25 +M t−1
1 +M t−1

2 +1).

The output of the cipher is given by

zt = R1t
29 + R2t

31 + R3t
33 + R4t

35 + R2t
31R3t

33. (17)
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5.3 Reducing the Overall Degree of the Equations

It is expected that Alpha 1 will generate equations of a maximum degree of
d = 99 with number of monomials equal to M =

∑99
i=1

(
99
i

)
. Thus applying the

standard algebraic attack will have much worse complexity than the complexity
of exhaustive keysearch. Note that the regularly clocked register, R1, will have
no effect at all in determining the size of the generated equations. Table 4 lists
different choices for the guessing and solving approach for Alpha 1. Note that the
table only considers guessing the mutually clocked registers. It is evident from

Table 4. Standard Algebraic attacks on Alpha 1 with the guessing approach

Guessed Register Max degree of equations Total Attack Complexity

R2 68 ≈ (231.2281) = 2312

R3 66 ≈ (233.2272.6) = 2305.6

R4 64 ≈ (235.2264) = 2299

R2 and R3 35 ≈ (264.2139.8) = 2203

R2 and R4 33 ≈ (266.2131) = 2197

R3 and R4 31 ≈ (268.2122.7) = 2190.7

Table 4 that none of the above choices will lead to an attack that is better than
exhaustive key search. However, based on Corollary 2, we see that the key size of
the cipher is the same as the internal state size k = 128, and there is at least one
register that is regularly clocked. Hence, using Corollary 2 and equation (17),
guessing R2, R3 and R4 will result in linear equations in the output, containing
unknowns from R1 only. Thus the complexity of this basic algebraic attack is
231+33+35(29)2 = 2108, which is less than exhaustive key search. Table 5 lists the
best known attacks on the Alpha 1 stream ciphers. We tested the above attack

Table 5. Best known attacks on the Alpha 1 stream cipher

Attack Keystream Attack Complexity

[10] 35, 000 bits 261

Our attack 29 bits 2108

on the full version of Alpha 1 by running some experimental simulations. In the
simulations we tested two things; first, whether 29 bits are sufficient to solve the
system of equations and give unique solutions. Second, whether 29 bits is enough
to enable us to reject wrong guesses for the bits of R1 since it might happen
that inequivalent internal state bits might result in the same 29 keystream bits.
This never happened in our simulations; we were always able to verify that the
correct internal state had been chosen. In any event, 128 bits of keystream would
be sufficient to guarantee the correct internal state, and this is well within the
limits of the typical frame-length.
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In the experiment, we first generated and recorded 29 keystream bits by ran-
domly choosing the values of all four registers. Then we applied the attack ap-
proach briefly outlined above for 100,000 runs, in each run randomly guessing
the contents of R2, R3 and R4. We next generated a linear system of equations
in the unknowns of R1 and solved it using the F4 algorithm of the Gröbner bases
method available in Magma [18]. In each case, we obtained a unique solution for
the bits of R1 and used these, together with the guessed bits for R2, R3 and R4
to reconstruct the keystream bits which were then compared with the recorded
keystream. In each run, we managed with 100 percent success rate to solve the
system of equations and detect if the guesses made were right or wrong. This was
done Magma 2.11 on the SGI Origin 3000 using CPU at 600 MHz. The fact that
this can be done with only 29 bits of keystream suggests a here-to-fore unknown
weakness in the Alpha1. Appendix A provides the Magma implementation of
the attack on Alpha 1.

As for the use of low degree multiples and annihilators, it is clear that even if
there exist any, their degree will not be constant and will keep increasing.

6 Algebraic Analysis of MICKEY

The MICKEY family of stream ciphers consists of three ciphers, MICKEY-
80 v1 uses a key size of 80-bit and internal state size of 160-bit, MICKEY-80
v2 of key size 80-bit and internal state size 200-bit and MICKEY-128 of key
size 128-bit and internal state size of 320-bit. MICKEY uses an LFSR and a
Nonlinear Feedback Shift Register (NLFSR). The registers are clocked in an
irregular manner determined by some of the internal states bits taken from both
registers. Most of the previously known clock-controlled generators used the
LFSR for controlling the clocking of their registers. The authors of MICKEY
believe that ”‘algebraic attacks usually become possible when the keystream is
correlated to one or more linearly clocking registers, whose clocking is either
entirely predictable or can be guessed”: which explains why they used both the
LFSR and the NLFSR to control clocking in an irregular manner. In this section
we show that even with MICKEY’s novel technique for irregularly clocking the
registers, we can still get an expression that deals with the irregular clocking
which also relates its output with its input and holds true for every single clock t.

6.1 Description

Briefly, the MICKEY ciphers consist of two registers R and S each of the same
length l. The bits of the registers at time t are labeled as Rt

0, . . . , R
t
l−1 and

St
0, . . . , S

t
l−1 respectively. R is a LFSR and S is a NLFSR.

6.2 Algebraic Analysis of the MICKEY Stream Ciphers

Our analysis is based on MICKEY-80 v1 [4], which has an 80 key bit and a total
internal state size of 160 bits, but can easily be adapted to the other versions.
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We derive an expression that deals with the irregular clocking of R and S. The
internal states of R change depending on the bit that controls the clocking of
R. If the control bit Cr of register R is 0, then R simply shifts to the right and
if the control bit is 1, then as well as shifting to the right, the bits are XORed
back.

The control bits Cr and Cs (the control bit of S) are defined as:

Ct
r = St

27 + Rt
54, and

Ct
s = St

53 + Rt
26..

We assume that the control bits are unknown; however, we can derive an ex-
pression that deals with both cases. For Cr

Rt
i = Rt−1

i−1 + Rt−1
i Ct−1

r . (18)

Depending on the control bit Cs that controls the clocking of register S, St
i can

have different values. We can derive an expression that holds true for all clocks
and takes into account all possible values for Ct

s. Four sets of fixed, known values
are defined in [4]: {COMP0i}l−1

i=0, {COMP1i}l−1
i=0, {FB0i}l−1

i=0 and {FB1i}l−1
i=0

and are used to define the bits of the NLFSR as follows

St
i = Ŝt

i +FB0i ×FeedbackBitSt × (Ct
s +1)+FB1i ×FeedbackBitSt ×Ct

s (19)

where:

Ŝt
i =

⎧
⎨
⎩

St
i−1 + ((St

i + COMP0i) × (St
i+1 + COMP1i)) if 1 < i < l

0 if i = 0
St

l−1 if i = l − 1.

In addition, the value of FeedbackBitSt is equal to St
l−1 if the key initialization

is ignored. The output of the cipher is given by

zt = Rt
0 + St

0 (20)

which can be rewritten using equations 18 and 19 as zt = f t =

Rt
0+Rt

1C
t
r + Ŝt

0+FB01×FeedbackBitSt ×(Ct
s +1)+FB10×FeedbackBitSt ×Ct

s

(21)

From equation 21, it can be seen that the degree of the generated equations from
the MICKEY stream cipher starts at 2 and increases every clock at least by 3
until it reaches degree 2l. Guessing l bits will result in degree l equations.

Experimental results show that for MICKEY-80 v1 several annihilators exist.
Similarly, annihilators can be determined for the other two versions of MICKEY.
The equations can then be linearised and solved. The authors noticed that chang-
ing the control bits has no impact on the annihilators. The complexity of alge-
braic attack still needs to be determined, and will be significantly reduced by the
existence of the annihilators. The algebraic structure of the cipher is suggestive
that other techniques may exploit this structure.
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7 Conclusion

We have presented some theoretical results on the complexity of the algebraic
equations generated from mutually clock-controlled feedback shift registers. Such
ciphers appear to be particularly resistant to algebraic attacks and we have illus-
trated this on four well-known ciphers, the bilateral stop-and-go, A5/1, Alpha
1 and MICKEY. We have also presented a relatively simply attack on Alpha 1
based on only 29 bits of keystream. We recommend the use of mutually clock-
ing cipher design in order to resist algebraic attacks. We have also exploited a
result (Corollary 1) which allows us to optimize the number of bits guessed in
successfully attacking Alpha 1 with only 29 bits of keystream.
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Abstract. In this paper, four new families S1, S2, S3 and S4 of binary
sequences of period 2n − 1 with low correlation are presented, where S1,
S3 are defined for odd n, and S2, S4 for even n. The family S1 has six-
valued correlations, while S2 and S3 have either six-valued correlations
or eight-valued correlations, and S4 has either eight-valued or ten-valued,
depending on the choice of parameters.

Keywords: Gold sequence family, Gold-like sequence family, low cor-
relation.

1 Introduction

Families of binary sequences with low correlation have important applications in
CDMA communication systems and cryptography[1][2]. Sidelnikov’s bound[3] is
used to test the optimality of sequence families, which states that for any family
of k binary sequences of period N , if k ≥ N , then

Cmax ≥ (2N − 2)1/2,

where Cmax is the maximum magnitude of correlation values except for the
in-phase autocorrelation value. The Gold family[4] is the best known binary
sequence family which satisfies Sidelnikov’s bound. It has correlations 2n −
1, −1, −1 ± 2(n+1)/2, where n is odd. But the linear span of Gold sequences is
too small to resist attacks based on Berlekamp-Massey algorithm. So the Gold-
like families with larger linear span were constructed. The odd case of Gold-like
sequence family was discovered by Boztas and Kumar[5], whose correlations are
identical to those of Gold sequences. While for even n, Udaya[6] introduced fam-
ilies of binary sequences with correlations 2n − 1, −1, −1 ± 2n/2, −1 ± 2n/2+1,
which corresponds to even case Gold-like sequence family. To get more sequence
families with low correlation, Kim and No[7] constructed families S and U . The
family S has correlations 2n − 1, −1, −1 ± 2(n+e)/2, while U has correlations
2n − 1, −1, −1 ± 2n/2, −1 ± 2n/2+e, where n and e are positive integers, e|n.

In this paper, we present four new families S1, S2, S3 and S4 of binary se-
quences with low correlation and large linear span.
� This work was supported by the National Natural Science Foundation of China
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2 Preliminaries

Let GF (2n) be the finite field with 2n elements, then the trace function from
GF (2n) to GF (2) is defined as[8]

trn
1 (x) =

n−1∑
i=0

x2i

.

Let S = {(si(t))t≥0|0 ≤ i ≤ M − 1} be a family of M binary sequences with
period N , then the correlation function between two sequences si and sj is

Ci,j(τ) =
N−1∑
t=0

(−1)si(t)+sj(t+τ), (1)

where 0 ≤ i, j ≤ M − 1, 0 ≤ τ ≤ N − 1. When i = j, then Ci,i(τ) is called the
autocorrelation function. Denote

Cmax = max{|Ci,j(τ)| | either i �= j, or i = j and τ �= 0}.

Let α be a primitive element of GF (2n) and f(x) a function from GF (2n) to
GF (2). Replacing x by αt, then f(x) defines a binary sequence a = (a(t))t≥0 of
period dividing N = 2n − 1, where

a(t) = f(αt), t = 0, 1, · · ·

Remark 1. Without extra explanation, we always assume that α is a primitive
element of GF (2n) in this paper.

If fi(x) and fj(x) define sequence si and sj , then Ci,j(τ) defined in (1) can also
be represented as

Ci,j(τ) =
∑

x∈GF (2n)∗

(−1)fi(δx)+fj(x)=̂Ri,j(δ),

where δ = ατ ∈ GF (2n)∗. Let f(x) be a function from GF (2n) to GF (2), the
Hadamard transform of f(x) is defined as:

f̂(λ) =
∑

x∈GF (2n)

(−1)f(x)+trn
1 (λx),

where λ ∈ GF (2n). It is easy to get

f̂(λ)2 =
∑

w∈GF (2n)

(−1)f(w)+trn
1 (λw) · (

∑
x∈GF (2n)

(−1)f(x)+f(w)+f(x+w)). (2)

Any choice of basis e1, e2, · · · , en for GF (2n) as a vector space over GF (2) de-

termines a one-to-one correspondence from GF (2n) to GF (2)n by x =
n∑

i=1

xiei →
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x = (x1, x2, · · · , xn). In this sense, the Hadamard transform of f(x) is equiva-
lent to the Walsh spectrum of f(x). Our analysis of correlations is based on the
discussion of the corresponding Walsh spectrum.

All sequence families considered in this paper are constructed by the trace
function trn

1 (x) and some function p(x) from GF (2n) to GF (2). Let

fj(x) =
{

trn
1 (λjx) + p(x), 0 ≤ j ≤ 2n − 1

trn
1 (x), j = 2n ,

Then the family S is defined as:

S = {(sj(t))t≥0|0 ≤ j ≤ 2n},

where sj(t) = fj(αt), and {λ0, λ1, · · · , λ2n−1} is an enumeration of the elements
in GF (2n). Furthermore, if p(0) = 0, then the correlation function between two
sequences defined by fi(x) and fj(x) can be rewritten as:

Ci,j(τ) =
∑

x∈GF (2n)∗

(−1)fi(δx)+fj(x)

= −(−1)g(0) +
∑

x∈GF (2n)

(−1)trn
1 (λx)+g(x) = −1 + ĝ(λ),

where δ = ατ , λ = δλi + λj and g(x) = p(δx) + p(x).

3 Constructions of Four Binary Sequence Families

3.1 The Sequence Families S1 and S2

In this subsection, we present the construction of sequence families S1 and S2

using two Gold-like sequences.

Lemma 1. Let n be an odd integer, δ1 ∈ GF (2n)\{0, 1},

p(x) =
(n−1)/2∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1).

Then the distribution of Walsh spectrum of p(x) is given as follows:

p̂(λ) =

⎧
⎨
⎩

0, 2n−1times
2(n+1)/2, 2n−2 + 2(n−3)/2times
−2(n+1)/2, 2n−2 − 2(n−3)/2times

.

Proof. It is clear that

p(x) + p(w) + p(x + w)

= trn
1 (

(n−1)/2∑
i=1

(xw2i

+ wx2i

+ δ1x(δ1w)2
i

+ δ1w(δ1x)2
i

)).
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Since trn
1 (wx2i

) = trn
1 ((wx2i

)2
n−i

) = trn
1 (w2n−i

x) for x, w ∈ GF (2n), then we
have

p(x) + p(w) + p(x + w)

= trn
1 (x ·

(n−1)/2∑
i=1

(w2i

+ w2n−i

)) + trn
1 (δ1x ·

(n−1)/2∑
i=1

(δ1w
2i

+ (δ1x)2
n−i

))

= trn
1 (x · (trn

1 (w) + w)) + trn
1 (δ1x · (trn

1 (δ1x) + δ1x))
= trn

1 (x · L(w)),

where L(w) = trn
1 (w) + w + δ1tr

n
1 (δ1w) + δ2

1w.
Now we consider the number of w in GF (2n) satisfying L(w) = 0. Let w ∈

GF (2n) be a solution to L(w) = 0, then w must have the form w = (a +δ1b)(1+
δ1)−2, where a, b ∈ GF (2) and a, b satisfying

trn
1 ((a + δ1b) · (1 + δ1)−2)

= a · trn
1 ((1 + δ1)−2) + b · trn

1 (δ1 · (1 + δ1)−2) = a (3)
trn

1 (δ1 · (a + δ1b) · (1 + δ1)−2)
= a · trn

1 (δ1 · (1 + δ1)−2) + b · trn
1 (δ2

1 · (1 + δ1)−2) = b. (4)

On the other hand, if a, b satisfy (3) and (4), let w = (a + δ1b)·(1 + δ1)−2, then

L(w) = trn
1 (w) + δ1tr

n
1 (δ1w) + (1 + δ2

1)w
= trn

1 ((a + δ1b) · (1 + δ1)−2) + δ1tr
n
1 (δ1(a + δ1b) · (1 + δ1)−2)

+ (1 + δ2
1)(a + δ1b) · (1 + δ1)−2

= a + δ1b + (1 + δ1)2(a + δ1b) · (1 + δ1)−2 = 0.

So the number of w in GF (2n) to L(w) = 0 is equal to that of (a, b) ∈ GF (2)2

satisfying (3) and (4). Next we calculate the number of those (a, b).
As δ1·(1 + δ1)−2 = (1 + δ1)−1 + (1 + δ1)−2 and δ2

1 ·(1 + δ1)−2 = 1+ (1 + δ1)−2,
let A = trn

1 ((1 + δ1)−1), then (3) and (4) can be represented as
{

aA2 + b(A2 + A) = aA = a
a(A2 + A) + b(1 + A2) = b(1 + A) = b

If A=1, then (a, b)=(1, 0) or (0, 0). Else if A = 0, then (a, b) = (0, 1) or (0, 0).
That means for any δ1 ∈ GF (2n)\{0, 1}, L(w) = 0 has exactly two solutions.
Let KerL = {w|L(w) = 0}, then

∑
x∈GF (2n)

(−1)p(x)+p(w)+p(x+w) =
∑

x∈GF (2n)

(−1)trn
1 (xL(w)) =

{
2n, if w ∈ KerL
0, otherwise .

So for λ ∈ GF (2n), by (2), we have

p̂(λ)2 =
∑

w∈GF (2n)

(−1)p(w)+trn
1 (λw) · (

∑
x∈GF (2n)

(−1)p(x)+p(w)+p(x+w))

= 2n
∑

w∈KerL

(−1)p(w)+trn
1 (λw).
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Since L is a linear transform from GF (2n) to GF (2n), KerL forms a vector
space over GF (2). p(w) is also a linear transform on KerL since p(w1 + w2) =
p(w1)+ p(w2) for w1, w2 ∈KerL. Furthermore, trn

1 (λw)+ p(w) is a linear trans-
form on KerL, too. Let dim(KerL) = k, then

∑
w∈KerL

(−1)trn
1 (λw)+p(w) =

{
2k, if trn

1 (λw) + p(w) = 0
0, otherwise .

That means p̂(λ) is equal to 0, 2(n+k)/2 and −2(n+k)/2. Here k = 1, that
is, p̂(λ)2 = 0 or 2n+1, thus p̂(λ) = 0, 2(n+1)/2 or −2(n+1)/2. Since the Walsh
spectrum p̂(λ) satisfies

∑
λ∈GF (2n)

p̂(λ) = 2n,
∑

λ∈GF (2n)

p̂2(λ) = 22n,

we can get that p̂(λ) is equal to 0, 2(n+1)/2 and −2(n+1)/2 with the occurrences
2n−1, 2n−2 + 2(n−3)/2 and 2n−2 − 2(n−3)/2, respectively.

Lemma 2. Let n be an odd integer, δ1, δ2 ∈ GF (2n)\{0, 1} and δ1 �= δ2, q(x) =
p(x) + p(δ2x) a function from GF (2n) to GF (2), where

p(x) =
(n−1)/2∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1).

Set δ = (1 + δ1)−1 (1 + δ2)−1 and

A = trn
1 (δ), B = trn

1 (δ1δ), C = trn
1 (δ2δ), D = trn

1 (δ1δ2δ),
E = trn

1 (δ1δ2δ
2), F = trn

1 (δ2
1δ2δ

2), G = trn
1 (δ1δ

2
2δ

2).

If (A, B, C, F, G) ∈ {(0, 1, 1, 0, 0), (1, 0, 1, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0)}, then
the distribution of q̂(λ) is given as:

q̂(λ) =

⎧
⎨
⎩

0, 2n − 2n−3times
2(n+3)/2, 2n−4 + 2(n−5)/2times
−2(n+3)/2, 2n−4 − 2(n−5)/2times

.

Otherwise, the distribution of q̂(λ) is given as:

q̂(λ) =

⎧
⎨
⎩

0, 2n−1times
2(n+1)/2, 2n−2 + 2(n−3)/2times
−2(n+1)/2, 2n−2 − 2(n−3)/2times

.

Proof. It is clear that

q(x) + q(w) + q(x + w)

=
(n−1)/2∑

i=1

trn
1 ((1 + δ2i+1

1 ) · (1 + δ2i+1
2 ) · (w2i+1 + x2i+1 + (x + w)2

i+1))

= trn
1 (x · L(w)),

where

L(w)=trn
1 (w)+w+δ1tr

n
1 (δ1w)+δ2

1w+δ2tr
n
1 (δ2w)+δ2

2w+δ1δ2tr
n
1 (δ1δ2w)+(δ1δ2)2w.
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Next we need to compute the solutions to L(w) = 0 to decide the Walsh spectrum
of q(x). Similar to the analysis of Lemma 1, the number solutions to L(w) = 0
in GF (2n) is equal to that of parameters (a, b, c, d) ∈ GF (2)4 satisfying

⎧
⎪⎪⎨
⎪⎪⎩

trn
1 ((a + δ1b + δ2c + δ1δ2d) · δ2) = a

trn
1 ((δ1a + δ2

1b + δ1δ2c + δ2
1δ2d) · δ2) = b

trn
1 ((δ2a + δ1δ2b + δ2

2c + δ1δ
2
2d) · δ2) = c

trn
1 ((δ1δ2a + δ2

1δ2b + δ1δ
2
2c + (δ1δ2)2d) · δ2) = d

(5)

Based on the definition of A − G, we have

trn
1 (δ2) = A2, trn

1 (δ1δ2 · δ2) = E, trn
1 (δ2

1 · δ2) = B2,

trn
1 (δ2

1δ2 · δ2) = F, trn
1 (δ1δ

2
2 · δ2) = G,

trn
1 (δ2

1δ2
2 · δ2) = D2, A + B + C + D = trn

1 (1) = 1.

From
δ1 · δ2 = δ1 · δ + δ2

1 · δ2 + δ1δ2 · δ2 + δ2
1δ2 · δ2

and
δ2 · δ2 = δ2 · δ + δ1δ2 · δ2 + δ2

2 · δ2 + δ1δ
2
2 · δ2

we have
trn

1 (δ1 · δ2) = B + B2 + E + F

and
trn

1 (δ2 · δ2) = C + C2 + E + G

Furthermore, since

δ1δ2 · δ2 = δ1δ2 · δ + δ2
1δ2 · δ2 + δ1δ

2
2 · δ2 + (δ1δ2)2 · δ2,

we have D + F + G + D2 = E.
Thus A, B, C, F, G can be regarded as free variables. If δ1, δ2 satisfy (A, B, C,

F, G) ∈ {(0, 1, 1, 0, 0), (1, 0, 1, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0)}, then the number of
solutions is 8, thus q̂(λ) is equal to 0, 2(n+3)/2 and −2(n+3)/2 with the occurrences
2n − 2n−3, 2n−4 + 2(n−5)/2 and 2n−4 − 2(n−5)/2, respectively. Otherwise q̂(λ) is
equal to 0, 2(n+1)/2 and −2(n+1)/2 with the occurrences 2n−1, 2n−2 + 2(n−3)/2

and 2n−2 − 2(n−3)/2, respectively.

Theorem 1. Let n be an odd integer and δ1 ∈ GF (2n)\{0, 1},

b1(x) =
(n−1)/2∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1),

the family S1 = {s1,j |j = 0, 1, · · · , 2n} is given by

s1,j(αt) =
{

trn
1 (λjα

t) + b1(αt), 0 ≤ j ≤ 2n − 1
trn

1 (αt), j = 2n ,
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where {λ0, λ1, · · · , λ2n−1} is an enumeration of the elements in GF (2n). Then
the distribution of correlation values of S1 is given as follows:

Ci,j(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2n − 1, 2n + 1 times
−1, 23n−1 + 23n−4 − 23n−6 + 22n − 2n − 2 times
−1 + 2(n+1)/2, (2n−2 + 2(n−3)/2)(22n − 22n−3 − 2) times
−1 − 2(n+1)/2, (2n−2 − 2(n−3)/2)(22n − 22n−3 − 2) times
−1 + 2(n+3)/2, (2n−4 + 2(n−5)/2)22n−3 times
−1 − 2(n+3)/2, (2n−4 − 2(n−5)/2)22n−3 times

.

Proof. Let δ = ατ , then Ci,j(τ) = Ri,j(δ). This proof can be divided into five
cases.

Case 1): δ = 1, i = j:
It is a trivial case and thus

Ri,j(δ) = 2n − 1, 2n + 1 times.

Case 2): δ �= 1, i = j = 2n:
The sequence s1,2n is an m-sequence and

Ri,j(δ) = −1, 2n − 2 times.

Case 3): δ = 1, 0 ≤ i, j ≤ 2n − 1 and i �= j:
From the linearity of the trace function, we have

Ri,j(δ) =
∑

x∈GF (2n)∗
(−1)s1,i(δx)+s1,j(x) = (−1)trn

1 [(λi+λj)x] = −1,

2n(2n − 1) times.
Case 4): i = 2n, j �= 2n(or i �= 2n, j = 2n):
For a fixed δ, we have

R2n,j(δ) =
∑

x∈GF (2n)∗

(−1)trn
1 [(δ+λj)x]+b1(x)

= −1 +
∑

x∈GF (2n)

(−1)trn
1 (λx)+b1(x) = −1 + b̂1(λ),

where λ = δ + λj . The distribution of Walsh spectrum of b1(x) has already
presented in Lemma 1. As δ varies over GF (2n)\{0}, the distribution is:

R2n,j(δ) =

⎧
⎨
⎩

−1, 2n−1(2n − 1)times
−1 + 2(n+1)/2, (2n−2 + 2(n−3)/2)(2n − 1)times
−1 − 2(n+1)/2, (2n−2 − 2(n−3)/2)(2n − 1)times

.

The case i �= 2n and j = 2n has the same distribution.
Case 5): δ ∈ GF (2n)\{0, 1}, 0 ≤ i, j ≤ 2n − 1:
In this case, from (2) we have

Ri,j(δ) =
∑

x∈GF (2n)∗
(−1)trn

1 [(δλi+λj)x]+b1(δx)+b1(x) = −1 + q̂(λ),
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where q(x) = b1(δx) + b1(x), λ = δλi + λj . For a fixed δ and λi, the distribution
of Walsh spectrum of q(x) is already given in Lemma 2. As δ ∈ GF (2n)\{0, 1},
let y = (1 + δ)−1, then y ∈ GF (2n)\{0, 1}. Replacing (1 + δ)−1 in the variables
A − G of Lemma 2 by y, we have

A = trn
1 ((1 + δ1)−1 · y), B = A + trn

1 (y), C = A + trn
1 ((1 + δ1)−1),

F = A + trn
1 ((1 + δ1)−2 · y), G = A + trn

1 ((1 + δ1)−1 · y2).

Define Y = {(0, 1, 1, 0, 0), (1, 0, 1, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0)}. As we know
from Lemma 2, the value of q̂(λ) relies on whether (A, B, C, F, G) ∈ Y or not.
Notice that if y = 0, then (A, B, C, F, G) = (0, 0, trn

1 (1+δ1)−1, 0, 0) and if y = 1,
then (A, B, C, F, G) = (trn

1 (1 + δ1)−1, 1+trn
1 (1 + δ1)−1, 0, 0, 0). Both cases do

not satisfy (A, B, C, F, G) ∈ Y . Now we consider the following two sub-cases of
the number of y in GF (2n)\{0, 1} such that (A, B, C, F, G) ∈ Y .

(i) trn
1 ((1 + δ1)−1) = 0:

If A = 0, since F = 0 and G = 0, we have:

trn
1 ((1 + δ1)−2 · y) = 0, trn

1 ((1 + δ1)−1 · y2) = 0,

Therefore

B = A + trn
1 (y) = trn

1 (y),

C = A + trn
1 ((1 + δ1)−1) = trn

1 ((1 + δ1)−1) = 0.

Then there exists no such y satisfying (A, B, C, F, G) ∈ Y .
If A = 1, since F = 0 and G = 0, we have:

trn
1 ((1 + δ1)−2 · y) = 1, trn

1 ((1 + δ1)−1 · y2) = 1,

Therefore

B = A + trn
1 (y) = 1 + trn

1 (y),

C = A + trn
1 ((1 + δ1)−1) = 1 + trn

1 ((1 + δ1)−1) = 1.

As (A, B, C, F, G) ∈ Y , we can get (A, B, C, F, G) = (1, 0, 1, 0, 0) or (1, 1, 1, 0,
0). Thus y must satisfy trn

1 ((1 + δ1)−2 · y) = 1, trn
1 ((1 + δ1)−1 · y2) = 1 and

trn
1 ((1 + δ1)−1 · y) = 1. As δ1 ∈ GF (2n)\{0, 1}, then (1 + δ1)−1, (1 + δ1)−2, and

(1 + δ1)−4 are different from each other. Therefore the number of y in GF (2n)
such that (A, B, C, F, G) ∈ Y is 2n−3.

(ii) trn
1 ((1 + δ1)−1) = 1:

Similar to the analysis of (i) we have that if (A, B, C, F, G) ∈ Y , then (A, B, C,
F, G) = (0, 1, 1, 0, 0) or (1, 1, 0, 0, 0). For (A, B, C, F, G) = (0, 1, 1, 0, 0), y must
satisfy trn

1 (y) = 1, trn
1 ((1 + δ1)−1 · y) = 0, trn

1 ((1 + δ1)−2 · y) = 0, and trn
1 ((1 +

δ1)−1 ·y2) = 0. As δ1 ∈ GF (2n)\{0, 1}, then 1, (1+δ1)−1, (1+δ1)−2 and (1+δ1)−4

are different from each other. Therefore the number of y in GF (2n) such that
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(A, B, C, F, G) = (0, 1, 1, 0, 0) is 2n−4. Similarly, the number of y in GF (2n) such
that (A, B, C, F, G) = (1, 1, 0, 0, 0) is also 2n−4.

Thus no matter what trn
1 ((1 + δ1)−1) equals, the number of y in GF (2n)

such that (A, B, C, F, G) ∈ Y is 2n−3. When y = 0, 1, (A, B, C, F, G) /∈ Y , so
the number of y ∈ GF (2n)\{0, 1} such that (A, B, C, F, G) ∈ Y is 2n−3, and the
number such that (A, B, C, F, G) /∈ Y is 2n−2n−3−2. Therefore, the distribution
of correlation can be given as follows:

Ri, j(δ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, 22n−1(2n − 2n−3 − 2) + (2n − 2n−3)22n−3times
−1 + 2(n+1)/2, (2n−2 + 2(n−3)/2)2n(2n − 2n−3 − 2)times
−1 − 2(n+1)/2, (2n−2 − 2(n−3)/2)2n(2n − 2n−3 − 2)times
−1 + 2(n+3)/2, (2n−4 + 2(n−5)/2)22n−3 times
−1 − 2(n+3)/2, (2n−4 − 2(n−5)/2)22n−3 times

.

Combining the above five cases, the distribution of the correlation values for
the sequence family S1 can be obtained.

We only need to change b(A+1) = b in Lemma 1 into bA = b and A+B+C+D=1
in Lemma 2 into A+B+C +D = 0 to get the proofs of Lemma 3 and Lemma 4.

Lemma 3. Let n be an even integer, δ1 ∈ GF (2n)\{0, 1}, and p(x) a function
from GF (2n) to GF (2), where

p(x) = tr
n/2
1 (x2n/2+1 + (δ1x)2

n/2+1) +
n/2−1∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1).

If trn
1 ((1 + δ1)−1) = 1, then the distribution of p̂(λ) is given as:

p̂(λ) =

⎧
⎨
⎩

0, 2n − 2n−2times
2n/2+1, 2n−3 + 2n/2−2times
−2n/2+1, 2n−3 − 2n/2−2times

.

If trn
1 ((1 + δ1)−1) = 0, then the distribution of p̂(λ) is given as:

p̂(λ) =
{

2n/2, 2n−1 + 2n/2−1times
−2n/2, 2n−1 − 2n/2−1times

.

Lemma 4. Let n be an even integer, δ1, δ2 ∈ GF (2n)\{0, 1} and δ1 �= δ2, q(x) =
p(x) + p(δ2x) a function from GF (2n) to GF (2), where

p(x) = tr
n/2
1 (x2n/2+1 + (δ1x)2

n/2+1) +
n/2−1∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1).

Set δ = (1 + δ1)−1·(1 + δ2)−1 and

A = trn
1 (δ), B = trn

1 (δ1 · δ), C = trn
1 (δ2 · δ), D = trn

1 (δ1δ2 · δ),

E = trn
1 (δ1δ2 · δ2), F = trn

1 (δ2
1δ2 · δ2), G = trn

1 (δ1δ
2
2 · δ2).
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Then
(i) if (A, B, C, F, G) = (1, 1, 1, 0, 0), then the distribution of q̂(λ) is given as:

q̂(λ) =

⎧
⎨
⎩

0, 2n − 2n−4times
2n/2+2, 2n−5 + 2n/2−3times
−2n/2+2, 2n−5 − 2n/2−3times

,

(ii) if (A, B, C, F, G) ∈ {(0, 1, 0, 0, 0), (0, 1, 0, 0, 1), (1, 0, 1, 0, 0), (1, 0, 1, 0, 1),
(1, 1, 1, 0, 1), (1, 1, 1, 1, 0), (1, 1, 1, 1, 1), (0, 0, 1, 0, 0), (0, 0, 1, 1, 0), (0, 1, 1, 0, 0),
(0, 1, 1, 1, 1), (1, 0, 0, 0, 0), (1, 0, 0, 1, 1), (1, 1, 0, 0, 0), (1, 1, 0, 1, 0)}, then the distri-
bution of q̂(λ) is given as:

q̂(λ) =

⎧
⎨
⎩

0, 2n − 2n−2times
2n/2+1, 2n−3 + 2n/2−2times
−2n/2+1, 2n−3 − 2n/2−2times

,

(iii) otherwise, the distribution of q̂(λ) is given as:

q̂(λ) =
{

2n/2 , 2n−1 + 2n/2−1times
−2n/2, 2n−1 − 2n/2−1times

.

In fact, we can distinguish the cases of trn
1 ((1 + δ1)−1) = 1 or 0 in (ii) and (iii).

From Lemma 3 and Lemma 4, we have the distribution of correlation values of S2.

Theorem 2. Let n be an even integer, δ1 ∈ GF (2n)\{0, 1},

b2(x) = tr
n/2
1 (x2n/2+1 + (δ1x)2

n/2+1) +
n/2−1∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1),

the family S2 = {s2,j |j = 0, 1, · · · , 2n} is given by

s2,j(αt) =
{

trn
1 (λjα

t) + b2(αt), 0 ≤ j ≤ 2n − 1
trn

1 (αt), j = 2n ,

where {λ0, λ1, · · · , λ2n−1} is an enumeration of the elements in GF (2n).
If trn

1 ((1+δ1)−1) = 0, then the distribution of correlation values of S2 is given
as follows:

Ci, j(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n − 1, 2n + 1times
−1, 23n−1 − 23n−3 + 23n−6 − 23n−8 + 22n − 2times
−1 + 2n/2, (2n−1 + 2n/2−1)(22n−1 − 2)times
−1 − 2n/2, (2n−1 − 2n/2−1)(22n−1 − 2)times
−1 + 2n/2+1, (2n−3 + 2n/2−2)(22n−1 − 22n−4)times
−1 − 2n/2+1, (2n−3 − 2n/2−2)(22n−1 − 22n−4)times
−1 + 2n/2+2, (2n−5 + 2n/2−3)22n−4times
−1 − 2n/2+2, (2n−5 − 2n/2−3)22n−4times

.
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If trn
1 ((1+δ1)−1) = 1, then the distribution of correlation values of S2 is given

as follows:

Ci, j(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2n − 1, 2n + 1times
−1, 23n−1 − 23n−3 + 22n − 2n+1 + 2n−1 − 2times
−1 + 2n/2, (2n−1 + 2n/2−1)22n−1times
−1 − 2n/2, (2n−1 − 2n/2−1)22n−1times
−1 + 2n/2+1, (2n−3 + 2n/2−2)(22n−1 − 2)times
−1 − 2n/2+1, (2n−3 − 2n/2−2)(22n−1 − 2)times

.

3.2 The Sequence Families S3 and S4

In this subsection, we present the construction of sequence families S3 and S4

using three Gold-like sequences. First we give two lemmas to calculate the cor-
relation values of S3.

Lemma 5. Let n be an odd integer, δ1, δ2, δ1 + δ2 ∈ GF (2n)\{0, 1}, p(x) a
function from GF (2n) to GF (2), where

p(x) =
(n−1)/2∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1 + (δ2x)2
i+1).

Then the distribution of p̂(λ) is given as:

p̂(λ) =

⎧
⎨
⎩

0, 2n−1times
2(n+1)/2, 2n−2 + 2(n−3)/2times
−2(n+1)/2, 2n−2 − 2(n−3)/2times

.

Proof. It is clear that

p(x) + p(w) + p(x + w)

=
(n−1)/2∑

i=1

trn
1 ((1 + δ2i+1

1 + δ2i+1
2 ) · (w2i+1 + x2i+1 + (x + w)2

i+1))

= trn
1 (x · L(w)),

where L(w) = trn
1 (w) + w + δ1tr

n
1 (δ1w) + δ2

1w + δ2tr
n
1 (δ2w) + δ2

2w.
As in the proof of Lemma 1, we only need to compute the solutions to L(w) = 0

to decide the Walsh spectrum of p(x). Similar to the proof of Lemma 1, we
know that the number of solutions to L(w) = 0 is equal to that of parameter
(a, b, c) ∈ GF (2)3 satisfying

⎧
⎨
⎩

trn
1 ((a + δ1b + δ2c) · δ2) = a

trn
1 ((δ1a + δ2

1b + δ1δ2c) · δ2) = b
trn

1 ((δ2a + δ1δ2b + δ2
2c) · δ2) = c

(6)

Let trn
1 (δ) = A, trn

1 (δ1 · δ) = B, trn
1 (δ2 · δ) = C, trn

1 (δ1δ2 · δ2) = D. Since
δ1 · δ2 = δ1 · δ + δ1δ2 · δ2 + δ2

1 · δ2 and δ2 · δ2 = δ2 · δ + δ1δ2 · δ2 + δ2
2 · δ2, (6) can

be rewritten as:
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⎧
⎨
⎩

aA + bD + cD = a
aD + bB + cD = b
aD + bD + cC = c

As n is an odd integer, we have A+B+C = trn
1 (1)=1. Solve the above equations,

(6) always has two solutions. Thus p̂(λ) is equal to 0, 2(n+1)/2 and −2(n+1)/2

with the occurrences 2n−1, 2n−2 + 2(n−3)/2 and 2n−2 − 2(n−3)/2, respectively.

Let Ω be the set of (δ1, δ2) ∈ GF (2n) × GF (2n) which satisfy the following
conditions:

(1)δ1, δ2 /∈ {0, 1},
(2)δ1 /∈{δ2, 1+δ2, δ

−1
2 , δ

1/2
2 , δ2

2},
(3) (1 + δ1 + δ2)2 /∈{δ1δ

−1
2 , δ−1

1 δ2, δ1, δ2, δ
−1
1 δ2

2 , δ2
1δ2, δ

4
1δ

−2
2 , δ3

1δ
−1
2 , δ3

1 , δ
4
1δ

−1
2 }.

Remark 2. As a matter of fact, given δ1 ∈ GF (2n)\{0, 1}, the number of δ2 that
(δ1, δ2) /∈ Ω is at most 30. When n ≥ 12, the proportion of Ω in GF (2n)×GF (2n)
is greater than 99.2%. Thus we can suppose (δ1, δ2) ∈ Ω in S3 and S4 when δ1, δ2

are chosen randomly.

Lemma 6. Let n be an odd integer, δ1, δ2, δ3 ∈ GF (2n)\{0, 1} and (δ1, δ2) ∈ Ω,
then 1+δ1+δ2 �= 0. Suppose that q(x) = p(x)+p(δ3x) is a function from GF (2n)
to GF (2), where

p(x) =
(n−1)/2∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1 + (δ2x)2
i+1).

Let δ = (1 + δ1 + δ2)−1, ω = trn
1 (δ), β = trn

1 (δ1 · δ), γ = trn
1 (δ2 · δ), θ =

trn
1 (δ1δ2 · δ2), then ω +β + γ = 1. For any δ3 ∈ GF (2n)\{0, 1}, if (ω, β, γ, θ) ∈

{(1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1)}, then q̂(λ) is equal to 0, ± 2(n+1)/2,
±2(n+3)/2. If (ω, β, γ, θ)∈{(1, 1, 1, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}, then q̂(λ)
is equal to 0, ± 2(n+1)/2, ±2(n+3)/2, ±2(n+5)/2.

The proof of Lemma 6 can be got similar to the proof of Lemma 2, here we omit
the proof process for the limitation of space.

Theorem 3. Let n be an odd integer, (δ1, δ2) ∈ Ω, then 1+δ1+δ2 �= 0. Suppose
that

b3(x) =
(n−1)/2∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1 + (δ2x)2
i+1),

the family S3={s3,j |j = 0, 1, · · · , 2n} is given by

s3,j(αt) =
{

trn
1 (λjα

t) + b3(αt), 0 ≤ j ≤ 2n − 1
trn

1 (αt), j = 2n ,

where {λ0, λ1, · · · , λ2n−1} is an enumeration of the elements in GF (2n). Let
δ = (1 + δ1 + δ2)−1, ω = trn

1 (δ), β = trn
1 (δ1 · δ), γ = trn

1 (δ2 · δ), θ = trn
1 (δ1δ2 · δ2),

then ω + β + γ = 1. If (ω, β, γ, θ) ∈ {(1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1)},
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then S3 has correlations 2n − 1, −1, −1± 2(n+1)/2, −1± 2(n+3)/2. If (ω, β, γ, θ) ∈
{(1, 1, 1, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}, then S3 has correlations 2n −1, −1,
−1±2(n+1)/2, −1±2(n+3)/2, −1±2(n+5)/2. For example, if (ω, β, γ, θ)=(0, 0, 1, 1),
then the distribution of correlation values of S3 is given as follows:

Ci,j(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2n − 1, 2n + 1 times
−1, 23n−1 + 23n−4 − 23n−6 + 22n − 2n − 2 times
−1 + 2(n+1)/2, (2n−2 + 2(n−3)/2)(22n − 22n−3 − 2) times
−1 − 2(n+1)/2, (2n−2 − 2(n−3)/2)(22n − 22n−3 − 2) times
−1 + 2(n+3)/2, (2n−4 + 2(n−5)/2)22n−3 times
−1 − 2(n+3)/2, (2n−4 − 2(n−5)/2)22n−3 times

.

The proof of Theorem 3 is similar to that of Theorem 1, the only difference is
the calculation of the distribution of correlation values in Case 5. Here we omit
the proof.

If we change A+B +C = 1 in Lemma 5 into A+B +C = 0 in Lemma 6 and
ω + β + γ = 1 into ω + β + γ = 0, then the proofs of Lemma 7 and Lemma 8
follow correspondingly.

Lemma 7. Let n be an even integer, δ1, δ2, δ1 + δ2 ∈ GF (2n)\{0, 1}, p(x) a
function from GF (2n) to GF (2), where

p(x) = tr
n/2
1 (x2n/2+1 + (δ1x)2

n/2+1 + (δ2x)2
n/2+1)

+
n/2−1∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1 + (δ2x)2
i+1).

Let δ = (1 + δ1 + δ2)−1, if δ1 and δ2 satisfy trn
1 (δ) = 1, trn

1 (δ1 · δ) = 1, and
trn

1 (δ2 · δ) = 0, then the distribution of p̂(λ) is given as:

p̂(λ) =

⎧⎨
⎩

0, 2n − 2n−2times
2n/2+1, 2n−3 + 2n/2−2times
−2n/2+1, 2n−3 − 2n/2−2 times

.

Otherwise, the distribution of p̂(λ) is given as:

p̂(λ) =
{

2n/2, 2n−1 + 2n/2−1times
−2n/2, 2n−1 − 2n/2−1times

.

Lemma 8. Let n be an even integer, δ1, δ2, δ3 ∈ GF (2n)\{0, 1} and (δ1, δ2) ∈ Ω,
then 1+δ1+δ2 �= 0. Suppose that q(x) = p(x)+p(δ3x) is a function from GF (2n)
to GF (2), where

p(x) = tr
n/2
1 (x2n/2+1 + (δ1x)2

n/2+1 + (δ2x)2
n/2+1)

+
n/2−1∑

i=1

trn
1 (x2i+1 + (δ1x)2

i+1 + (δ2x)2
i+1).

Let δ = (1+δ1+δ2)−1, ω = trn
1 (δ), β = trn

1 (δ1 ·δ), γ = trn
1 (δ2 ·δ), θ = trn

1 (δ1δ2 ·δ2),
then ω + β + γ = 0. For any δ3 ∈ GF (2n)\{0, 1}, if (ω, β, γ, θ) = (0, 0, 0, 0),
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then q̂(λ) is equal to 0, ±2n/2, ±2n/2+1, ±2n/2+2, or ±2n/2+3. If (ω, β, γ, θ) ∈
{(0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1),(1, 0, 1, 0),(1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1)}, then
q̂(λ) is equal to 0, ±2n/2, ±2n/2+1, or ±2n/2+2.

Theorem 4. Let n be an even integer, (δ1, δ2) ∈ Ω, then 1+δ1+δ2 �= 0. Suppose
that

b4(x)=tr
n/2
1 (x2n/2+1+(δ1x)2

n/2+1+(δ2x)2
n/2+1)+

n/2−1�
i=1

trn
1 (x2i+1+(δ1x)2

i+1+(δ2x)2
i+1),

the family S4={s4,j |j = 0, 1, · · · , 2n} is given by

s4,j(αt) =
{

trn
1 (λjα

t) + b4(αt), 0 ≤ j ≤ 2n − 1
trn

1 (αt), j = 2n ,

where {λ0, λ1, · · · , λ2n−1} is an enumeration of the elements in GF (2n).
Let δ = (1 + δ1 + δ2)−1, ω = trn

1 (δ), β = trn
1 (δ1 · δ), γ = trn

1 (δ2 · δ), θ =
trn

1 (δ1δ2 · δ2), then ω + β + γ=0. If (ω, β, γ, θ) = (0, 0, 0, 0), then S4 has corre-
lations 2n − 1, −1, −1± 2n/2, −1 ± 2n/2+1, −1 ± 2n/2+2, −1 ± 2n/2+3. If (ω, β, γ,
θ) ∈ {(0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1)},
then S4 has correlations 2n − 1, −1, −1 ± 2n/2, −1 ± 2n/2+1, −1 ± 2n/2+2. For
example, if (ω, β, γ, θ) = (0, 0, 0, 1), then S4 has the distribution of correlation
values as follows:

Ci,j(τ ) =

�������������
������������

2n − 1, 2n + 1times
−1, 23n−1 − 23n−4 − 23n−7 − 23n−9 − 23n−10 − 22n−1 − 2times
−1 + 2n/2, (2n−1 + 2n/2−1)(22n−2 + 22n−3 + 22n−4 + 2n+1 − 2)times
−1 − 2n/2, (2n−1 − 2n/2−1)(22n−2 + 22n−3 + 22n−4 + 2n+1 − 2)times
−1 + 2n/2+1, (2n−3 + 2n/2−2)2n(2n−1 + 2n−5 + 2n−6 − 2)times
−1 − 2n/2+1, (2n−3 − 2n/2−2)2n(2n−1 + 2n−5 + 2n−6 − 2)times
−1 + 2n/2+2, (2n−5 + 2n/2−3)22n−6times
−1 − 2n/2+2, (2n−5 − 2n/2−3)22n−6times

.

Remark 3. If (ω, β, γ, θ) equals to other values, we can similarly determine the
distribution of correlation values of S3 and S4.

4 Conclusions

In this paper, we propose four new binary sequence families S1, S2, S3 andS4

with low correlation, the parameter Cmax in S1, S2, S3 andS4 is of the order√
N(where N is the period of the sequences). S1 has six-valued correlations,

while S2 and S3 have either six-valued correlations or eight-valued correlations,
andS4 has either eight-valued or ten-valued, depending on the choice of parame-
ters. Compared with Gold sequence family, the linear span of the sequences in
S1, S2, S3 and S4 is much higher (at least n·(n−1)/2 except for one m-sequence).
Finally we conclude the paper by a comparison of the known binary sequence
families.
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Table 1. Comparison of the known binary sequence families

Family Period Size of Family Cmax Linear Complexity
Gold 2n − 1(odd n) 2n + 1 1 + 2(n+1)/2 2n

Gold 2n − 1(even n) 2n + 1 1 + 2(n+2)/2 2n

Gold-like 2n − 1(odd n) 2n + 1 1 + 2(n+1)/2 n(n − 1)/2
Gold-like 2n − 1(even n) 2n + 1 1 + 2(n+2)/2 n(n − 1)/2

S 2n − 1(odd n) 2n + 1 1 + 2(n+e)/2 n(n − e)/2e

U 2n − 1(even n) 2n + 1 1 + 2(n+2e)/2 n(n − e)/2e

S1 2n − 1(odd n) 2n + 1 1 + 2(n+3)/2 n(n − 1)/2
S2 2n − 1(even n) 2n + 1 1 + 2(n+2)/2 n(n − 1)/2

or 1 + 2(n+4)/2

S3 2n − 1(odd n) 2n + 1 1 + 2(n+3)/2 n(n − 1)/2
or 1 + 2(n+5)/2

S4 2n − 1(even n) 2n + 1 1 + 2(n+4)/2 n(n − 1)/2
or 1 + 2(n+6)/2
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As noted in [24], there are at least two main reasons motivating the construc-
tions related to elliptic curves:

(1). Many standard pseudo-random number generators based on finite fields
and residue rings have proved to be insecure or at least requiring great care in
their use.

(2). Many cryptographic protocols explicitly require to generate random
points on a given elliptic curve (in elliptic curve cryptosystems).

As the study shows that, the elliptic curve analogues of pseudo-random num-
ber generators possess strongly cryptographic properties and hence provide po-
tential applications for generating pseudo-random numbers and session keys in
encryption phases in elliptic curve cryptosystems.

In particular, the notion of index (discrete logarithm) is used to construct
sequences recently. Sárközy constructed finite binary sequences by using the
notion of index over finite fields in [21], Gyarmati [10] extended this construction
to construct a large family of binary sequences. It was shown that these sequences
have very interesting pseudo-random behavior. Following the path of [21] and
[10], we constructed a family of binary sequences from elliptic curves in [3]. In
[1], Beelen and Doumen constructed a large family of sequences from elliptic
curves using additive characters and multiplicative characters and investigated
the pseudo-random properties of balance, autocorrelation and cross-correlation
of the resulting sequences.

In the present paper, we continue the investigation of the sequences derived
from elliptic curves by using the notion of index. The properties of the (multi-
dimensional) distribution and the linear complexity are considered. This article
is organized as follows. In Section 2, some basic facts on elliptic curves and
sequences over rings are introduced. Some cryptographic properties of sequences
and linear recursive sequences from elliptic curves are considered in Sections 3
and 4 respectively. A conclusion is drawn in Section 5.

2 Preliminaries

Let p be a prime. We denote by Fp the finite field of p elements, by F
∗
p the

multiplicative group of Fp and by Fp the algebraic closure of Fp.
Let g be a fixed primitive element of F

∗
p, i.e., the multiplicative order of g is

p − 1. Then for each x ∈ F
∗
p, let ind(x) denote the index (discrete logarithm) of

x (to the base g) so that
x = gind(x).

We add the condition
0 ≤ ind(x) ≤ p − 2

to make the value of index unique. A (multiplicative) character of F
∗
p [23,17] is

defined by

χa(x) := ep−1(a · ind(x)) = exp
(

2πia · ind(x)
p − 1

)

where a ∈ Zp−1. For convenience, we extend χ to Fp by adding χ(0) = 0.
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For any positive integer n, we identify Zn, the residue ring modulo n, with
the set {0, 1, · · · , n − 1}. Put

en(z) = exp(2πiz/n).

2.1 Elliptic Curves and Exponential Sums

Let E be an elliptic curve over Fp, given by an affine Weierstrass equation of the
form

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6,

with coefficients ai ∈ Fp and nonzero discriminant, see [7] for details. It is known
that the set E(Fp) of Fp-rational points of E forms an Abelian group under an
appropriate composition rule denoted by ⊕ and with the point at infinity O as
the neutral element. We recall that

|#E(Fp) − p − 1| ≤ 2p1/2, (1)

where #E(Fp) is the number of Fp-rational points, including the point at infinity
O.

Let Fp(E) be the function field of E defined over Fp. For any f ∈ Fp(E) and
R ∈ E(Fp), R is called a zero (resp. a pole) of f if f(R) = 0 (resp. f(R) = ∞).
Any rational function has only a finite number of zeros and poles. The divisor
of a rational function f is written as

Div(f) =
∑

R∈E(Fp)

ordR(f)[R],

where each integer ordR(f) is the order of f at R and ordR(f) = 0 for all
but finitely many R ∈ E(Fp). Note that ordR(f) > 0 if R is a zero of f and
ordR(f) < 0 if R is a pole of f .
We also write

Supp(f) = {R ∈ E(Fp)|f(R) = 0 or f(R) = ∞},

which is called the support of Div(f). In particular, #Supp(f), the cardinality
of Supp(f), is 2 or 3 if f = x and #Supp(f) ≤ 4 if f = y.

The translation map by W ∈ E(Fp) on E(Fp) is defined as

τW : E(Fp) → E(Fp)
P �→ P ⊕ W.

It is obvious that (f ◦ τW )(P ) = f(τW (P )) = f(P ⊕ W ). We denote by 	 the
inverse operation of ⊕ in the rational points group of E . From [7, Lemmas 3.14
and 3.16 and Theorem 3.17], we have the following statement.

Lemma 1. Let f ∈ Fp(E) be a nonconstant rational function. If R ∈ Supp(f)
and the order of f at R is ρ, then R 	 W belongs to the support of Div(f ◦ τW )
with the same order ρ.
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The character sums along elliptic curves with respect to multiplicative characters
is defined as follows:

S(χ, f) =
∑∗

R∈E(Fp)
χ(f(R)),

where χ is a multiplicative character of F
∗
p, f ∈ Fp(E) is a rational function and∑∗ indicates that the poles of f are excluded from the summation. The upper

bound of S(χ, f) has been estimated in [1,19,20]. Below we present a special
case of the character sums (see [20, Proposition 4.5 and Corollary 4.6] or [1,
Proposition 3]), which is necessary in the context.

Lemma 2. Let f(x, y)∈Fp(E) be a nonconstant rational function with f(x, y) 
=
zl(x, y) for all z(x, y) ∈ Fp(E) and all factors l > 1 of p−1. For any non-principal
multiplicative character χ, the following upper bound holds:

|S(χ, f)| < #Supp(f)
√

p,

where #Supp(f) is the cardinality of the support of Div(f).

2.2 Sequences over Rings

There are many important criteria which a ‘good’ pseudo-random sequence
should satisfy. In the present paper, we concentrate only on its discrepancy and
linear complexity.

For an r-dimensional sequence of N points

(γ1n, · · · , γrn), n = 1, · · · , N (2)

of the half-open interval [0, 1)r, the discrepancy of this sequence, denoted by
D(N), is defined by

D(N) = sup
J⊆[0,1)r

∣∣∣∣
A(J, N)

N
− |J |

∣∣∣∣ ,

where A(J, N) is the number of points of the sequence above which hit the box
J = [α1, β1) × · · · × [αr, βr) ⊆ [0, 1)r, the volume |J | of an interval J is given by∏r

i=1(βi − αi) and the supremum is taken over all such boxes, see [6].
It is easy to see that the discrepancy is a quantitative measure of uniformity

of distribution of sequences, and thus ‘good’ pseudo-random sequences should
have a small discrepancy.

For an integer vector a = (a1, · · · , ar) ∈ Z
r , we put

|a| = max
i=1,···,r

|ai|, r(a) =
r∏

i=1

max{|ai|, 1}.

The Erdös-Turán-Koksma inequality (see [6, Theorem 1.21]), relating the dis-
crepancy and character sums, is presented in the following form.
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Lemma 3. With notations as above. D(N) is the discrepancy of the r-dimensional
sequence of N points (2). Then there exists a constant Cr > 0 depending only on
the dimension r such that, for any integer L ≥ 1, the bound

D(N) < Cr

⎛
⎝ 1

L
+

1
N

∑
0<|a|≤L

1
r(a)

∣∣∣∣∣∣
N∑

n=1

exp

⎛
⎝2πi

r∑
j=1

ajγjn

⎞
⎠

∣∣∣∣∣∣

⎞
⎠

holds, where |a|, r(a) are defined as above and the summation is taken over all
integer vectors a = (a1, · · · , ar) ∈ Z

r with 0 < |a| ≤ L.

We recall that for any x > 1,

∑
n≤x

1
n

≤ 1 + log(x).

From Lemma 3, one can estimate the discrepancy D(N) by bounding the corre-
sponding character sums

N∑
n=1

exp

⎛
⎝2πi

r∑
j=1

ajγjn

⎞
⎠ .

3 Generating Sequences over Elliptic Curves

Let E(Fp) be a cyclic group of order T and G its generator. Let f ∈ Fp(E) be a
rational function. The frequent case is to select f = x or f = y or f = x + y,
and so on. We should note that, in the sequel, all rational functions are not of
the form zl(x, y) for all z(x, y) ∈ Fp(E) and all factors l > 1 of p − 1. For any
i : 1 ≤ i ≤ T , if f(iG) 
= 0 and ∞, then there exists a unique ui ∈ [0, p − 2] such
that

f(iG) = gui ,

where g is a fixed primitive element of F
∗
p. If iG is a zero or a pole of f , we set

ui = 0 as its output. Hence we obtain a sequence U = (ui)i>0 of elements of
{0, 1, · · · , p − 2}. Obviously this sequence is purely periodic with period T . In
fact, for 1 ≤ i ≤ T ,

ui =
{

0, if f(iG) = 0 or ∞;
ind(f(iG)), otherwise. (3)

The distribution in parts of period of U = (ui)i>0 will be considered in Sub-
section 3.1. We note that the period T of U is bounded by the size of E(Fp)
and hence by O(p) from (1). Since E(Fp) is a cyclic group and G is its gener-
ator, T ∼ p. We also remark that the resulting sequences U are very common
enough. From [26,27], about 75% of the majority of (isomorphism classes of)
elliptic curves have a cyclic point group.



236 Z. Chen, N. Zhang, and G. Xiao

One can consider the following more general case. Let

f1, f2, · · · , fr

be rational functions in Fp(E). Set

Vi = (vi1, vi2, · · · , viT ), i = 1, 2, · · · , r,

where vij = 0 if jG is a zero or a pole of fi, and vij = ind(fi(jG)) for all i ∈ [1, r]
and j ∈ [1, T ] otherwise. We obtain an interleaved sequence

V =

⎛
⎜⎜⎝

V1

V2

· · ·
Vr

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

v11, v12, · · · , v1T

v21, v22, · · · , v2T

· · · · · · · · · · · ·
vr1, vr2, · · · , vrT

⎞
⎟⎟⎠ . (4)

The elements of V should be read column by column and indeed Vi is an
r−decimation of V for i = 1, 2, · · · , r. In Subsections 3.2 and 3.3 we will consider
the multi-dimensional distribution and the linear complexity of V respectively.

3.1 Distribution over Parts of the Period

Define

SE(N) =
N∑

n=1
ep−1(aun) =

N∑
n=1

ep−1(a · ind(f(nG)))

=
N∑

n=1
χa(f(nG)) + O(1),

where a ∈ Zp−1 and χa is a multiplicative character of F
∗
p, in the last sums the

poles and the zeros of f are excluded.

Theorem 1. With notations as above. Let u1, u2, · · · , be defined in (3). The
following bound

max
0�=a∈Zp−1

|SE(N)| � N1/2p1/4

holds for 1 ≤ N ≤ T . The implied constant depends only on #Supp(f).

Proof. For any j ≥ 0, we have
∣∣∣∣∣SE(N) −

N∑
n=1

ep−1(aun+j)

∣∣∣∣∣ ≤ 2j.

Let K > 0. From
∣∣∣∣∣∣
K−1∑
j=0

(
SE(N) −

N∑
n=1

ep−1(aun+j)

)∣∣∣∣∣∣
≥ K |SE(N)| −

∣∣∣∣∣∣
K−1∑
j=0

N∑
n=1

ep−1(aun+j)

∣∣∣∣∣∣
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and ∣∣∣∣∣∣
K−1∑
j=0

(
SE(N) −

N∑
n=1

ep−1(aun+j)

)∣∣∣∣∣∣
≤

K−1∑
j=0

2j < K2,

we derive
K |SE(N)| ≤ U + K2,

where U =

∣∣∣∣∣
K−1∑
j=0

N∑
n=1

ep−1(aun+j)

∣∣∣∣∣ ≤
N∑

n=1

∣∣∣∣∣
K−1∑
j=0

ep−1(aun+j)

∣∣∣∣∣ .

We apply the Cauchy-Schwarz inequality and extend the summation to all
value n ∈ {1, 2, · · · , T }, getting

U2 ≤ N
N∑

n=1

∣∣∣∣∣
K−1∑
j=0

ep−1(aun+j)

∣∣∣∣∣
2

≤ N
T∑

n=1

∣∣∣∣∣
K−1∑
j=0

ep−1(aun+j)

∣∣∣∣∣
2

= N
T∑

n=1

K−1∑
i,j=0

ep−1(aun+i) · ep−1(−aun+j)

= N
K−1∑
i,j=0

T∑
n=1

χa

(
f((n + i)G)) · χa(f((n + j)G)−1

)
+ O(1)

= N
K−1∑
i,j=0

T∑
n=1

χa((f ◦ τiG · (f ◦ τjG)−1)(nG)) + O(1)

= N
K−1∑
i,j=0

∑
Q∈〈G〉

χa((f ◦ τiG · (f ◦ τjG)−1)(Q)) + O(1).

(We note that in the sums above the poles and the zeros of f are excluded.)
If i = j, then the inner sum is trivially equal to T and there are K such sums.

In case this does not happen, the inner sum above is a character sum with a
rational function F := f ◦ τiG · (f ◦ τjG)−1. #Supp(F ), the cardinality of the
support of Div(F ), is at most 2#Supp(f) by Lemma 1. By Lemma 2 each of
these terms contributes at most O(p1/2). Therefore

U2 � NKT + NK(K − 1)p1/2,

and so
|SE(N)| � N1/2(T 1/2K−1/2 + p1/4) + K.

If K ≥ T , the bound is trivial. So we assume K < T and put K = �Tp−1/2�.
We have

|SE(N)| � N1/2p1/4 + Tp−1/2.

We suppose that N ≥ p1/2, otherwise the bound is trivial. From (1), the first
term always dominates the second term. we derive the desired result. �
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The following result follows directly from Theorem 1 and Lemma 3.

Theorem 2. The discrepancy DE(N) of the first N terms u1, · · · , uN defined in
(3) satisfies

DE(N) � N−1/2p1/4 log(p)

for 1 ≤ N ≤ T . The implied constant depends on #Supp(f).

3.2 Multi-dimensional Distribution over the Full Period

In this subsection, we will consider the uniformity of distribution of rs−tuples

(ind(f1(nG)), · · · , ind(fr(nG)),
ind(f1((n + 1)G)), · · · , ind(fr((n + 1)G)),

· · · , · · · , · · · ,
ind(f1((n + s − 1)G)), · · · , ind(fr((n + s − 1)G)),

(5)

1 ≤ n ≤ T , in an rs−dimensional cube {0, 1, · · · , p − 2}rs over the full period
(read row by row). Using the similar idea of Theorem 1, one can obtain the
discrepancy of (5) for 1 ≤ n ≤ N , where N ≤ T . Below for convenience, we only
consider N = T case.

Let A be a nonzero r × s matrix

A = (aij)r×s

over Zp−1. Define

h(nG) =
r∑

i=1

s∑
j=1

aij ind(fi((n + j − 1)G)),

we estimate the exponential sums

SE(r, s) =
T∑

n=1

ep−1(h(nG)) (6)

and the discrepancy DE(r, s) of the sequence (5) by Lemma 3.

Theorem 3. Let 0 be the r × s zero matrix. The bound

max
A�=0

|SE(r, s)| ≤ sp1/2
r∑

i=1

#Supp(fi)

holds and the discrepancy DE(r, s) of the rs−dimensional sequence (5) satisfies

DE(r, s) � T−1p1/2logrs(p),

where the implied constant depends on s and
r∑

i=1

#Supp(fi).
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Proof.

SE(r, s) =
T∑

n=1
ep−1(h(nG))

=
T∑

n=1
ep−1

(
r∑

i=1

s∑
j=1

aij · ind(fi((n + j − 1)G))

)

=
T∑

n=1

r∏
i=1

s∏
j=1

ep−1 (aij · ind(fi((n + j − 1)G)))

So we have

|SE(r, s)| =

∣∣∣∣∣
T∑

n=1

r∏
i=1

s∏
j=1

ep−1 (aij · ind(fi((n + j − 1)G)))

∣∣∣∣∣

=

∣∣∣∣∣
T∑

n=1

r∏
i=1

s∏
j=1

χaij (fi((n + j − 1)G))

∣∣∣∣∣ + O(1)

=

∣∣∣∣∣
T∑

n=1

r∏
i=1

s∏
j=1

χaij (fi ◦ τ(j−1)G(nG))

∣∣∣∣∣ + O(1)

Let ψ be a generator of the group of all multiplicative characters of F
∗
p. Then for

each χaij , there exists an integer bij ∈ [1, p− 1] such that χaij = ψbij . We derive

|SE(r, s)| =

∣∣∣∣∣
T∑

n=1

r∏
i=1

s∏
j=1

ψ
(
(fi ◦ τ(j−1)G(nG))bij

)
∣∣∣∣∣ + O(1)

=

∣∣∣∣∣
T∑

n=1
ψ

(
r∏

i=1

s∏
j=1

(fi ◦ τ(j−1)G)bij (nG)

)∣∣∣∣∣ + O(1)

By Lemma 1 we have #Supp(fi ◦ τ(j−1)G) = #Supp(fi) for i ∈ [1, r] and j ∈
[1, T ], hence

#Supp(
r∏

i=1

s∏
j=1

(fi ◦ τ(j−1)G)bij ) ≤ s
r∑

i=1

#Supp(fi).

We derive the desired results by Lemmas 2 and 3. �

3.3 Lower Bound on Linear Complexity

Linear complexity is an interesting characteristics of a sequence for applications
in cryptography. A low linear complexity of a sequence has turned out to be
undesirable for applications. Let

(γ1n, · · · , γrn), n = 1, · · · , N
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be an r−dimensional sequence with N terms over a ring R. The linear complexity
L(N) (of an r−dimensional sequence) is defined as the smallest s for which the
following relations hold

r∑
i=1

s∑
j=1

aijγi(n+j) = 0, 0 ≤ n ≤ N − s

with some nonzero fixed matrix A = (aij) of order r × s over R, see [12,5].
Let vij be defined as (4), that is

vij =
{

0, if fi(jG) = 0 or ∞;
ind(fi(jG)), otherwise;

for any j > 0 and i ∈ [1, r].

Theorem 4. The linear complexity L of r−dimensional sequence

(v1n, v2n, · · · , vrn), n = 1, 2, · · ·

satisfies

L ≥ T

(p1/2 + 1)
r∑

i=1

#Supp(fi)
,

where T is the order of G.

Proof. Assume L = s(≤ T ) and

s∑
j=1

r∑
i=1

aijvi(n+j) ≡ 0 (mod p − 1), n ≥ 0

with a nonzero matrix A = (aij)r×s over Zp−1. Then there are at least

T − s

r∑
i=1

#Supp(fi)

distinct points nG in 〈G〉 such that fi((n + j)G) 
= 0 and ∞ for all 1 ≤ i ≤ r
and 1 ≤ j ≤ s. Hence for such points nG, we have

s∑
j=1

r∑
i=1

aij · ind(fi((n + j)G)) ≡ 0 (mod p − 1).

Furthermore,

1 = ep−1(0) = ep−1

⎛
⎝

r∑
i=1

s∑
j=1

aij · ind(fi((n + j)G)

⎞
⎠ .
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So

T − s
r∑

i=1

#Supp(fi) ≤
∣∣∣∣∣

T∑
n=1

ep−1

(
r∑

i=1

s∑
j=1

aij · ind(fi((n + j − 1)G)

)∣∣∣∣∣

=

∣∣∣∣∣
T∑

n=1

r∏
i=1

s∏
j=1

ep−1 (aij · ind(fi((n + j − 1)G)))

∣∣∣∣∣ .

Now by the proof of Theorem 3, we derive

T ≤ s(p1/2 + 1)
r∑

i=1

#Supp(fi),

which completes the proof of Theorem 4. �

Since E(Fp) is a cyclic group and T ∼ p, the bound in Theorem 4 is of the order
of magnitude O(p1/2).

Corollary 1. The lower bound on the linear complexity of the sequence U =
(ui)i>0 defined in (3) is

T

(p1/2 + 1)#Supp(f)
.

4 Generating Linear Recursive Sequences over Elliptic
Curves

As we have mentioned above, the period of the sequence U = (ui)i>0 in (3) is
bounded by O(p), the size of the finite field Fp over which the elliptic curve is
defined. In [1,9], a method for generating sequences was proposed by applying
linear recurrence relations on elliptic curves, which may produce rational point
sequences with long periods.

Let E(Fp) be of order T , where T is a prime (only in this section). A lin-
ear recursive sequence P = (Pi)i≥0 over elliptic curves satisfies the recurrence
relation

Pn+i = cn−1Pn−1+i ⊕ · · · ⊕ c1P1+i ⊕ c0Pi, i ≥ 0 (7)

with initial values P0 = s0G, P1 = s1G, · · · , Pn−1 = sn−1G in E(Fp), where
si ∈ FT for i = 0, 1, · · · , n − 1. Let

m(x) = xn − cn−1x
n−1 − · · · − c1x − c0 ∈ FT [x].

We call that m(x) is a characteristic polynomial of P . Let Pi = siG, i ≥ 0. From
(7), it is easy to see the sequence (si) satisfies

sn+i = cn−1sn−1+i + · · · + c1s1+i + c0si, i ≥ 0

with initial values s0, s1, · · · , sn−1 ∈ FT , i.e., m(x) is also a characteristic poly-
nomial of (sn).
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From now on we always suppose that m(x) = xn − cn−1x
n−1 − · · · − c1x − c0

is a primitive polynomial in FT [x]. In this case, the sequence (si) (hence P) is
periodic with least period T n − 1. Let d = (T n − 1)/(T − 1). We denote by

Pj = (Pj+dk)k≥0

the d−decimation of P , where j = 0, 1, · · · , d−1. Clearly T−1 is a period (needn’t
be the least) of each Pj. We arrange the first period of P as an interleaved
sequence:

P =

⎛
⎜⎜⎝

P0

P1

· · ·
Pd−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

s0G, sdG, · · · , s(T−2)dG
s1G, s1+dG, · · · , s1+(T−2)dG
· · · , · · · , · · · , · · ·

sd−1G, s2d−1G, · · · , s(T−1)d−1G

⎞
⎟⎟⎠

d×(T−1)

(8)

From [2], we have the following two facts:

Fact I. For the matrix in (8), there are exactly d−T n−1 rows with each entries
O, the point at infinity of E .

Fact II. The entries in each row of the rest T n−1 rows exactly run through all
points G, 2G, · · · , (T − 1)G. And these rows are shift equivalent.

Applying the method employed to construct U in (3), we compute the discrete
logarithm of the rational function value of each point of P and obtain the se-
quence W = (wi):

wi =
{

0, if f(siG) = 0 or ∞;
ind(f(siG)), otherwise; (9)

where i = 0, 1, · · · , T n − 2 and f ∈ Fp(E) is a rational function. Combining with
two facts above, we derive the following statement from Lemma 2.

Theorem 5. The discrepancy DW(T n − 1) of W in (9) is bounded by

DW(T n − 1) � T−1p1/2log(p),

where the implied constant depends on #Supp(f).

Proof. We have
∣∣∣∣
T n−2∑
n=0

ep−1(awn)
∣∣∣∣ =

∣∣∣∣
T n−2∑
n=0

χa(f(snG))
∣∣∣∣ + O(1)

� T n−1

∣∣∣∣∣
∑

Q∈〈G〉
χa(f(Q))

∣∣∣∣∣
� T n−1#Supp(f)p1/2,

which completes the proof by Lemma 3. �

In computer science, the most common case is to use binary sequences. So we
will consider binary sequences from elliptic curves.
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Let
ρ : {0, 1, · · · , p − 2} → F2

be a map. We will obtain a binary sequence X = (xi)i≥0 from W defined by (9):

xi = ρ(wi), i ≥ 0. (10)

From (8) and (9), we set

Xj = (xj+dk)k≥0, j = 0, 1, · · · , d − 1

where d = (T n − 1)/(T − 1). In fact, all Xj ’s are d−decimation of X and all
nonconstant Xj ’s are shift equivalent. From [2] or [9], we have the following two
statements on the binary sequence X .

Proposition 1. The period of X , per(X ), is

per(X ) = d · per(Xj),

where Xj is a nonconstant sequence and per(Xj)|T − 1.

Proposition 2. The linear complexity of X , L(X ), is

L(X ) = d · L(Xj),

where Xj is a nonconstant sequence.

For any nonconstant Xj , we have L(Xj) ≥ 1, so the linear complexity of X is at
least d = (T n −1)/(T −1), which is very close the period T n −1. It is interesting
to determine the linear complexity of Xj .

5 Conclusion

We have presented general results about the (multi-dimensional) distribution of
a family of sequences derived from elliptic curves by using discrete logarithm,
which indicate the resulting sequences are asymptotically uniformly distributed.
A lower bound on the linear complexity of multi-dimensional sequences is also
presented. We have also investigated sequences derived from elliptic curves by
applying linear recurrence relations, the periods of which can be made very long.
In Section 4, the sequence is produced using a primitive polynomial m(x). It is
interesting to consider the case that m(x) is not a primitive polynomial and it
seems more complicated.

We should note that computing a discrete logarithm in a finite field Fp is not
an easy task (the best known algorithm runs in time sub-exponential in log p),
hence these random generators seem to be extremely slow. But, for example, one
can output the least significant bit (not the whole bits) of discrete logarithms
by only computing the Legendre symbol in polynomial time.
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21. Sárközy, A.: A Finite Pseudorandom Binary Sequence. Studia Sci. Math. Hun-
gar. 38, 377–384 (2001)

22. Shparlinski, I.E.: On the Naor-Reingold Pseudo-Random Number Function from
Elliptic Curves. Appl. Algebra Engng. Comm. Comput. 11(1), 27–34 (2000)

23. Shparlinski, I.E.: Cryptographic Applications of Analytic Number Theory: Com-
plexity Lower Bounds and Pseudorandomness. Progress in Computer Science and
Applied Logic, vol. 22. Birkhauser, Basel (2003)

24. Shparlinski I. E.: Pseudorandom Points on Elliptic Curves over Finite Fields.
Preprint No.33, pp. 1–15 (2005), http://www.ics.mq.edu.au/∼igor/publ.html

25. Shparlinski, I.E., Silverman, J.H.: On the Linear Complexity of the Naor-Reingold
Pseudo-random Function from Elliptic Curves. Designs, Codes and Cryptogra-
phy 24(3), 279–289 (2001)
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Abstract. Binary sequences generated by nonlinearly filtering maximal
length sequences with period 2n−1 are studied in this paper. We focus on
the particular class of normal filters and provide improved lower bounds
on the linear complexity of generated keystreams. This is achieved by first
proving properties of a special class of determinants which are associated
to linearized polynomials over finite fields of characteristic 2 and then by
applying the above to simplify generalizations of the root presence test.

Keywords: Binary sequences, filter functions, linear complexity, linear
feedback shift registers, linearized polynomials, stream ciphers.

1 Introduction

Stream ciphers are widely used to provide confidentiality in environments char-
acterized by a limited computing power or memory capacity, and the need to
encrypt at high speed. Shift registers of linear (LFSR) or nonlinear (NFSR)
feedback are a basic building block of proposals in this area, like Trivium [4],
Achterbahn [5] and Grain [11]. The linear complexity, i.e. the length of the short-
est LFSR generating a given sequence, is important for assessing resistance to
cryptanalytic attacks, like the Berlekamp–Massey algorithm [19], but also al-
gebraic attacks [21]. As most constructions are ad-hoc, finding good generators
(which is the objective of this work using finite fields tools) is of great theoretical
and practical value.

High linear complexity keystreams are generated by applying Boolean func-
tions either as combiners [7], [22], or filters [2], [22]. In any case, the highest
value attainable by linear complexity depends on the degree of the function [10],
[12]. The problem of determining the exact linear complexity attained by filter-
ings is open. Two classes of filters have been introduced, namely equidistant and
normal, that allow to derive lower bounds on the linear complexity. In the first
case, the distance between successive phases is coprime to the period N = 2n −1

� This work was partially supported by a Greece–Britain Joint Research & Technology
Programme, co-funded by the Greek General Secretariat for Research & Technology
(GSRT) and the British Council, under contract GSRT132–C.
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of m-sequences [6], [20], [22], whilst in the latter, phases are chosen from cosets
associated with normal bases [15]. Given a filter of degree k, the best known
lower bound on the linear complexity of keystreams is

(
n
k

)
+

(
n

k−1

)
but only for

equidistant filters [14]; the respective lower bound for normal filters equals
(
n
k

)
[15]. These results rely on the so-called root presence test (RPT) [22].

In this paper, we focus on nonlinearly filtering m-sequences of period N =
2n−1 by normal filters of degree k. The work in [13], [22] is extended by deriving
a simple RPT for field elements αe, with e having Hamming weight k−1. This is
achieved by factoring a class of determinants called generalized linearized deter-
minants [16], and use it to prove the improved bound

(
n
k

)
+ n for such nonlinear

filters. The paper is organized as follows: Section 2 gives the basic background
and settles the notation. Properties of the generalized linearized determinants
are studied in Section 3, while the improved lower bounds on normal filterings
are derived in Section 4. Section 5 summarizes the results and gives possible
future directions.

2 Background

Let x = {xj}j≥0 be a binary m-sequence of period N = 2n − 1, and μ(z) its
minimal polynomial, deg(μ) = n, whose roots lie in the extension field F2n [16].
It is known that the linear complexity Lx of x equals n [8], [9], [22]. Let α ∈ F2n

be a primitive element of F2n with μ(α−1) = 0. Then

xj = trn
1 (βα−j) = βα−j +

(
βα−j

)2 + · · · +
(
βα−j

)2n−1

(1)

for some β ∈ F2n , where trn
1 : F2n → F2 is the trace function. The above, known

as the trace representation, is associated with the discrete Fourier transform of
x, as it always holds xj =

∑N−1
i=0 βiα

−ij , βi ∈ F2n [13], [20].
Let y = {yj}j≥0 be the sequence resulting from the nonlinear filtering of x via

h : F
n
2 → F2. Then, we have yj = h(xj−t1 , xj−t2 , . . . , xj−tn), where the phases ti

belong to the residue class ring ZN = {0, 1, . . . , N − 1}. Let z = (z1, z2, . . . , zn),
r = (r1, r2, . . . , rn) ∈ F

n
2 . It is common to express the Boolean function h in its

algebraic normal form (ANF), given by

h(z) =
∑

r∈Fn
2

arzr =
∑

r∈Fn
2

arzr1
1 zr2

2 · · · zrn
n , ar ∈ F2 . (2)

In the sequel, we assume that a0 = 0. The degree of function h is defined as
deg(h) = max{wt(r) : ar = 1, r ∈ F

n
2}, where wt(r) denotes the weight of

vector r. A special form of functions to be considered in the following sec-
tions are the elementary symmetric polynomials of degree s, defined as σs(z) =∑

wt(r)=s zr1
1 · · · zrn

n , where r ∈ F
n
2 [17]. Subsequently, we use the convention that

σs(z) = 0 if s < 0 or s > n; clearly, σ0(z) = 1.
The cyclotomic coset Ce of e ∈ ZN is the set of distinct elements in {e,

e2, . . . , e2n−1} modulo N , and its cardinality is a divisor of n [16]. We say that
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αe ∈ F2n is a normal element if
{
αe, αe2, . . . , αe2n−1}

is a normal basis of F2n

over F2, and also wt(αe) = s if and only if wt(e) = s, that is e = 2e0 + · · ·+2es−1 .
It is known that Ly ≤

∑k
i=1

(
n
i

)
, if deg(h) = k [12]. In the special case yj =

xj−t1 · · ·xj−tk
, the RPT for wt(αe) = k is given by Te = det(αti2

ej−1 )k
i,j=1 [22];

it ensures that αe is a root of the minimal polynomial of y whenever Te �= 0.
The RPT has also been formed for the case of wt(αe) = k − 1 [13], and is given
by

Te =
∑

1≤r<s≤k

det(αli 2ej−1+1
)k−1
i,j=1 (3)

where (l1, . . . , lk−1) = (t1, . . . , tr−1, tr+1, . . . , ts−1, ts+1, . . . , tk, 1
2 (tr + ts)), ti ∈

ZN . Next, we develop the tools to simplify (3), for the case of normal filters,
based on properties of linearized polynomials over binary extension fields and
apply the results to the design of such filters.

3 Generalized Linearized Determinants

Let x = (x1, . . . , xk), with xi ∈ F2n , be a vector of nonzero elements, and
R = {r1, . . . , rk} be an increasing sequence of nonnegative integers. Then

U(x; R) = det(x2ri

j )k
i,j=1 (4)

is called generalized linearized determinant; the choice ri = i− 1 will be denoted
by U(x). They are connected to linearized polynomials that have numerous
applications in coding and cryptography (see e.g. [16]).

Theorem 1 ([16, p. 109]). Let x = (x1, . . . , xk) ∈ F
k
2n \ {0}. Then

U(x) =
∏

c∈Fk
2\{0}

(c1x1 + · · · + ckxk) =
∏

c∈Fk
2\{0}

〈c, x〉 (5)

is nonzero if and only if x1, . . . , xk are linearly independent over F2.

Let I = {0, 1, . . . , rk} \ R be the set of discontinuities that appear among
the elements of R. When |I| < k, we find it convenient to write U⊥(x; I) in-
stead of U(x; R). Furthermore, we introduce the mapping ϕ as follows ϕ(x) =
ϕ(x1, . . . , xk) = (0, x1, x2, x1 + x2, . . . , x1 + · · · + xk) that maps x to a vector
comprised by all linear combinations between the elements of x in lexicographic
ordering. Hence, (5) is written as U(x) = σ2k−1(ϕ(x)).

Lemma 2. Let us assume that I = {l}, where 0 ≤ l ≤ k. Then, we have
U⊥(x; I) = U(x)σ2k−2l(ϕ(x)).

Proof. Let us define the polynomial g(z) = U(x, z) ∈ F2n [z], in terms of the
linearized determinant U(x, z) of order k + 1. From (5) we have

g(z) = U(x)
∏

c∈Fk
2

(
〈c, x〉 + z

)
= U(x)

2k∑
i=0

σ2k−i(ϕ(x))zi . (6)
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On the other hand, by expanding U(x, z) along its k + 1 column, we have
g(z) =

∑k
i=0 U⊥(x; {i})z2i

; comparison with (6) proves the claim. �	

The following result is a direct consequence of Lemma 2.

Corollary 3. The elementary symmetric polynomial σs(ϕ(x)) of degree s, with
0 ≤ s ≤ 2k, is zero for all s /∈ {2k − 2i : 0 ≤ i ≤ k}.

To establish the main result of this section, we first need some properties of
symmetric polynomials σ2k−2i(ϕ(x)), which are stated without a proof; the con-
vention σ2k−2i(ϕ(x)) = 0, if i < 0 or i > k, is subsequently used.

Proposition 4. Let {A1, A2} be a partition of the set {1, 2, . . . , k}.Then σi(x)=∑
j1+j2=i σj1(xA1)σj2 (xA2), where xAr is the vector comprised by variables with

indices in Ar.

Proposition 5. Let x+ z = (x1 + z, . . . , xk + z), for any z ∈ F2n . Then σi(x+
z) =

∑i
j=0

(
j+k−i

j

)
σi−j(x)zj.

Lemma 6. With the above notation, for all 0 ≤ i ≤ k + 1, we have that
σ2k+1−2i(ϕ(x, z)) = σ2k−2i−1(ϕ(x))2 + σ2k−2i(ϕ(x)) U(x,z)

U(x) .

Proof. From the definition of ϕ(·) we get that ϕ(x, z) = (ϕ(x), ϕ(x)+z), whereas
by Corollary 3 and Propositions 4, 5 we easily see that we have

σ2k+1−2i(ϕ(x, z)) =
k∑

l=0

σ2k−2l(ϕ(x))
2k∑

j=2i−2l

(
j

j + 2l − 2i

)
σ2k−j(ϕ(x))

× zj+2l−2i

.

Since j must be a power of two by Corollary 3, say j = 2r for some r ≤ k, Lucas’
Theorem (see e.g. [1, p. 113], [18, p. 404]) implies that

(
2r

2r+2l−2i

)
is nonzero if

and only if either of the following cases hold

a. l = i : we get the expression σ2k−2i(ϕ(x)) U(x,z)
U(x) by Lemma 2; or

b. l = r = i − 1 : where we only get the term σ2k−2i−1(ϕ(x))2.

By combining the above two cases, we establish the required identity. �	

If it holds z = c1x1 + · · ·+ckxk for some c ∈ F
k
2 , then Lemma 6 gives the identity

σ2k+1−2i(ϕ(x, z)) = σ2k−2i−1(ϕ(x))2 since then ϕ(x) + z is just a permutation
of the elements in ϕ(x). The factorization of U(x; R) is next generalized for any
number of elements in I.

Theorem 7. Let I = {l1, . . . , ls}, where 0 ≤ l1 < · · · < ls ≤ k + s − 1. Then
U⊥(x; I) = U(x) det(σ2k−2li−j+1(ϕ(x))2

j−1
)s
i,j=1.
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Proof (sketch). Let us denote σ2k−2i(ϕ(x)) by ξk,i(x), for simplicity. We proceed
by induction on the cardinality of I and apply arguments similar to the ones
developed in [14, Theorem 3]. The identity has been proved in Lemma 2 for
|I| = 1 and assume it also holds for |I| = m. Then from the induction hypothesis
and Lemma 6, g(z) = U⊥((x, z); I) becomes

g(z) = U(x, z) det
(
ξk+1,li−j+1(x, z)2

j−1)m

i,j=1

= U(x)f(z)
∑

π∈Pm

m∏
i=1

(
ξk,lπi

−i(x)2 + f(z)ξk,lπi
−i+1(x)

)2i−1

= U(x)
∑

c∈Fm
2

det
(
ξk,li−j+cj (x)2

j−cj )m

i,j=1
f(z)c+1 (7)

where Pm is the set of permutations of {1, . . . , m}, c = (c1, . . . , cm) is the
binary representation of c ∈ [0, 2m − 1], and f(z) = U(x, z)U(x)−1. Since
the determinants involved in (7) vanish if c �= 2t − 1 [14], by substituting
f(z) =

∑k
v=0 ξk,v(x)z2v

and performing some easy calculations, we get

g(z) = U(x)
∑

lm+1∈R′

det
(
ξk,li−j+1(x)2

j−1)m+1

i,j=1
z2lm+1 (8)

where R′ = {0, . . . , k + m} \ I = R ∪ {k + m}. On the other hand, we have

g(z) =
k+1∑
i=1

U⊥(x; I ∪ {ri})z2ri =
∑

lm+1∈R′

U⊥(x; I ′)z2lm+1 (9)

where I ′ = I ∪{lm+1}. Direct comparison of the coefficients in (8), (9) concludes
our proof. �	

4 Improved Bounds on Normal Filterings

In this section, we establish a new lower bound on the linear complexity of se-
quences obtained from filter generators, focusing on the case of maximal length
sequences filtered by nonlinear Boolean functions of degree k that have the form
h(z1, . . . , zk) = z1 · · · zk, that is, we assume that the output sequence y is deter-
mined by the product

yj = xj−t−dxj−t−d2 · · · xj−t−d2k−1 , j ≥ 0 (10)

where t ≥ 0, and the integer d ∈ ZN \ {0} is chosen so that the cyclotomic coset
Cd = {d, d2, . . . , d2n−1} corresponds to a normal basis of F2n over F2. It is clear
that the construction introduced above cannot be handled by the methodology
developed in [14] based on generalized Vandermonde determinants, since the
cardinality of I in that case (cf. equidistant filters) would be prohibitively large.
Thus, the results of Section 3 are valuable in analyzing the linear complexity
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of keystreams obtained by such ciphers. In the sequel, we consider the root
presence test only for elements αe ∈ F2n of weight k − 1, i.e. (3), since it has
already been proved that Ly ≥

(
n
k

)
in the case of wt(e) = k [13]. Moreover, we

write e = 2e0 +· · ·+2ek−2 and use the notation xs = (x1, . . . , xs−1, xs+1, . . . , xk),
i.e. xs results from x by omitting the variable xs, 1 ≤ s ≤ k.

Theorem 8. Let sequence y be generated by (10), and let αe ∈ F2n with wt(e) =
k − 1. Then, αe is a root of the minimal polynomial of y if and only if αd is not
a root of

fe(z) =
k−2∑
i=0

∏

ci∈F
k−2
2

(
ge,ci(z) + z2ei−1)3

ge,ci(z) + z2ei
(11)

where ge,ci(z) =
∑

j �=i cjz
2ej and ci = (c0, . . . , ci−1, ci+1, . . . , ck−2).

Proof. Substituting ti = t + d2i, for 0 ≤ i ≤ k − 1, in (3) and expanding the
determinants along their last row, the root presence test becomes by Theorem
7 as follows

Te = α2et
∑

0≤i<j<k

k−2∑
s=0

U⊥(xs; {i, j})2x2i+2j

s = α2et
∑

0≤i<j<k

k−2∑
s=0

U(xs)2

×
∣∣∣∣
σ2k−2−2i(ϕ(xs)) σ2k−2−2i−1(ϕ(xs))2

σ2k−2−2j (ϕ(xs)) σ2k−2−2j−1(ϕ(xs))2

∣∣∣∣
2

x2i+2j

s (12)

where x =
(
αd2e0

, . . . , αd2ek−2 )
, and determinant U⊥(xs; {i, j}) has order k − 2.

By expanding in (12) the 2×2 determinant of elementary symmetric polynomials,
and using the fact that it vanishes for i = j, we obtain that

Te = α2et
k−2∑
s=0

U(xs)2
k−1∑
i,j=0

σ2k−2−2i(ϕ(xs))2σ2k−2−2j−1(ϕ(xs))4x2i+2j

s

= α2et
k−2∑
s=0

U(xs)2
k−2∑
i=0

σ2k−2−2i(ϕ(xs))2x2i

s

k−1∑
j=1

σ2k−2−2j−1(ϕ(xs))4x2j

s

= α2et
k−2∑
s=0

U(xs)2
k−2∑
i=0

σ2k−2−2i(ϕ(xs))2x2i

s

k−2∑
l=0

σ2k−2−2l(ϕ(xs))4x2l+1

s

= α2et
k−2∑
s=0

U(xs)2
(

k−2∑
i=0

σ2k−2−2i(ϕ(xs))
(√

xs

)2i

)6

(13)

since σ2k−2−2i(ϕ(xs)) and σ2k−2−2j−1 (ϕ(xs)) are zero when i = k − 1 and
j = 0 respectively, where the change of variables j → l + 1 was applied in
the rightmost terms. From the definition of U(x) we see that the identity
U(x) = U(xs)

∏
c∈F

k−2
2

(
〈c, xs〉 + xs

)
holds. Additionally, from the proof of

Corollary 3, (13) becomes
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Te = α2etU(x)2
k−2∑
s=0

∏

c∈F
k−2
2

(
〈c, xs〉 +

√
xs

)6

(
〈c, xs〉 + xs

)2 = α2etU(x)2fe(αd)2 (14)

since xi = αd2ei where fe(z) is given by (11). It is clear that Te �= 0 if and only
if fe(αd) �= 0. �	

Proposition 9. Let fe(z) be given by (11), and let l ≥ 0. Then, we have

1. fe(αd2l

) �= 0 if and only if fe(αd) �= 0, and
2. fe2l(αd) �= 0 if and only if fe(αd) �= 0.

Proof. This is direct result of (11), since for all integers l ≥ 0 the identity
fe(αd2l

) = fe(αd)2
l

= fe2l(αd) holds. �	

From (11), we see that the function fe(z) is well-defined if and only if all
linear combinations of any k − 1 elements αd2e0

, . . . , αd2ek−2 from the set {αd,

αd2, . . . , αd2n−1} are nonzero; this is satisfied since by hypothesis αd is a normal
element of the finite field F2n . The simplification occurring in the root presence
test, due to Theorem 8, allows the systematic analysis of the linear complexity
of maximal length sequences nonlinearly filtered as in (10). In fact, according
to Proposition 9, the root presence test need only be applied for αe ∈ F2n ,
wt(e) = k − 1, where e is the coset leader of Ce (hence e0 = 0). Next, fe(z) is
further simplified by considering runs of 1s in the binary representation of e.

Corollary 10. Let αe ∈ F2n with wt(e) = k − 1, and w be the number of runs
of 1s in the binary representation of e. If the r-th run has length lr and starts
at position eir , where 0 ≤ i0 < · · · < iw−1 ≤ k − 2, we have

fe(z) =
w−1∑
r=0

∏

cir∈F
k−2
2

(
ge,cir

(z) + z2eir
−1)3

ge,cir
(z) + z2eir

. (15)

Proof. It is clear from (11) that when two consecutive 1s are encountered in the
binary representation of e, that is if ej ≡ ej−1 mod k−1 + 1 (mod n) for some
0 ≤ j ≤ k − 2, then for i = j we get that

0 = z2ej−1 + z2ej−1
∣∣∣

∏
cj∈F

k−2
2

(
ge,cj (z) + z2ej−1)3

.

Hence, only those 0 ≤ i ≤ k − 2 for which ei is the starting position of a run of
1s need to be considered in (11). �	

Of particular interest is the case where the cyclotomic coset Ce of e ∈ ZN is in
the class of the so-called regular cosets [3]. These are cosets for which αe ∈ F2n

belongs to subfields of the finite field F2n . With the notation of Corollary 10,
we see that in this case it holds w | gcd(n, k − 1) and w > 1, with lr = l = k−1

w
and eir = erl = rm = r n

w , for 0 ≤ r < w; it is clear that 0 < l < m. Moreover
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ej = esl+t = esl + t = sm + t for some integers 0 ≤ s < w and 0 ≤ t < l, where
0 ≤ j ≤ k − 2. From Corollary 10, we get

ge,cir
(z) =

w−1∑
s=0

l−1∑
t=0

(s,t) �=(r,0)

csl+tz
2sm+t

=

(
w−1∑
s=0

l−1∑
t=0

(s,t) �=(r,0)

csl+tz
2(s−r)m+t

)2rm

=

(
w−1∑
s=0

l−1∑
t=0

(s,t) �=(0,0)

c(s+r mod w)l+tz
2sm+t

)2rm

= ge,c̃r
0
(z)2

rm

using that z = z2wm

, where c̃r
0 = (crl+1, . . . , ck−2, c0, . . . , crl−1). Thus, we have

that fe(z) =
∑w−1

r=0

(∏
c̃r
0∈F

k−2
2

(ge,c̃r
0
(z) +

√
z)3/(ge,c̃r

0
(z) + z)

)2rm

. A simple re-
ordering of the product terms will make them independent of r, leading to the
following result, simplifying the analysis of such filterings.

Corollary 11. With the above notation, if e = 2e0 + · · · + 2ek−2 is such that
ej = sm + t, where s = �j/l� and t = j mod l, then it holds

fe(z) = trn
m

( ∏
c1,...,ck−2∈F2

(
ge,c(z) +

√
z
)3

ge,c(z) + z

)
(16)

with ge,c(z) =
∑k−2

j=1 cjz
2sm+t

and c = (c1, . . . , ck−2).

Ensuring that αd ∈ F2n is not a root of fe(z), for all e ∈ ZN with wt(e) = k − 1,
to obtain the lower bound

(
n
k

)
+

( n
k−1

)
according to Theorem 8, is a hard task

even for special cases of d (i.e. normal bases with some particular properties).
Improved bounds have been obtained in the following case.

Theorem 12. Let sequence y be given by (10) and 2 ≤ k ≤ n. Then, for all
d ∈ ZN such that αd ∈ F2n is a normal element it holds Ly ≥

(
n
k

)
+ n.

Proof. For a normal filter of degree k let e = 2k−1 − 1, which has weight k − 1;
clearly, the cardinality of Ce equals n. From Corollary 10, we have that fe(αd)
is comprised by a single product of terms whose numerator is

∏
c1,...,ck−2∈F2

(
c1αd2 + · · · + ck−2αd2k−2

+ αd2n−1)3
.

Hence, fe(αd) is always nonzero since αd2, . . . , αd2k−2
, αd2n−1

are linearly inde-
pendent due to hypothesis. �	

The above methodology is easily extended to include the sum of normal filters,
by adding shifted versions (i.e. for various values of the integer t) of the nonlinear
filter given by (10). In this case, (14) leads to

Te =
(∑

t≥0
vtα

et
)2

U(x)2fe(αd)2, vt ∈ F2 . (17)
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Thus, we also need to ensure that, for a particular choice of coefficients vt ∈ F2,
no element αe ∈ F2n with wt(e) = k − 1 will be root of

∑
t≥0 vtz

t. Exhaustive
search, for 2 ≤ n ≤ 20, verified the above results and indicated that most
degeneracies occur when e ∈ ZN belongs to a regular coset.

5 Conclusions

Maximal length sequences nonlinearly filtered by means of normal filters were
studied in this paper. It was shown that simple conditions for testing the presence
of roots in the minimal polynomial of filterings can be derived by using properties
of generalized linearized determinants. As a result, the improved lower bound(
n
k

)
+ n on the linear complexity of filterings was obtained. Ongoing research

focuses on exploiting properties of type I and II optimal normal bases in order
to improve the attained lower bound.
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7. Golić, J.D.: On the linear complexity of functions of periodic GF(q) sequences.
IEEE Trans. Inform. Theory 35, 69–75 (1989)

8. Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco (1967)
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Abstract. Polynomial functions are widely used in the design of cryp-
tographic transformations such as block ciphers, hash functions and
stream ciphers, which belong to the category of T-functions. When a
polynomial function is used as state transition function in a pseudo-
random generator, it is usually required that the polynomial function
generates a single cycle. In this paper, we first present another proof of
the sufficient and necessary condition on a polynomial function f(x) =
c0 + c1x + c2x2 + · · · + cmxm mod 2n(n ≥ 3) being a single cycle T-
function. Then we give a general linear equation on the sequences {xi}
generated by these T-functions, that is,

xi+2j−1,j = xi,j + xi,j−1 + ajAi,2 + a(j − 1) + b mod 2, 3 ≤ j ≤ n − 1,

where Ai,2 is a sequence of period 4, a and b are constants determined
by the coefficients ci. This equation shows that the sequences generated
by polynomial single cycle T-functions have potential secure problems.

Keywords: polynomial function, single cycle, pseudorandom generator.

1 Introduction

Polynomial functions are a class of important functions widely used in many
branches of cryptography, such as block cipher and stream cipher. When a poly-
nomial function is used as state transition function in a pseudorandom generator,
it is usually required that the polynomial function generates a single cycle. Linear
congruence pseudorandom generator is one of the most common pseudoramdom
generators, it uses linear function as state transition function. However, the se-
quences generated by linear congruence generator have obvious lattice structure,
thus it is not secure under cryptographical consideration. In order to avoid the
lattice structure, it usually uses nonlinear function to replace linear function as
state transform function, such as polynomial function with degree great than
two or power function.
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A function f(x) from an n-bit input to an n-bit output with the property that
the i-th bit of its outputs depends only on the first, the second, · · · , and the
i-th bit of its inputs is called a T-function (short for triangular function)[2]-[5].
The basic operations of T-functions are the following eight primitive operations:
negation (−x mod 2n), addition (x + y mod 2n), subtraction (x − y mod 2n),
multiplication (x·y mod 2n), complementation (⇁ x), or (x∨y), and (x∧y), and
xor (x⊕y), where x and y are two n-bit words. Thus all the polynomial functions
modulo 2n are T-functions. Klimov and Shamir[2]-[5] presented several classes of
single word and multiword single cycle T-functions. In 2005, Hong et.al[1] gave
another multiword single cycle T-function, which can be used to construct the
stream cipher TSC. One year later, Molland and Helleseth[7] proposed a linear
relationship on the Klimov-Shamir T-function f(x) = x + x2 ∨ 5 mod 2n.

Among all the polynomial functions, permutation polynomials over Z/(2n)
have been extensively studied, which belong to the category of invertible T-
functions. In 2001, Rivest[8] provided a complete characterization of all the
permutation polynomials modulo 2n. Larin[6] then presented a sufficient and
necessary condition on such polynomial function being a single cycle T-function.

In this paper, we give another proof on the sufficient and necessary condition
that a polynomial function f(x) = c0 + c1x + c2x2 + · · · + cmxm with integer
coefficients modulo 2n(n ≥ 3) is a single cycle T-function. That is, f(x) generates
a single cycle if and only if c0, c1 are odd, Δ1, Δ2 are even, Δ1 + Δ2 + 2c1,0 ≡
0 mod 4, and Δ1 + 2c2,0 + 2c1,1 ≡ 0 mod 4, where Δ1 = (c2 + c4 + · · · ), Δ2 =
(c3 + c5 + · · · ). Given x0, for 1 ≤ i ≤ 2n − 1, xi is generated by using the
recurrence xi = f(xi−1) mod 2n. Let xi,j be the j-th bit of xi, then we present a
general linear equation of {xi} generated by polynomial single cycle T-function,
that is,

xi+2j−1,j = xi,j + xi,j−1 + ajAi,2 + a(j − 1) + b mod 2, 3 ≤ j ≤ n − 1,

where Ai,2 is a sequence of period 4 and a, b are constants determined by the
coefficients ci. This equation shows that the sequences generated by polynomial
single cycle T-functions have potential secure problems.

2 Sufficient and Necessary Condition of Polynomial
Single Cycle T-Function

In this section, we present an exact characterization of the sufficient and nec-
essary condition that the polynomial function f(x) = c0 + c1x + c2x2 + · · · +
cmxm mod 2n generates a single cycle. In the following, let Δ1 = (c2 + c4 + · · · ),
Δ2 = (c3 + c5 + · · · ).

In 2001, Rivest provided the following complete characterization of all the
permutation polynomials modulo 2n:

Theorem 1. [8] Let f(x) = c0 + c1x + c2x2 + · · · + cmxm be a polynomial with
integer coefficients. Then f(x) is a permutation polynomial modulo 2n(n ≥ 3) if
and only if c1 is odd, Δ1 and Δ2 are even.
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Corollary 1. If f(x) = c0+c1x+c2x2+· · ·+cmxm is a permutation polynomial,
then

m∑
j=2

cjj ≡
m∑

j=2,j is odd

cjj ≡ 0 mod 2,

m∑
j=2

cjj ≡ 2(Δ2/2 +
m∑

j=2,j≡2,3 mod 4

cj,0) mod 4,

m∑
j=2

cjj(j − 1) ≡ 2
m∑

j=2,j≡2,3 mod 4

cj,0 mod 4.

For simple representation, let

a = Δ2/2 +
m∑

j=2, j≡2,3 mod 4

cj,0 mod 2,

thus
∑m

j=2 cjj ≡ 2a mod 4. It is obvious that

Lemma 1. If n ≥ 3, c1 ≡ 1 mod 2, then

c2n−1

1 ≡ 1 mod 2n+1,

c2n−2

1 ≡ 1 + 2n(c1,1 ⊕ c1,2) mod 2n+1.

Lemma 2. If n ≥ 2, c0 ≡ 1 mod 2, c1 ≡ 1 mod 2, then

c0(1 + c1 + · · · + c2n−1−1
1 )

≡ 2n−1(c1,1 ⊕ 1) + 2n(c0,1 ⊕ c0,1c1,1 ⊕ c1,1 ⊕ c1,2) mod 2n+1.

Proof. We proceed by induction on n. The case n = 2 is trivial. We assume that
the statement is true for n − 1, then for the case of n, we have

c0(1 + c1 + · · · + c2n−1−1
1 )

= c0(1 + c1 + · · · + c2n−2−1
1 + c2n−2

1 (1 + c1 + · · · + c2n−2−1
1 ))

= c0(1 + c1 + · · · + c2n−2−1
1 ) + c0 · c2n−2

1 (1 + c1 + · · · + c2n−2−1
1 )

≡ c0(1+c1+· · · + c2n−2−1
1 ) + c0(1+2n(c1,1 ⊕ c1,2))(1 + c1 + · · · + c2n−2−1

1 )(Lemma 1)

≡ 2[c0(1 + c1 + · · · + c2n−2−1
1 ) mod 2n−1] mod 2n

= 2n−1(c1,1 ⊕ 1) + 2n(c0,1 ⊕ c0,1c1,1 ⊕ c1,1 ⊕ c1,2) mod 2n+1

So we have

Theorem 2. Let f(x) = c0 + c1x + c2x2 + · · · + cmxm be a polynomial with
integer coefficients, then f(x) is single cycle T-function modulo 2n(n ≥ 3) if
and only if c0, c1 are odd, Δ1, Δ2 are even, Δ1 + Δ2 + 2c1,1 ≡ 0 mod 4 and
Δ1 + 2c2,0 + 2c1,1 ≡ 0 mod 4.
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Proof. It is clear that a single cycle T-function must be an invertible function.
From Theorem 1, we know that a polynomial function is an invertible function
if and only if c1 is odd, Δ1, Δ2 are even.

1. When n = 1, it is easy to get f(x) mod 2 generates a single cycle if and
only if c0, c1 are odd, Δ1, Δ2 are even.

2. When n = 2, 3, first we have

x1 = f(x0) = c0 + c1x0 +
m∑

j=2

cjx
j
0,

x2 = c0(1 + c1) + c2
1x0 +

m∑
j=2

cjx
j
1 + c1

m∑
j=2

cjx
j
0,

· · ·

x2n−1 = c0(1 + c1 + · · · + c2n−1−1
1 ) + c2n−1

1 x0 +
2n−1−1∑

i=0

(c2n−1−1−i
1

m∑
j=2

cjx
j
i ).(1)

From Lemma 1, Lemma 2 and Corollary 1, (1) can be represented as

x2n−1 ≡ 2n−1(c1,1 ⊕ 1) + x0 +
m∑

j=2

cj

2n−1−1∑
i=0

c2n−1−1−i
1 xj

i

=2n−1(c1,1 ⊕ 1)+x0+
m∑

j=2

cj

2n−1−1∑
i=0

c2n−1−1−i
1 (xi mod 2n−1+xi,n−12n−1)j

≡ 2n−1(c1,1 ⊕ 1) + x0 +
m∑

j=2

cj{
2n−1−1∑

i=0

c2n−1−1−i
1 (xi mod 2n−1)j

+ 2n−1jxi,n−1(xi mod 2n−1)j−1}(n ≥ 2)

≡ 2n−1(c1,1 ⊕ 1) + x0 +
m∑

j=2

cj

2n−1−1∑
i=0

c2n−1−1−i
1 (xi mod 2n−1)j mod 2n

2.1. If n = 2, x2 = 2(c1,1⊕1)+x0+Δ1+Δ2 mod 4. It follows that f(x) mod 4
generates a single cycle if and only if c0, c1 are odd, Δ1, Δ2 are even and Δ1 +
Δ2 + 2c1,1 ≡ 0 mod 4.

2.2. If n = 3, from Lemma 1, c2
1 ≡ 1 mod 8, then

m∑
j=2

cj(
3∑

i=0

c3−i
1 (xi mod 4)j) mod 8

=
m∑

j=2

cj{c1 · ((x0 mod 4)j + (x2 mod 4)j) + (x1 mod 4)j + (x3 mod 4)j}.(2)

If {xi mod 4} generates a single cycle, then x0 − x2 ≡ x1 − x3 ≡ 2 mod 4.
When {x0 mod 4,x2 mod 4} = {0, 2} and {x1 mod 4,x3 mod 4} = {1, 3}, (2)
can be represented as
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4c2,0 +
m∑

j=2

cj(1j + 3j) ≡ 4c2,0 + 2Δ1 + 4Δ2 = 2(2c2,0 + Δ1) mod 8(Δ2 is even).

It is easy to verify the above equation is also correct when {x0 mod 4,x2 mod
4} = {1, 3} and {x1 mod 4,x3 mod 4} = {0, 2}. Thus f(x) mod 8 generates a
single cycle if and only if c0, c1 are odd, Δ1, Δ2 are even, Δ1 + Δ2 + 2c1,1 ≡
0 mod 4 and Δ1 + 2c1,1 + 2c2,0 ≡ 0 mod 4.

3. When n > 3, from [5] we know that the sufficient and necessary condition on
f(x) mod 2n generating a single cycle is the same as that f(x) mod 8 generating
a single cycle.

3 Linear Equation on Polynomial Single Cycle T-Function

In this section, we concentrate on the algebraic structure of {xi} generated by
the following polynomial single cycle T-function

f(x) = c0 + c1x + c2x2 + · · · + cmxm mod 2n, c0, c1 are odd, Δ1, Δ2 are even,

Δ1 + Δ2 + 2c1,1 ≡ 0 mod 4 and Δ1 + 2c2,0 + 2c1,1 ≡ 0 mod 4. (3)

The single cycle property of f(x) naturally implies xi+2k,k = xi,k ⊕1, 0 ≤ k ≤
n − 1. In this section, we show that {xi} has another linear equation, i.e.,

xi+2j−1,j = xi,j + xi,j−1 + ajAi,2 + a(j − 1) + b mod 2, 3 ≤ j ≤ n − 1.

where {Ai,2} is a sequence of period 4 and a, b are constants determined by the
coefficients ci.

Lemma 3. For n ≥ 2, let {xi} be the sequence generated by (3),

Ai,n =
2n−1∑
k=0

xi+k,nxi+k,0 mod 2.

Then Ai,n = A0,n⊕di, where {di} is the sequence of period 4 and (d0, d1, d2, d3) =
(0,x0,0, 1,x0,0 ⊕ 1).

Proof.

Ai+1,n =
2n−1∑
k=0

xi+k+1,nxi+k+1,0 mod 2

=
2n−1∑
k=1

xi+k,nxi+k,0 + xi+2n,nxi+2n,0 mod 2

=
2n−1∑
k=0

xi+k,nxi+k,0 + xi,0(xi,n + xi+2n,n) mod 2
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=
2n−1∑
k=0

xi+k,nxi+k,0 + xi,0 mod 2

= Ai,n + xi,0 mod 2

It follows that

A1,n = A0,n ⊕ x0,0, A2,n = A0,n ⊕ x0,0 ⊕ x1,0 = A0,n ⊕ 1,

A3,n = A0,n ⊕ x0,0 ⊕ 1, A4,n = A0,n.

In the research of algebraic structure of polynomial single cycle T-function, the
following equation

Bn =
m∑

j=2

cj(
2n−1−1∑

i=0

c2n−1−1−i
1 (xi mod 2n−1)j) mod 2n+1

usually appears. Next we show the calculation process of B3.

Lemma 4. Let {xi} be the sequence generated by (3),

B3 =
m∑

j=2

cj(
3∑

i=0

c3−i
1 (xi mod 4)j) mod 24.

Then we have

B3 =4c1,1+8{[c2,0 + Δ1/2 mod 4]1+c2,1 + c3,0 + c1,1c2,0 + a + c1,1x0,0} mod 24,

where a = Δ2/2 +
∑m

j=2, j≡2,3 mod 4 cj,0 mod 2.

Proof. From Lemma 1, c2
1 ≡ 1 + 8(c1,1 ⊕ c1,2) mod 24, then

B3 =

m�

j=2

cj(

3�

i=0

c3−i
1 (xi mod 4)j) mod 24

≡
m�

j=2

cjc1{(x0 mod 4)j + (x2 mod 4)j} +

m�

j=2

cj{(x1 mod 4)j + (x3 mod 4)j}

+ 8(c1,1 ⊕ c1,2)(c1

m�

j=2

cj(x0 mod 4)j +

m�

j=2

cj(x1 mod 4)j) mod 24

≡
m�

j=2

cjc1{(x0 mod 4)j + (x2 mod 4)j}+

m�

j=2

cj{(x1 mod 4)j +(x3 mod 4)j} mod 24

It is easy to get

1j + 3j mod 16 ≡

⎧⎪⎪⎨
⎪⎪⎩

2, j ≡ 0 mod 4
4, j ≡ 1 mod 4
10, j ≡ 2 mod 4
12, j ≡ 3 mod 4

.
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1. When {x0 mod 4,x2 mod 4} = {0, 2} and {x1 mod 4,x3 mod 4} = {1, 3},
then B3 can be represented as

B3 ≡ c1(4c2 + 8c3) +
m�

j=2

cj(1
j + 3j) mod 24

≡ (1 + 2c1,1)(4c2 + 8c3) + 2
m�

j=2, j is even

cj + 4
m�

j=2, j is odd

cj + 8
m�

j=2,j≡2,3 mod 4

cj,0

≡ 4c2,0 + 8(c2,1 + c3,0 + c1,1c2,0) + 2Δ1 + 8a mod 24

≡ 4([c2,0 + Δ1/2 mod 4]0)

+ 8{[c2,0 + Δ1/2 mod 4]1 + c2,1 + c3,0 + c1,1c2,0 + a} mod 24

Since c2,0 + Δ1/2 ≡ c1,1 mod 2, then

B3 ≡ 4c1,1 + 8{[c2,0 + Δ1/2 mod 4]1 + c2,1 + c3,0 + c1,1c2,0 + a} mod 24.

2. When {x0 mod 4,x2 mod 4} = {1, 3} and {x1 mod 4,x3 mod 4} = {0, 2},
similar to the analysis of case 1, we have

B3 ≡ 4c1,1 + 8{[c2,0 + Δ1/2 mod 4]1 + c2,1 + c3,0 + c1,1Δ1/2 + a} mod 24.

Thus

B3 ≡4c1,1+8{[c2,0+Δ1/2 mod 4]1 + c2,1 + c3,0 + c1,1c2,0+a + c1,1x0,0} mod 24.

Lemma 5. For n ≥ 4, let {xi} be the sequence generated by (3), suppose that

Dn =
m∑

j=2

cjj(
2n−2−1∑

i=0

c2n−2−1−i
1 xj−1

i ) mod 8,

then

Dn ≡
{

4
∑m

j=7,j≡3 mod 4 cj,0, n = 4
0, n ≥ 5

mod 8. (4)

Proof.

Dn =
m∑

j=2

cjj(
2n−2−1∑

i=0

c2n−2−1−i
1 xj−1

i ) mod 8

≡
m∑

j=2

cjj(
2n−2−1∑

i=0

(1 + 2c1,1 + 4c1,2)
2n−2−1−i · xj−1

i ) mod 8

Since

C2
i =

i(i − 1)
2

≡
{

0 mod 2, i ≡ 0, 1 mod 4
1 mod 2, i ≡ 2, 3 mod 4 ,
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then

2n−2−1∑
i=0

(1 + 2c1,1 + 4c1,2)
2n−2−1−i · xj−1

i mod 8

=
2n−2−1∑

i=0

(1 + 2c1,1 + 4c1,2)
i · (x2n−2−1−i)j−1 mod 8

≡
2n−2−1∑

i=0

(1 + 2c1,1i + 4c1,2i) · (x2n−2−1−i)j−1

+ 4c1,1

2n−2−1∑
i=0,i≡2,3 mod 4

(x2n−2−1−i)j−1 mod 8

≡
{∑2n−2−1

i=0 (1 + 2c1,1i + 4c1,2i) · (x2n−2−1−i)j−1 + 4c1,1, n = 4∑2n−2−1
i=0 (1 + 2c1,1i + 4c1,2i) · (x2n−2−1−i)j−1, n ≥ 5

mod 8

From Corollary 1, we have

4c1,1

m∑
j=2

cjj ≡ 0 mod 8,

4c1,2

m∑
j=2

cjj
2n−2−1∑

i=0

i(x2n−2−1−i)j−1 ≡ 0 mod 8,

therefore

Dn ≡
m∑

j=2

cjj(
2n−2−1∑

i=0

xj−1
i ) + 2c1,1

m∑
j=2

cjj(
2n−2−1∑

i=0

i · xj−1
2n−2−i−1) mod 8

=̂ Dn,1 + Dn,2 (5)

We first calculate Dn,2, then Dn,1.

Dn,2 = 2c1,1{
m�

j=2

cjj(

2n−2−1�

i=0

i · (x2n−2−i−1)
j−1) mod 4} mod 8

≡ 2c1,1{
m�

j=2

cjj(

2n−2−1�

i=0

(i0+2i1) · (x2n−2−i−1,0+2(j−1)x2n−2−i−1,1x
j−2
2n−2−i−1,0))}

≡ 2c1,1{
m�

j=2

cjj(
2n−2−1�

i=0

(i0 + 2i1)x2n−2−i−1,0) mod 4} mod 8

≡ 0 mod 8(
m�

j=2

cjj ≡ 0 mod 2 and
2n−2−1�

i=0

i0x2n−2−i−1,0 ≡ 0 mod 2) (6)
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Dn,1 =
m∑

j=2

cjj(
2n−2−1∑

i=0

xj−1
i ) mod 8

≡
m∑

j=2

cjj(
2n−2−1∑

i=0

(xi,0 + 2xi,1 + 4xi,2)j−1) mod 8

=
m∑

j=2

cjj(
2n−2−1∑

i=0

(xi,0 + 2(j − 1)xi,1x
j−2
i,0 + 4(j − 1)xi,2x

j−2
i,0 )

+ 4
m∑

j=2,j≡0,3 mod 4

cjj

2n−2−1∑
i=0

x2
i,1x

j−3
i,0 mod 8

As j(j − 1) ≡ 0 mod 2, then

Dn,1 ≡
m∑

j=2

cjj(
2n−2−1∑

i=0

xi,0) + 2(
m∑

j=2

cjj(j − 1)(
2n−2−1∑

i=0

xi,1x
j−2
i,0 ) mod 4)

+ 4
m∑

j=2,j≡0,3 mod 4

cjj

2n−2−1∑
i=0

x2
i,1x

j−3
i,0 mod 8

≡2n−3
m∑

j=2

cjj+2n−3
m∑

j=2

cjj(j−1)+2n−2c2,0+2n−2
m∑

j=7,j≡3 mod 4

cj,0 mod 8

≡
{

4
∑m

j=7,j≡3 mod 4 cj,0, n = 4
0, n ≥ 5

mod 8 (7)

(By Corollary 1 and Δ2/2 + c2,0 ≡ 0 mod 2)
From (5), (6) and (7), we have

Dn = Dn,1 ≡
{

4
∑m

j=7,j≡3 mod 4 cj,0, n = 4
0, n ≥ 5

mod 8.

Lemma 6. For n ≥ 4, let {xi} be the sequence generated by (3), A0,l(2 ≤ l ≤
n − 2) be defined as Lemma 3. Suppose that

Bn =
m∑

j=2

cj(
2n−1−1∑

i=0

c2n−1−1−i
1 (xi mod 2n−1)j) mod 2n+1,

then Bn can be represented as

Bn = 2n−1c1,1 + 2n([c2,0 + Δ1/2 mod 4]1 + c2,1 + c1,1c2,0

+
m∑

j=6,j≡2 mod 4

cj + a

n−2∑
l=2

A0,l + c1,1x0,0) mod 2n+1.
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Proof

Bn =
m∑

j=2

cj{
2n−1−1∑

i=0

c2n−1−1−i
1 (xi mod 2n−1)j} mod 2n+1

=
m∑

j=2

cj{
2n−2−1∑

i=0

c2n−1−1−i
1 (xi mod 2n−1)j +

2n−1−1∑
i=2n−2

c2n−1−1−i
1 (xi mod 2n−1)j}

≡
m∑

j=2

cj{
2n−2−1∑

i=0

c2n−2−1−i
1 ((xi mod 2n−1)j + (xi + 2n−2 mod 2n−1)j)}

+2n
m∑

j=2

cj{
2n−2−1∑

i=0

c2n−2−1−i
1 (c1,1 ⊕ c1,2)(xi mod 2n−1)j} mod 2n+1(Lemma 1)

It is obvious that the second term in the above equation is zero, then

Bn ≡
m∑

j=2

cj{
2n−2−1∑

i=0

c2n−2−1−i
1 ((xi mod 2n−1)j + (xi + 2n−2 mod 2n−1)j)}

≡
m∑

j=2

cj{
2n−2−1∑

i=0

c2n−2−1−i
1 (2(xi mod 2n−1)j + j2n−2(xi mod 2n−1)j−1)}

≡ 2
m∑

j=2

cj{
2n−2−1∑

i=0

c2n−2−1−i
1 (xi mod 2n−1)j}

+ 2n−2
m∑

j=2

cjj{
2n−2−1∑

i=0

c2n−2−1−i
1 (xi mod 2n−1)j−1} mod 2n+1

=̂ Bn,1 + Bn,2 mod 2n+1 (8)

From Lemma 5, we have

Bn,2 ≡
{

2n
∑m

j=7,j≡3 mod 4 cj,0, n = 4
0, n ≥ 5

mod 2n+1 . (9)

Bn,1 = 2
m∑

j=2

cj(
2n−2−1∑

i=0

c2n−2−1−i
1 (xi mod 2n−1)j) mod 2n+1

= 2
m∑

j=2

cj(
2n−2−1∑

i=0

c2n−2−1−i
1 (xi mod 2n−2 + xi,n−22n−2)j)

=2
m∑

j=2

cj(
2n−2−1∑

i=0

c2n−2−1−i
1 ((xi mod 2n−2)j + j2n−2xi,n−2(xi mod 2n−2)j−1))
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= 2
m∑

j=2

cj(
2n−2−1∑

i=0

c2n−2−1−i
1 (xi mod 2n−2)j)

+ 2n−1
m∑

j=2

cjj(
2n−2−1∑

i=0

c2n−2−1−i
1 xi,n−2(xi mod 2n−2)j−1) mod 2n+1(n ≥ 4)

Since

m∑
j=2

cjj(
2n−2−1∑

i=0

c2n−2−1−i
1 xi,n−2(xi mod 2n−2)j−1) mod 4

≡
m∑

j=2

cjj(
2n−2−1∑

i=0

c2n−2−1−i
1 xi,n−2(xi,0 + 2(j − 1)xj−2

i,0 xi,1)) mod 4

≡
m∑

j=2

cjj(
2n−2−1∑

i=0

xi,n−2xi,0) mod 4(j(j − 1) ≡ 0 mod 2)

≡ aA0,n−2 mod 4(
m∑

j=2

cjj ≡ 0 mod 2)

then

Bn,1 = 2
m∑

j=2

cj(
2n−2−1∑

i=0

c2n−2−1−i
1 (xi mod 2n−2)j) + 2naA0,n−2 mod 2n+1.(10)

From (9) and (10), we have

Bn =
m∑

j=2

cj(
2n−1−1∑

i=0

c2n−1−1−i
1 (xi mod 2n−1)j mod 2n+1)

≡ 2
m∑

j=2

cj(
2n−2−1∑

i=0

c2n−2−1−i
1 (xi mod 2n−2)j) + 2naA0,n−2 mod 2n+1

≡ · · ·

≡ 2n−4
m∑

j=2

cj(
23−1∑
i=0

c23−1−i
1 (xi mod 23)j) + 2na

n−2∑
l=3

A0,l mod 2n+1

≡ 2n−3
m∑

j=2

cj(
22−1∑
i=0

c22−1−i
1 xi

j) + 2n
m∑

j=7,j≡3 mod 4

cj,0 + 2n
n−2∑
l=2

aA0,l mod 2n+1

≡ 2n−1c1,1 + 2n(c2,1 + c1,1c2,0 + [c2,0 + Δ1/2 mod 4]1

+
m∑

j=6,j≡2 mod 4

cj + a

n−2∑
l=2

A0,l + c1,1x0,0) mod 2n+1(Lemma 4 and Lemma 5)
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Theorem 3. For n ≥ 5, let {xi} be the sequence generated by (3). Suppose that

b = c0,1 + c0,1c1,1 + c1,1 + c1,2 + c2,1 + c1,1c2,0

+ [c2,0 + Δ1/2 mod 4]1 +
m∑

j=6,j≡2 mod 4

cj,0 mod 2.

Then

xi+2j−1,j = xi,j + xi,j−1 + c1,1xi,0 + a

j−1∑
l=2

Ai,l + b mod 2, 3 ≤ j ≤ n − 1,

where a = Δ2/2 +
∑m

j=2,j≡2,3 mod 4 cj,0 mod 2, Ai,l is defined as Lemma 3.

Proof. From (1), Lemma 1 and Lemma 2, we have

x2n−1 = 2n−1(c1,1 ⊕ 1) + 2n(c0,1 ⊕ c0,1c1,1 ⊕ c1,1 ⊕ c1,2) + x0

+
m∑

j=2

cj(
2n−1−1∑

i=0

c2n−1−1−i
1 xj

i ) mod 2n+1. (11)

Since

m∑
j=2

cj(
2n−1−1∑

i=0

c2n−1−1−i
1 xj

i ) mod 2n+1

≡
m∑

j=2

cj{
2n−1−1∑

i=0

c2n−1−1−i
1 (xi mod 2n−1)j + jxi,n−12n−1(xi mod 2n−1)j−1

+ jxi,n2n(xi mod 2n−1)j−1} mod 2n+1(n ≥ 5)

It is clear that the above equation can be divided into three parts, next we
calculate them seperately.

1. As
∑m

j=2 cjj ≡ 0 mod 2(Corollary 1), then

2n{
m∑

j=2

cjj
2n−1−1∑

i=0

c1,0(xi,nxi,0) mod 2} = 0 mod 2n+1. (12)

2.

2n−1{
m∑

j=2

cjj(
2n−1−1∑

i=0

c2n−1−1−i
1 xi,n−1(xi mod 2n−1)j−1) mod 4} mod 2n+1

≡ 2n−1{
m∑

j=2

cjj(
2n−1−1∑

i=0

c2n−1−1−i
1 xi,n−1(xi,0 + 2xi,1)j−1) mod 4} mod 2n+1

= 2n−1{
m∑

j=2

cjj(
2n−1−1∑

i=0

c2n−1−1−i
1 xi,n−1(xi,0 + 2xi,1)j−1) mod 4} mod 2n+1
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=2n−1{
m�

j=3

cjj(

2n−1−1�

i=0

c2n−1−1−i
1 (xi,n−1xi,0 + 2(j−1)xj−2

i,0 xi,1xi,n−1)) mod 4} mod 2n+1

= 2n−1{
m�

j=2

cjj(
2n−1−1�

i=0

c2n−1−1−i
1 xi,n−1xi,0) mod 4} mod 2n+1

≡ 2n−1(

m�

j=2

cjj(

2n−1−1�

i=0

xi,n−1xi,0 mod 2) mod 4) mod 2n+1 (

m�

j=2

cjj ≡ 0 mod 2)

≡ 2naA0,n−1 mod 2n+1(Lemma 4) (13)

From Lemma 6, (12) and (13), we have

x2n−1 = (x0 mod 2n−1) + 2n−1(x0,n−1 + (c1,1 ⊕ 1) + c1,1)
+ 2n{x0,n + c0,1 + c0,1c1,1 + c1,1 + c1,2 + c2,1 + c1,1c2,0

+ [c2,0+Δ1/2 mod 4]1+
m∑

j=6,j≡2 mod 4

cj,0+a

n−1∑
l=2

A0,l+c1,1x0,0} mod 2n+1

≡ (x0 mod 2n−1) + 2n−1(x0,n−1 ⊕ 1) + 2n{x0,n + x0,n−1

+ c0,1 + c0,1c1,1 + c1,1 + c1,2 + c2,1 + c1,1c2,0

+ a

n−1∑
l=2

A0,l + [c2,0 + Δ1/2 mod 4]1 +
m∑

j=6,j≡2 mod 4

cj,0 + c1,1x0,0}

≡ (x0 mod 2n−1) + 2n−1(x0,n−1 ⊕ 1) + 2n{x0,n + x0,n−1

+ a
n−1∑
l=2

A0,l + c0,1 + c0,1c1,1 + c1,1 + c1,2 + c2,1 + c1,1c2,0

+ [c2,0 + Δ1/2 mod 4]1 +
m∑

j=6,j≡2 mod 4

cj,0 + c1,1x0,0}

From the definitions of a and b,

x2n−1,n = x0,n + x0,n−1 + c1,1x0,0 + a

n−1∑
l=2

A0,l + b mod 2,

As the above equation is correct for all x0, it is also correct for the sequence
shift i positions, that is,

xi+2n−1,n = xi,n + xi,n−1 + c1,1xi,0 + a
n−1∑
l=2

Ai,l + b mod 2.

As xi mod 2n contains all the subsequences xi mod 2j(1 ≤ j ≤ n − 1), then the
above equation is correct for all j(4 ≤ j ≤ n − 1), that is

xi+2j−1,j = xi,j + xi,j−1 + c1,1xi,0 + a

j−1∑
l=2

Ai,l + b mod 2, 3 ≤ j ≤ n − 1. (14)
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Theorem 4. Let n ≥ 5, {xi} be the sequence generated by (3), a, b are defined
as Theorem 3 and Ai,l is defined in Lemma 3, then we have

xi+2j−1,j = xi,j + xi,j−1 + ajAi,2 + a(j − 1) + b mod 2, 3 ≤ j ≤ n − 1.

Proof

Ai,j =
2j−1∑
k=0

xi+k,jxi+k,0 mod 2

=
2j−1−1∑

k=0

xi+k,0(xi+k,j + xi+k+2j−1 ,j) mod 2

=
2j−1−1∑

k=0

xi+k,0(xi+k,j−1 + a

j−1∑
l=2

Ai+k,l + b + c1,1xi+k,0) mod 2

= Ai,j−1 + a

2j−1−1∑
k=0

xi+k,0

j−1∑
l=2

Ai+k,l mod 2

From Lemma 3, the period of Ai+k,l is 4, thus the period of xi+k,0Ai+k,l is
also 4. Thus

Ai,j =
{

Ai,j−1, j ≥ 4
Ai,2 + a(j − 2), j = 3 mod 2,

then

Ai,j = Ai,j−1 = · · · = Ai,3 = Ai,2 + a(j − 2) mod 2. (15)

From (14) and (15), we have

xi+2j−1,j = xi,j + xi,j−1 + ajAi,2 + a(j − 1) + b mod 2, 3 ≤ j ≤ n − 1. (16)

Remark 1. If aj ≡ 0 mod 2, then (16) can be changed into xi+2j−1,j = xi,j +
xi,j−1 + a + b. If aj ≡ 1 mod 2, then (16) can be simplified as xi+2j−1,j =
xi,j + xi,j−1 + Ai,2 + a + b + 1, which is connected with the sequence {Ai,2}
of period 4. By this means, the algebraic structure of polynomial single cycle
T-function is simple.

4 Cryptography Applications of This Linear Equation

The linear equation (16) may be combined with other cryptanalysis techniques
and give a powerful attacks. From (16), we can easily get

P (xi+2j−1 ,j = xi,j)
= P (xi,j−1 + ajAi,2 + a(j − 1) + b = 0)
= P (xi,j−1 = 0)P (ajAi,2 + a(j − 1) + b = 0|xi,j−1 = 0)
+ P (xi,j−1 = 1)P (ajAi,2 + a(j − 1) + b = 1|xi,j−1 = 1)

=
1
2
(P (ajAi,2 + a(j − 1) + b = 0) + P (ajAi,2 + a(j − 1) + b = 1)) =

1
2
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Assume that we find a condition Ki which gives the correlation P (xi+2j−1,j =
xi,j) �= 0.5, where xi,j is known, xi+2j−1,j is unknown. Next, assume we know
a, b and Ai,2. Then xi+2j−1 ,j can be guessed since there are only four possible
choices of xi,j and xi+2j−1,j . From (16) we have P (xi,j = xi,j−1|Ki) �= 0.5. Thus,
the linear equation (16) combined with Ki leaks information about the keys.

5 Conclusions

We found a general linear equation over GF (2) that always holds for all sequences
generated by polynomial single cycle T-functions. This linear relation shows
that these T-functions have strong algebraic structure, which can be used in
cryptanalysis. Further, the equation may be used as a basic tool for analyzing
some pseudoramdon generator using polynomial functions.
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Abstract. The weight support technique is applied to study the symmetric Boo-
lean functions with maximum algebraic immunity on even number of variables.
The problem to study the n-variable(n even) symmetric Boolean functions with
maximum algebraic immunity is reduced to the problem to determine WS min (n� n

2 ).
Then some new results about WS min(n� n

2 ) are got. A fast algorithm to get all the
n-variable(n even) symmetric Boolean functions with maximum algebraic immu-
nity is also given.

Keywords: Algebraic Attack, Algebraic Immunity, Symmetric Boolean Func-
tion, Weight Support.

1 Introduction

In recent years algebraic attacks([1,2,7,8,9]) have become an important tool in crypt-
analysis of stream and block cipher systems. A new cryptographic property for design-
ing Boolean functions to resist this kind of attacks, called algebraic immunity, has been
introduced([10,15]). Since then several classes of Boolean functions with large alge-
braic immunity have been investigated and constructed in order to against the algebraic
attack([6,10,11,13,15]) and the symmetric Boolean functions have been paid particular
attention([3,12,14,16,17]).

Let Bn be the ring of Boolean functions with n variables x1� x2� � � � � xn. Let S Bn be
the ring of symmetric Boolean functions with n variables x1� x2� � � � � xn. For f � Bn, the
annihilators of f is the set

Ann( f ) � �g � Bn� f � g � 0�

Ann( f ) is the ideal of the ring Bn generated by 1 � f : Ann( f ) � (1 � f ) � (1 �
f )Bn([15],Theorem1).
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Definition 1. For f � Bn, the algebraic immunity(AI) of f is the minimum degree of
non-zero functions g � Bn such that g f � 0 or g( f � 1) � 0. Namely,

AI( f ) � min�deg(g)�0 � g � Ann( f ) � Ann(1 � f ) � ( f � 1) � ( f )�

A symmetric Boolean function f � S Bn can be expressed by a vector

v f � (v f (0)� � � � � v f (n)) � Fn�1
2

where v f (i) � f (x) for x � Fn
2 with Hamming weight wt(x) � i. On the other hand, f

can also be expressed as

f (x1� � � � � xn) �
n�

i�0

� f (i)�n
i

where � f (i) � F2 and �n
i is the i-th elementary symmetric function of x1� x2� � � � � xn.

The relation between v f and � f � (� f (0)� � � � � � f (n)) is:

Lemma 1. [4]

v f (i) �
�
k�i

� f (k)� � f (i) �
�
k�i

v f (k) for any i � �0� 1� � � � � n�

where, for the 2-adic expressions

k �
l�

j�0

k j2 j
� i �

l�
j�0

i j2 j(k j� i j � �0� 1�)

k � i means that for any integer j(0 � j � l), k j � i j.

Lemma 1 can be derived directly from the Lucas formula�
i
k

�
	

�
i0
k0

��
i1
k1

�
� � �

�
il
kl

�
(mod2) �

�
1� if k � i
0� otherwise

Note that it is easy to see that if we generalize the binomial coeÆcient
�

i
k

�
� 0 for i � k,

then the Lucas formula is also correct, and v�n
k
(i) �

�
i
k

�
also holds.

When n � 2k � 1 
 3 is odd, it was proved in [16] that there are only two symmetric
Boolean functions f and 1� f with maximal AI(� k�1) where v f � (1� 1� ���� 1������	����


k�1

� 0� 0� ���� 0������	����

k�1

).

When n is even, many n-variable symmetric Boolean functions with maximum AI were
found ([3,12,14]) and several necessary conditions for a symmetric Boolean function to
arrive maximum AI were given([3,17]). For n � 2m, all n-variable symmetric Boolean
functions with maximum AI were got by the following theorem in [14].

Theorem 1. [14] Suppose that n � 2m(m 
 2) and f � S Bn. Then AI( f ) � n
2 if and

only if the following two conditions are both satisfied:

(1) v f (2m�1 � 2t
� kt) � v f (2m�1

� kt) � 1 for all 1 � kt � 2t � 1.(1 � t � m � 1)
(2) (v f (0)� v f (2m�1)� v f (2m)) � �(0� 0� 0)� (1� 1� 1)�
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Given an n-variable Boolean function f and a positive integer r, we denote by R f (r� n)
the restriction of the generator matrix of the rth-order Reed-Muller code to the support
of f . Clearly, an n-variable Boolean function f has no annihilator of algebraic degree
at most k if and only if all the matrices R f (r� n)� r � k, are of full rank. Then studying
the AI of f can be reduced to studying the ranks of R f (r� n) and of R1� f (r� n). Based on
this idea, it was shown in [5] that for a random balanced function, it should have: for
even n, AI is almost always equal to n

2 ; for odd n, AI is almost always greater than or
equal to n�1

2 . Also based on this idea, a novel method was presented to construct and
count of the Boolean functions with maximum AI in [13](also in [18]). As the structure
of R f (r� n) is special when f is a symmetric Boolean function, several constructions
of symmetric Boolean functions with maximum AI were given in [12] by using some
combinational results. In theory, one can construct all Boolean functions with maximum
AI by analyzing the ranks of R f (r� n) and of R1� f (r� n), certainly including all symmetric
such functions. However, even for the function f of Theorem 1 whose structure is very
special, one can’t analysis the behavior of the ranks of R f (r� n) and of R1� f (r� n) by using
the existing mathematic theory as far as the author knows. This is the reason why the
suÆcient condition in Theorem 1 was only presented as a conjecture in [17].

We need a new method, which is the ”weight support” technique presented in [14].
In [14] the relation between the AI of a Boolean function and its weight supports was
studied. Based on this relation, a suÆcient and necessary condition(Theorem 1) for a
2m-variable symmetric Boolean function to have maximum AI was presented. Then all
such functions were got. This result shows that the coeÆcient matrixes of the equation
systems constructed from the annihilators of these functions are full rank, which is not
a easy task even in the combinational theory. Motivated by their work, we apply the
weight support technique to study the symmetric Boolean functions with maximum AI
and get some new results.

The paper is organized as follows: the weight support technique and some basic
symbols are introduced in the following section; some new results and their proofs are
given in Section 3; the conclusion is given in Section 4.

2 Weight Support Technique

Definition 2. [14] For f � Bn, the weight support of f is defined by

WS ( f ) � �i � N�� a � Fn
2 , such that wt(a) � i and f (a) � 1�

where wt(a) � #�l � 1 � l � n� al � 1� represents the Hamming weight of a �

(a1� a2� � � � � an) � Fn
2 . It’s easy to see that for f � S Bn, WS ( f ) � �i � N�v f (i) � 1�.

In [14], a partial order of Bn is defined by: for f � g � Bn, f � g if and only if WS ( f ) 
WS (g). So for f � S Bn and g � Bn, we have

f g � 0 � If � a � Fn
2 such that wt(a) � i and g(a) � 1� then v f (i) � 0

� WS (g)  WS ( f )

where WS ( f ) � N � WS ( f ) represents the complementary set of WS ( f ) in N and
N � �0� 1� 2� � � � � n�. Similarly,
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( f � 1)g � 0 � WS (g)  WS ( f )

then it can be concluded that:

Lemma 2. [14] Suppose that n 
 2 and 1 � d � � n
2 �. For f � S Bn, AI( f ) 
 d

if and only if for any g � Bn such that 0 � deg(g) � d � 1, we have WS (g) �

WS ( f ) and WS (g) � WS ( f ).

For each l 
 1, let

pl � pl(x1� x2� � � � � x2l) � (x1 � x2)(x3 � x4) � � � (x2l�1 � x2l) � B2l

Then WS (pl) � �l�.

Lemma 3. [14] Suppose that n 
 2 and f � S Bn. If there exists 0 � g � Bn such that
f g � 0, then there exists an integer l, 0 � l � � n

2 � and 0 � h � h(x2l�1� x2l�2� � � � � xn) �
S Bn�2l, deg(h) � deg(g) � l such that f hpl � 0.

Let

S (n� d) �

�������� fn�b � hn�2b pb

��������
hn�2b � hn�2b(x2b�1� x2b�2� � � � � xn) � S Bn�2b�

0 � deg(hn�2b) � d � b�
0 � b � d � 1

���������
Then by Lemma 2 and Lemma 3 we have

Lemma 4. [14] Suppose that 1 � d � � n
2 � and f � S Bn. Then AI( f ) 
 d if and only if

for any g � S (n� d),

WS (g) � WS ( f ) and WS (g) � WS ( f )

Furthermore, let S min(n� d) be the set of minimum elements of the partial order set
(S (n� d)��). Then Lemma 4 is also true if S (n� d) is replaced by S min(n� d). If the set
S min(n� d) has a simple structure, then we can get a nice characterization of all f � S Bn

satisfying AI( f ) 
 d. So the following open problem was raised in [14]:

Problem 1. [14] For 1 � d � � n
2 �, to determine the set S min(n� d).

Let n be an even integer, d � n
2 and

S (n�
n
2

) � �hb pb�hb � hb(x2b�1� x2b�2� � � � � xn) � S Bn�2b� 0 � deg(hb) �
n
2

� b� 0 � b �
n
2

� 1�

where pb is defined by pb �
�b

j�1(x2 j�1 � x2 j) � B2b, and WS (pb) � �b�.
For n � 2m, suppose that 1 � t � m � 1 and 1 � it � 2t � 1. Let

qt�it � qt�it (xn�2t�1
�1� � � � � xn) � S B2t�1� WS (qt�it) � �it� it � 2t�

q � q(x1� x2� � � � � xn) � S Bn� WS (q) � �0�
n
2
� n�

Let
S �
� � ft�it � qt�it p n

2�2t �1 � t � m � 1� 1 � it � 2t � 1� � �q�

WS ( ft�it ) � �it� it � 2t� � (
n
2
� 2t) � �

n
2
� it � 2t

�
n
2
� it�

Then the following theorem was proved in [14] in highly combinational way.

Theorem 2. [14] S min(n� n
2 ) � S �

By Theorem 2 one can deduce that the suÆcient condition of Theorem 1 is true.
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3 Results and Proofs

Let S B(n� d) � � f � S Bn� deg( f ) � d� and WS B(n� d) � �WS ( f )� f � S B(n� d)�. Recall
that S (n� d) � �hb pb�hb � S B(n � 2b� d � b)� 0 � b � d�, then

S (n� d) �
d�1�
l�0

�S B(n � 2l� d � l) � pl�

here for a set of Boolean functions A, pl � A means the set �pl � f � f � A�.
Let WS (n� d) � �WS ( f )� f � S (n� d)�, then similarly we have

WS (n� d) �
d�1�
l�0

�WS B(n � 2l� d � l) � l�

here for a set of integer sets A, l � A means the set ��s � l� s � S ���S � A�.(Any element
of WS B(n � 2l� d � l) is weight support of some function, thus a set of integers)

For convenience, we use not �� but () to denote the weight support of a Boolean
function, for example WS ( f ) � (a1� a2� � � � � at). And we call t the size of WS ( f ) and
WS ( f ) a size t element.

The problem to determine the set S min(n� d) was raised in [14]. However, to study the
AI of symmetric Boolean functions, according to Lemma 4 what we actually need is to
determine the set WS min(n� d). Particularly, to study the n-variable symmetric Boolean
functions with maximum AI for even n, what we actually need is to determine the set
WS min(n� n

2 ).

Problem 2. For 1 � d � � n
2 �, to determine the set WS min(n� d). Particularly, when n is

even, let d � n
2 , to determine the set WS min(n� n

2 ).

From the definition of WS (n� n
2 ) we can get the following proposition.

Proposition 1. WS min(n� n
2 ) 

� n
2�1
l�0 �WS Bmin(n � 2l� n

2 � l) � l�

From [14] we know that the set WS min(n� n
2 ) for n � 2m is

WS min(2m
� 2m�1) � �(2m�1

�it�2t
� 2m�1

�it)�1 � t � m�1� 1 � it � 2t�1���(0� 2m�1
� 2m)�

Here we show some properties of the set WS min(n� n
2 ) for general n. From now on let n

be an even integer satisfying 2m � n � 2m
� 2s � 2m�1. Let

WS (S �) � �(
n
2
� it � 2t

�
n
2
� it)�1 � t � m� 1� 1 � it � 2t � 1� � �(

n
2
� 2m�1

�
n
2
�

n
2
� 2m�1)�

It’s easy to show that WS (S �) contains all size two elements of WS min(n� n
2 ).

Proposition 2. Suppose that WS ( f ) � WS min(n� n
2 ) and �WS ( f )� � 2. Then WS ( f ) �

WS (S �).

Proof: Assume that WS ( f ) � WS (S �). Let WS ( f ) � (a� b)� a � b. Then for any integer
1 � t � m � 1 and any integer 1 � it � 2t � 1, we have

(
n
2
� it � 2t

�
n
2
� it) � (a� b) (1)
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Let f � � f � P2m� n
2
� f � (xn�1 � xn�2) � � � (x2m�1�1 � x2m�1 ). Then f � � S (2m�1� 2m) and

WS ( f �) � WS ( f ) � 2m�1
�n

2 � (a� b)� 2m�1
�n

2 . So there exist an integer 1 � t0 � m and an
integer 1 � it0 � 2t0 � 1 such that

(2m
� it0 � 2t0 � 2m

� it0 ) � (a� b) �
2m�1 � n

2

This means
(
n
2
� it0 � 2t0 �

n
2
� it0 ) � (a� b) (2)

From equation (1) and (2), we have t0 � m and b � a � 2m. Let f � h � pl. Then
h � S B(n� 2l� n�2l

2 ) and WS (h) � (a� l� a� l� 2m). Now let h �
�n�2l

i�0 �h(i)�n�2l
i . Then

by Lemma 1,

�h(2m � 1) 	

�
2m � 1
a � l

�
�

�
2m � 1

a � l � 2m

�
	

�
2m � 1
a � l

�
	 1 ( mod 2)

The last equality holds because a� l � 2m � 1. However, as 2m � 1 � 2m�1
�2

2 
 n
2 
 n�2l

2 ,
deg(h) 
 n�2l

2 follows. This is a contradiction with the fact that h � S B(n � 2l� n�2l
2 ).

Thus the proposition is proved. �

Proposition 3

(1) WS (S �)  WS min(n�
n
2

);

(2) WS min(n�
n
2

) 
s�

l�1

�WS Bmin(2m
� 2l� 2m�1

� l) � (s � l)� � WS (S �)

Proof: At first, it should have �A� 
 2 for any A � WS min(n� n
2 ). Otherwise, if there

exists A � WS min(n� n
2 ) such that �A� � 1, then by Lemma 1 any n-variable symmetric

Boolean function can’t arrive maximum AI. This is impossible. So we have �A� 
 2
for any A � WS min(n� n

2 ). And if A � WS (n� n
2 ) and �A� � 2, then A � WS min(n� n

2 ).
For B � ( n

2 � 2m�1�
n
2 �

n
2 � 2m�1) � WS (S �), it’s easy to verify that A � B holds for

any B � A � WS (S �). And by Proposition 2, we know the size two elements are all in
WS (S �). So B � WS min(n� n

2 ). Then (1) is proved.
To prove (2), from Proposition 1, what we need is to prove that for any even n� � 2m

and any f � S (n�� n�

2 ), there exist an element A � WS (S �) such that A  �WS ( f )� n�n�

2 �.
As n� � 2m, let f � � f �P2m�1� n�

2
� f (x1� � � � � xn�)(xn�

�1 � xn�
�1) � � � (x2m�1 � x2m ). Then

f � � S (2m� 2m�1). So by Theorem 2 there exists A � WS (S �) such that A � ( n
2 � 2m�1) 

WS ( f �). And as WS ( f �) � WS ( f )� (2m�1 � n�

2 ), so WS ( f )� n�n�

2 � WS ( f �)� n
2 � 2m�1.

Finally one can conclude that A  �WS ( f �) � ( n
2 � 2m�1)� � �WS ( f ) � n�n�

2 � �

Remark 1. Let 2m � n � 2m
� 2s � 2m�1. Suppose that f � S Bn and AI( f ) � n

2 . Then
by Lemma 4 and Proposition 3, we have

A � WS ( f ) and A � WS ( f � 1)� �A � WS (S �)
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This is just the condition: For any 1 � t � m � 1 and any 1 � kt � 2t � 1, we have

v f (
n
2
� 2t

� kt) � v f (
n
2
� kt) � 1

and (v f ( n
2 � 2m�1)� v f ( n

2 )� v f ( n
2 � 2m�1)) � �(0� 0� 0)� (1� 1� 1)�. This is just Theorem 2.2 of

[17].

Then by Lemma 4, Proposition 3 and the definition of AI, one can get the following
theorem easily.

Theorem 3. Suppose that 2m � n � 2m
� 2s � 2m�1 and f � S Bn. Then AI( f ) � n

2 if
and only if the following two conditions are both satisfied:

(1) For any 1 � t � m � 1 and any 1 � kt � 2t � 1, we have

v f (
n
2
� 2t

� kt) � v f (
n
2
� kt) � 1

and (v f ( n
2 � 2m�1)� v f ( n

2 )� v f ( n
2 � 2m�1)) � �(0� 0� 0)� (1� 1� 1)�.

(2) For any even 2m � n� � n and any g � S Bmin(n�� n�

2 ), we have

WS (g) �
n � n�

2
� WS ( f ) and WS (g) �

n � n�

2
� WS ( f )

Theorem 3 tells us a fast algorithm to test whether an n-variable symmetric Boolean
function arrives maximum AI. For a given even integer n�, there are 2

n�

2 functions in
S B(n�� n�

2 ), so the time complexity to test whether Condition (2) holds is no more than

2
2m

�2
2 � 2

2m
�4

2 � � � � � 2
n
2 � 2

n
2�1 � 22m�1

�1
� 22m�1

�s�1 � 22m�1
�1

And the time complexity to test whether Condition (1) holds is quite small. So when s
1,
the time complexity for this algorithm to test whether a n-variable symmetric Boolean
function arrive maximum AI is O(22m�1

�s�1). Further, there are
�m�1

t�1 (2t�1)�1 � 2m�m
equations in Condition (1). The probability for a random function f � S Bn to satisfy the
last equation is 3

4 , while this probability is turned to 1
2 for any other equation. Then there

are total 3
4 � 2n�1�(2m

�m�1)
� 3 � 22s�m functions f � S Bn who can satisfy Condition

(1). So the time complexity to get all the n-variable symmetric Boolean function with
maximum AI by this algorithm is O(3 � 22s�m � 22m�1

�s�1) � O(3 � 22m�1
�3s�m�1).

Theorem 3 also shows that when studying the structure of WS min(n� n
2 ), one does

not need to study the weight supports of all the n� � 2m-variable symmetric Boolean
functions, because what these elements(after shift) can contribute to WS min(n� n

2 ) are
just WS (S �). One only needs to study the weight supports of all the 2m � n� � n-
variable symmetric Boolean functions and then a proper shift( n�n�

2 ) of these weight
supports.

When 2s � 2 is the smallest positive even integer, we can get the following proposition.

Proposition 4. Suppose that n � 2m
� 2. Then

WS min(n�
n
2

)  WS (S �) � WS (� f � S Bn� deg f � 2m�1�)
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Proof: From Proposition 3 we know

WS min(n�
n
2

)  WS Bmin(2m
� 2� 2m�1

� 1) � WS (S �)

By the definition of S (n� d), deg( f ) � 2m�1 holds for any f � S B(2m
� 2� 2m�1

� 1).
Then it’s enough to show that if deg( f ) � 2m�1, then there exist A � WS (S �) such that
A  WS ( f ).

If deg( f ) � 2m�1, let f �
�2m�1

�1
i�0 � f (i)�2m

�2
i and f � �

�2m�1
�1

i�0 � f (i)�2m

i . Then
WS ( f �)  WS ( f ). As f � � S B(2m� 2m�1), we know there exist A � �(2m�1

�it�2t� 2m�1
�

it)�1 � t � m� 1� 1 � it � 2t � 1� � �(0� 2m�1� 2m)� such that A  WS ( f �)  WS ( f ). Now
we discuss the situations into four cases:

(1) If (0� 2m�1� 2m)  WS ( f �)  WS ( f ), let t � m � 1 and im�1 � 2m�1 � 1. Then we
have ( n

2 � im�1 � 2m�1� n
2 � im�1) � (2m�1� 2m) � WS (S �) and (2m�1� 2m)  WS ( f �) 

WS ( f ).
(2) If there exists 1 � t � m�1 and 2 � it � 2t�1 satisfying (2m�1

�it�2t� 2m�1
�it) 

WS ( f �)  WS ( f ), then ( n
2 � (it �1)�2t�

n
2 � (it �1))  WS ( f �)  WS ( f ). And as it 
 2,

it � 1 
 1, we also have ( n
2 � (it � 1) � 2t�

n
2 � (it � 1)) � WS (S �).

(3) If (1� 2m�1
� 1)  WS ( f �), then by Lemma 1 we know ( n

2 � 2m�1� n
2 �

n
2 � 2m�1) �

(1� 2m�1
� 1� 2m

� 1)  WS ( f ).
(4) If the above three cases all don’t occur, then we have for some 1 � t � m � 2,

(2m�1
� 1 � 2t� 2m�1

� 1)  WS ( f �)  WS ( f ). Then it can be concluded that WS ( f �) �
�2m�1

� 1 � 2t1 � 2m�1
� 1 � 2t2 � � � � � 2m�1

� 1 � 2tl � 2m�1
� 1�, where 1 � t1 � t2 � � � � �

tl � m � 2. However,
�

2m�1
�1

2m�1
�1�2t

�
� 0 holds for any 1 � t � m � 2. So by Lemma 1 we

have

� f (2
m�1

� 1) �

�
2m�1

� 1
2m�1 � 1

�
�

�
2m�1

� 1
2m�1 � 1 � 2t1

�
�

�
2m�1

� 1
2m�1 � 1 � 2t2

�
� � � � �

�
2m�1

� 1
2m�1 � 1 � 2tl

�

� 1 � 0 � 0 � � � � � 0 � 1

This is a contradiction with deg( f ) � 2m.
From the above discussions, we know that if deg( f ) � 2m�1, then there always exists

A � WS (S �) such that A  WS ( f ). So if WS ( f ) � WS min(n� n
2 ) �WS (S �), then f � S Bn

and deg( f ) � 2m�1. The proposition is thus proved. �

Proposition 5. Suppose that n � 2m
� 2(m 
 2), f �

�n
i�0 � f (i)�n

i � S B(n� n
2 ), and

WS ( f ) � WS min(n� n
2 ) � WS (S �). If � f (0) � 0, then

� f (2) � � f (22) � � � � � � f (2m�2) � 1

Proof: Assume there exists 1 � t � m � 2 such that � f (2t) � 0. By Proposition 4 we
know � f (2m�1) � 1. Then by Lemma 1 we have

v f (2
m�1) � � f (2

m�1) � � f (0) � 1 � 0 � 1

And by 2m�1
�2t � n

2 �2m�1
�1 and f � S B(n� n

2 ), one can conclude that � f (2m�1
�2t)�0.

So by Lemma 1 we know

v f (2
m�1

� 2t) � � f (0) � � f (2
m�1) � � f (2

t) � � f (2
m�1

� 2t) � 0 � 1 � 0 � 0 � 1
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Thus v f (2m�1) � v f (2m�1
� 2t) � 1 holds. This means (2m�1� 2m�1

� 2t)  WS ( f ). Let
it � 2t � 1. Then

(
n
2
� it � 2t

�
n
2
� it) � (2m�1

� 2m�1
� 2t) � WS (S �)

This contradicts with the fact that WS ( f ) � WS min(n� n
2 ) � WS (S �). So � f (2t) � 1 holds

for any 1 � t � m � 2. This completes the proof. �

For n � 2m
� 2, Proposition 4 and Proposition 5 tell one a smaller range to find the

elements of WS min(n� n
2 ). This means a lower time complexity of the algorithm to get all

the n-variable symmetric Boolean functions with maximum AI. Computer simulations
show that there are many elements in WS min(n� n

2 )�WS (S �) and it seems diÆcult to find
a simple rule to describe WS min(n� n

2 )�WS (S �). This means for n � 2m
� 2, it’s diÆcult

to get a nice characterization of all f � S Bn with maximum AI.
Next proposition is a result about WS Bmin(n� n

2 ) for n � 2m�1 � 2.

Proposition 6. Suppose that n � 2m�1 � 2. Let WS 3 � �WS (g) � (a� 2m � 1� a� 2m)�g �

S Bn� 0 � a � 2m � 2� and WS 4 � �WS (g) � (a� b� a � 2m� b � 2m)�g � S Bn� 0 � a � b �

2m � 2�. Then WS Bmin(n� n
2 )  WS 3 � WS 4.

Proof: Let 0 � f � S B(n� n
2 ) and f �

�n
i�1 � f (i)�n

i . As deg( f ) � n
2 � 2m � 1 � 2m, we

have

v f (2
m
� j) �

�
i�2m

� j

� f (i) �
�
i� j

(� f (i) � � f (2
m
� i)) �

�
i� j

� f (i) � v f ( j)

for any 0 � j � 2m � 2.
Let t � #� j�0 � j � 2m � 2� v f ( j) � 1�. Then one can conclude that t � 0. Otherwise

we have v f (0) � v f (1) � � � � � v f (2m � 2) � v f (2m) � v f (2m
� 1) � � � � � v f (2m�1 � 2).

By f � 0, we have v f (2m � 1) � 1. Then by Lemma 1, we have � f (2m � 1) � 1. This
is a contradiction with deg( f ) � 2m � 2. Now we discuss the situations according to the
value of t.

(1) If t 
 2, then there exists A � WS 4 such that A  WS ( f );
(2) If t � 1, assume v f (a) � 0. If v f (2m � 1) � 1, then WS ( f ) � (a� 2m � 1� 2m

� a) �
WS 3. If v f (2m � 1) � 0, then WS ( f ) � (a� 2m

� a). So we have

� f (2m � 1) �

�
2m � 1

a

�
�

�
2m � 1
2m � a

�
� 1 � 0 � 1

This is a contradiction with deg( f ) � n
2 .

So for any f � S B(n� n
2 ), there exists A � WS 3 � WS 4 such that A  WS ( f ). Then

we can conclude that WS Bmin(n� n
2 )  WS 3 � WS 4. �

Though we can’t get WS min(n� n
2 ) for general n, we can have some results about the

small size elements of WS min(n� n
2 ). The following two propositions are about the size

three elements of WS min(n� n
2 ).
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Proposition 7. If (a� b� c) � WS ( f ) � WS min(n� n
2 ), a � b � c, then c � a � 2m.

Proof: If WS ( f ) � WS (S �), then WS ( f ) � ( n
2 � 2m�1� n

2 �
n
2 � 2m�1) � (a� b� c). Thus

c � a � 2m. The proposition is true.
If WS ( f ) � WS (S �), then by the similar proof as Proposition 2, there exists 1 � im �

2m such that
(
n
2
� im � 2m

�
n
2
� im)  (a� b� c)

This means
b � a � 2m or c � a � 2m or c � b � 2m

Now we go to prove that only c � a � 2m can holds.
First we assume that f � S B(n� n

2 ), then we have:

If b � a � 2m, then c � b 
 2m and a � 2m � 1. So we have � f (2m � 1) �
�
2m

�1
a

�
��

2m
�1

2m
�a

�
�

�
2m

�1
c

�
�

�
2m

�1
a

�
� 1. But 2m � 1 � 2m�1

�2
2 
 n

2 , this means deg( f ) 
 n
2 . This is a

contradiction with the fact that f � S Bmin(n� n
2 ).

If c� b � 2m, then a � b � 2m � 1. So we have � f (2m
� a) �

�
2m
�a
a

�
�

�
2m
�a
b

�
�

�
2m
�a

2m
�b

�
��

2m
�a
a

�
� 1. But 2m

� a � n
2 , this means deg( f ) 
 n

2 . This is a contradiction with the fact
that f � S Bmin(n� n

2 ).
So we have c� a�2m for f �S B(n� n

2 ). If f �S B(n� n
2 ), let f �h � pl. Then h � S B(n�

2l� n�2l
2 ) and WS (h)� (a� l� b� l� c� l). Similarly, we can prove that (c� l)� (a� l)�2m,

which also means that c � a � 2m. We then prove the proposition. �

Proposition 8. Suppose that n � 2m
� 2s and 0 � 2s � 2m. Let 0 � l � m � 2

be the integer such that 2m�1 � 1 � 2l�1 � s � 2m�1 � 1 � 2l. Let f � S B(n� n
2 ),

WS ( f ) � WS min(n� n
2 ), and �WS ( f )� � 3. Then WS ( f ) � (a� b� a�2m), where 0 � a � 2s,

2s � b � 2m � 1, and a 	 b(2l�1).

Proof: By Proposition 7, we know WS ( f ) � (a� b� a � 2m), 0 � a � 2s, and 2s � b �

2m � 1. Then we only to prove that a 	 b(2l�1).
From f � S B(n� n

2 ) we have

� f (2
m�1

� s) � � f (2
m�1

� s � 1) � � � � � � f (2
m � 1) � 0

This means

� f (2m�1
� j) �

�
2m�1

� j
a

�
�

�
2m�1

� j
b

�
� 0� � j� s � j � 2m�1 � 1 (�)

Assume a � b(2l�1). Let a � (akak�1 � � � a0)2 and b � (bkbk�1 � � � b0)2. Then there exists
0 � i � l such that ai � bi. Let j0 � 2m�1 � 2i � 1. Then we have

� f (2m�1
� j0) �

�
2m�1

� j0
a

�
�

�
2m�1

� j0
b

�
� 1

Since s � j0 � 2m�1 � 1, this is a contradiction with the equation (�). So a 	 b(2l�1)
must holds. �
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4 Conclusion

The weight support technique of [14] was developed in the paper. For a general even
integer n, the problem to study the n-variable symmetric Boolean functions with maxi-
mum AI was reduced to the problem to determine WS min(n� n

2 ). Then some new results
about the general properties of WS min(n� n

2 ) were got. These results showed a fast al-
gorithm to get all f � S Bn with maximum AI. Then some results for special values of
n(n � 2m

� 2 and n � 2m�1 � 2) were introduced. At last, some results about the size
three elements of WS min(n� n

2 ) were shown. Theory analysis and computer simulations
both show that for a general even integer n, it seems not easy to get a beautiful charac-
terization as for n � 2m. Some new results were given in the paper. These results are
helpful to solve all f � S Bn with maximum AI for general even n, but the final solution
remains open.
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Abstract. We consider pervasive systems and identifiers for objects in
these systems. Using unique global identifiers for these objects increases
the size of the ID’s and requires some global coordination. However,
severe privacy threats are the key issues here.

On the other hand, for performing the goals of a pervasive system
the identifiers are normally used in small local environments, and we
need uniqueness limited to these environments only. This yields an op-
portunity to re-use the ID’s and in this way anonymize the objects. The
problem is that we cannot predict assignment of the objects to local
environment or set it in advance, while on the other hand in many appli-
cation scenarios we cannot change an ID already assigned to an object.
Random predistribution of ID’s is a technique that partially solves this
problem, but has drawbacks due to the birthday paradox.

We propose a solution in which each object holds k preinstalled ID’s
(where k is a small parameter like k = 2, 3, ...). While entering a local
environment, one of its ID’s not used so far in this local environment
is chosen for the object. We analyze probability of a conflict, i.e. of the
event that no identity can be chosen for this object. We show that the size
of ID’s may be significantly reduced compared to random predistribu-
tion without increasing conflict probability. Apart from implementation
advantages it contributes to privacy protection: since globally a large
number of objects holds the same ID, privacy threats are reduced.

Keywords: anonymity set, identifier, two-choice paradigm, birthday
paradox.

1 Introduction

Recently, it has been widely recognized that processing electronic data may yield
severe privacy problems (see for instance a report [13]). The problem is that sin-
gle data transaction might be regarded as fully safe from a privacy point of view,
but collections of these data may leak sensitive private information. Among oth-
ers, this is caused by the fact that electronic identification is expanding and used
not only to recognize physical persons or machines, but also simple electronic
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devices used for diverse purposes. Since the number of such devices (like for
instance RFID tags) is growing, the scope of the problem is expanding as well.

Technology for privacy protection has been recently developed by many re-
search groups and companies. For instance, policy based approach has been pro-
posed within an EU Project PRIME [12]. Most of the work is devoted to identity
management and limiting privacy threats by appropriate organization, privacy
policies and similar measures. This approach has limitations – it is not much
useful when the devices concerned have very limited resources or the mentioned
measures are poorly implemented. However, some papers propose solutions that
are not based on proper behavior of system actors (see e.g. [9,5]). The concept
is to guarantee some level of security by technical means only.

Privacy Problems for Pervasive Systems and RFID’s. The objects in
pervasive systems must be identified for the purposes of running these systems.
Once the objects are given unique identifiers, the system can be used for tracing
objects and, in this way, for tracing people holding these objects. This turns out
to be one of the major problems in usage of RFID systems is retail stores. Alone
the possibility of illegitimate tracing the clients and their preferences brings
severe legal problems for the enterprises deploying such systems. Since more and
more simple devices can include RFID’s, this becomes one of the most acute
security problems for emerging technologies of pervasive systems. Unfortunately,
the devices need to be extremely simple, so the solutions designed for traditional
networks composed of powerful computational units are of no use in majority of
cases. In the simplest case we have to do with a memory unit with just a few
bytes, which can be read by an external reader with no authorization performed
before giving access to data.

Identification Problem in Local Environments. Our approach is inspired
by the fact that even if a global system may consist of a huge number of possible
ID’s, the system is composed of a number of small environments with a limited
number of objects and each function of the system is performed in some small
environment. We have the following conflicting demands:

– all objects in a small environment should have different ID’s,
– each ID may be linked to a large number of different objects in the global

system, so that tracing a single object becomes complex.

Let us remark that the social mechanisms are exactly of this kind: ID’s used in
most cases of everyday life are not unique. For instance, even the first name and
family name of a person does not identify a physical person uniquely, nevertheless
the goals of identification are achieved. The general framework looks as follows:

– each person holds a couple of ID’s (such as the first names) that are not
unique in the whole society,

– in each system concerned there is a limited number of participants, identifi-
cation within the system is performed with the ID’s mentioned.

Nevertheless, there is a tendency to build information systems where each unit
is assigned a unique digital ID. This makes design of databases much easier, but
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on the other hand imposes serious privacy threats. Consequently, a lot of money
need to be invested in protection of databases, restricting access, authorization.

In this paper we examine how to achieve local uniqueness with as much rep-
etitions of a single identifier on a global scale as possible.

2 k-Choice ID’s Protocol

The k-choice protocol examined in this paper is extremely simple. It consists of
the following subprotocols:

Predistribution Phase. In each object, the manufacturer installs k ID’s that
are derived at random, or in a pseudo-random way. For instance, they might
be H(K, T, 1), . . . H(K, T, k), where K is the master key of the manufacturer,
T is a serial number or the moment of generating the ID’s, and H is a secure
hash function truncated to the required length m of the ID’s.

Registration in a local environment. When an object is to be registered in
a local system, then the system inspects which of the k ID’s assigned to the
object has not been used yet in this system, and chooses one of them as the
identifier of the object to be used in this environment.

Of course, for k = 1 we get the well-known random predistribution scheme. We
consider the following parameters of the solution proposed:

– m is the length of the ID numbers,
– t is an upper bound for the number of objects in a local environment,
– n is the global number of objects,
– L is the the minimal size of each anonymity set, that is, the number of

objects holding the same ID (or ID’s) as a given object,
– ε is the admissible probability of a collision, that is, of an event that a new

object to be registered in a local environment has ID’s that are all already
in use in this environment.

The design goals are the following:

– m should be as small as possible (in this way L becomes large),
– ε should be as small as possible.

Of course, these are conflicting goals and we have to balance them. In this paper
we examine exactly this relationship. The most important issue is the impact of
k. For practical reasons, we are interested in estimations concerning small k’s.
The most important issue is to find the difference between the situation for k = 1
and for k = 2, since decision to use k ≥ 2 has severe consequences for system
architecture and anonymity level. We also examine how much improvement can
be reached, if we use higher values of k.

Related results. We deal here with the celebrated two-choices paradigm (see
[1,7]). There are many papers concerning this technique, they concentrate on the
problem of load balancing while allocating t items to N bins: the standard case
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is that the number of items t equals the number of locations N . The other case
considered is that the number of items is higher than the number of locations (see
e.g. [3]). The technical results obtained there show that two-choices paradigm
(or more generally k-choice paradigm) reduces significantly the maximal load
(but it is still above Θ(1), for the case t = N).

In this paper we are interested in a different question. Namely, we ask

what is the maximal number of balls thrown to 2m bins according to k-
choice protocol so that no bin receives more than one ball with a high
probability.

Up to our knowledge, for k > 1 this problem has not been treated in the literature
so far, probably since most of the work has been focused on load balancing.

For k = 1, the problem considered here concerns the well-studied birthday
paradox (see for instance [4]). As one may expect, applying two-choices paradigm
improves situation compared to the case of k = 1 and problems related to the
birthday paradox. Our main technical contribution are exact analytical results
showing which parameters have to be used for the k-choice protocol in order to
avoid collisions.

The problem of k-collisions of random assignment (or k-collision of hash func-
tions) considered in [8] is somewhat similar to the problem of collisions for the
k-choices protocol. Interestingly, this stochastic process is completely different
from the k-choices protocol, but the results concerning the number of items nec-
essary to get k-collision and a collision for the k-choices protocol involve almost
the same formulas which differ only by constant factors involved (see [8], com-
pare also [10]). Mathematical nature of these intriguing phenomenon remains
unknown to the authors at this moment.

3 Stochastic Model and Outline of Results

3.1 Random Assignment Process

Let us consider the classical bins and balls process:

Given N bins that are initially empty. At each step a new ball is placed
in a bin chosen uniformly at random. Proceed until a collision occurs,
that is, a bin is chosen which already contains a ball.

Let BN be a random variable denoting the number of steps executed by
random assignment process. It is well known (see e.g. [6]) that E[BN ], the ex-

pected value of BN , equals
√

Nπ
2 + 2

3 + O( 1√
N

). However, it is less known that
the standard deviation of the random variable BN is large, namely std[BN ] �√

(2 − π
2 )N ≈ 0.523 · E[BN ]. Therefore, finding E[BN ] does not necessarily pro-

vide a satisfactory answer to our problem, since we are interested in collision

freedom with high probability. For N ≥ 20 and t ≤
√

πN
2 , in Theorem 1 we

show that
Pr[BN ≤ t + 1] ≈ 1 − e−

t(t+1)
2N . (1)
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Let us fix the number of balls t and a (small) probability p. We calculate the
minimal number of bins N such that Pr[BN ≤ t + 1] ≤ p. We get

1 − e−
t(t+1)

2N ≤ p iff N ≥ −t(t + 1)
2 ln(1 − p)

. (2)

3.2 Two-Choices Random Assignment Process

Let us consider now a process that describes two-choices protocol:

Given N bins that are initially empty. At each step a new ball is placed
in a bin: first two bins are chosen uniformly at random. Then the ball is
placed in any of these bins that is empty. Proceed until a collision occurs,
that is, both bins chosen already contain a ball.

This modification of the classical random assignment process was analyzed by
Azar et al. (see [1,2]). Let CN be a random variable denoting the length of this
process. It can be shown that

E[CN ] ≈ 3
√

3 · Γ (4
3 ) · n

2
3 ≈ 1.2879 · N 2

3 . (3)

(Γ denotes here the well known Gamma function). So the expected value of
the moment of the first collision in this process is essentially bigger than in the
previous process. For N ≥ 5 and t < 3

√
3 · Γ (4

3 ) · N2/3, we show in Theorem 2
that

Pr[CN ≤ t + 1] ≈ 1 − e−
t(t+1)(2t+1)

6N2 . (4)

Let us fix the number of balls t and a (small) probability p. We calculate the
minimal number of bins N such that Pr[CN ≤ t + 1] ≤ p. We get

1 − e−
t(t+1)(2t+1)

6N2 ≤ p iff N ≥

√
−t(t + 1)(2t + 1)

6 ln(1 − p)
. (5)

3.3 The Case of k > 2

Let Nk(t, p) denote the minimal N for which collision probability is at most p
for t steps of k-choice random assignment process. Then

Nk(t, p) =

(
−

∑t
a=1 ak

ln(1 − p)

)1/k

≈
(

− tk+1

(k + 1) ln(1 − p)

)1/k

(6)

The last approximation is very precise for k ≥ 3.

4 Applications - Municipal Ticket System

We shall discuss a large municipal public transportation system. Recently, it
becomes popular to switch from traditional paper tickets into systems with elec-
tronically readable tickets. The purpose is not merely ease of automatic reading.
One of the basic functions of such a system is to provide data about usage of
transportation system. Namely:
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– each single ride of a passenger should be recorded indicating its start point
and the endpoint.

These data is necessary for two reasons. In order to optimize routes and service
frequencies on the routes it is necessary to have reliable data on the system usage.
The second reason is rational allocating subsidies received by transportation
companies - if the subsidies are payed per route serviced (and not per passenger
ride), then the transportation companies might be discouraged to optimize their
service.

In the situation described the following requirements for the system can be
formulated (in fact, they are taken from a real project):

– each passenger is holding either a period ticket or a single trip ticket,
– while entering a car the passenger presents his ticket via a wireless channel

to a registration device; the same occurs when the passenger is leaving the
car (as in the Singaporean public transportation system),

– each registration device collects all data on the passengers points of enter-
ing and leaving the car, this data is transmitted periodically to a central
database,

– electronic tickets might be held by sophisticated devices (like cryptographic
cards with multiple advanced functions), as well as the simplest memory
devices that do not support write operations after completing manufacturing
process, except a few bit flags.

– Ticket cloning should be detectable, at least if the scale of cloning becomes
economically non-negligible.

The simplest solution in the above scenario would be to place a sufficiently
long random identifier on each ticket. This identifier would be used for collecting
data on the passengers’ trips.

Privacy Problems. The straightforward solution with the unique identifiers is
unacceptable due to revealing personal data: records on passenger’s traffic at the
same time provide data on behavior of single persons. Since the period tickets
are nontransferable in the case considered, the name of the ticket holder must
be easily accessible and therefore one may link a person with data concerning
her/his usage of public transportation. This data can be misused in multiple
ways including criminal purposes (for instance it would help a lot to choose
targets of burglary without tedious observation of the potential victims).

Even if the data concerned is not used for criminal purposes it is a clear
case of violating personal data protection rules. Legal systems in many coun-
tries (USA being an important exception) impose very strict rules that should
prohibit leaking any personal data. In particular, the information system im-
plemented should guarantee appropriate data protection measures. Of course,
many protection mechanisms can be designed, but the price of high security
installations is an important issue.



Anonymity and k-Choice Identities 289

Solution Scenario. We propose the following simple scenario:

1. Each ticket contains a radio frequency tag with k different ID’s selected at
random from a pool K of N different ID’s.

2. When a passenger enters a car, then a control device reads the ID’s from the
ticket and chooses one of the ID’s from the ticket currently not in use in the
car, say s. The device puts the flag associated to s to the “on” position and
records that a passenger with a ticket s is in the car. No other ID from the
tag is recorded by the control device.

3. When a passenger leaves the car, then the flag corresponding to s in the
ticket is set on the “off” position. Simultaneously, it is marked in the record
corresponding to s that the passenger has finished his travel at this point.

4. Periodically, the records are transmitted to a central database. However not
all records are transmitted, but only some of them chosen according to a
coloring scheme that will be described later.

Note that the devices do not erase the identifiers related to single rides. This
is necessary, since the tickets are low end products and cloning them is not
necessarily very difficult. However, if cloning occurs and fake tickets are used in
a scale that matters economically, then some ID’s occur more frequently than
the others and this cannot be explained by stochastic deviations. We assume
that the ID’s are created cryptographically by the transportation authority and
they cannot be determined by the other parties except by reading from valid
tickets.

For obvious reasons, the number of passengers in a car is bounded from above
by some number t. Therefore the pool of ID’s K need not to be very big and the
same ID’s may be inserted into very many tickets. The only problem that may
occur is that all k ID’s from a ticket are already in use in the car, i.e. there is
a collision. There is a trade-off between N (the size of K), parameters k, t and
the probability of a collision.

The second issue related to N is the size of anonymity set for each passenger.
Probability that a given ID is contained in a single ticket is roughly k/N , so the
average number of passengers holding this ID is ≈ nk/N , where n is the total
number of passengers. Additionally, since there are k ID’s on each ticket, the
average size of the anonymity set for a given passenger is ≈ nk2/N (this is the
number of passengers that share at least one ID with a given passenger).

The main technical problem considered in this paper is the choice of the pa-
rameters mentioned. Our goal is to choose k and N so that nk2/N is sufficiently
large, while probability of a collision is still small enough. The first goal requires
N to be small, the second one requires that N is sufficiently large. As we shall
see, for k > 1 we get quite satisfactory results.

4.1 Discussion of the Parameter Settings

Let us now derive the consequences of the above estimations for the protocol
discussed. We assume that the total number of passengers is n = 106.
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Table 1. Choice of N for the protocol for k = 1, collision probability p, and a bound t
on the number of passengers; mark ∗ denotes a value higher than n, which means that
it is better to use unique identifiers

t = 50 t = 100 t = 200 t = 300

p = 10−2 126861 502470 ∗ ∗
p = 10−3 ∗ ∗ ∗ ∗

Table 2. Estimated size of anonymity set for k = 1

t = 50 t = 100 t = 200 t = 300

p = 10−2 7.9 2 1 1
p = 10−3 1 1 1 1

Table 3. Appropriate size of N in the case k = 2

t = 50 t = 100 t = 200 t = 300

p = 10−2 2066 5802 16350 29999
p = 10−3 6550 18389 51820 95081
p = 10−4 20718 58166 163907 300742
p = 10−5 65517 183942 518332 951052

Table 1 contains some values of appropriate N that guarantees a given upper
bound on collision probability. We can read from this table that the protocol for
k = 1 is of no use: collision probability is high, anonymity set is so small that
it provides no real privacy protection even for the smallest size of parameters.
However, from Table 3 we read that in the case of 2-choices protocol N can be
much lower, therefore the anonymity sets are much larger.

As we see, there is a trade-off between collision probability and the size of
anonymity set. If we admit p = 0.01 (that is, in 1% of cases some passanger will
not be registered, which makes about 1% rides unregistered), then for k = 2 we
get socially acceptable anonymity sets.

One can show that the size of anonymity sets can be further significantly
improved for higher values of k. Tables 5 and 6 show the results for k = 3.

4.2 Further Security Issues

Of course, any reader placed in a car may record the data from the RFID’s of
the passengers. So it is unjustified to worry that the control device may store
all k keys from a ticket. On the other hand, solutions using more sophisticated
equipment than simple passive RFID’s might be unattractive from economic
point of view.
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Table 4. Estimated size of anonymity set for k = 2

t = 50 t = 100 t = 200 t = 300

p = 10−2 1936 689 244 133
p = 10−3 610 217 77 42
p = 10−4 193 68 24 13
p = 10−5 61 21 7 4

Table 5. Appropriate size of N in the case k = 3

t = 50 t = 100 t = 200 t = 300

p = 10−2 537 1384 3414 5862
p = 10−3 1160 2923 7366 12649
p = 10−4 2499 6299 15873 27256
p = 10−5 5386 13572 34199 58722

Table 6. Estimated size of anonymity set for k = 3

t = 50 t = 100 t = 200 t = 300

p = 10−2 16759 6502 2636 1535
p = 10−3 7758 3079 1221 711
p = 10−4 3601 1428 567 330
p = 10−5 1670 663 263 153

The real danger of the system is that all data are collected in one place and
therefore can be gained by a malicious adversary in a relatively easy way. If all
data on passenger rides are collected, it would be possible through appropriate
statistic tools to couple all ID’s from one card together. Namely, the adversary
would use the points of transfer and try to find first a typical route (via deter-
mining which identifiers appear frequently at a certain transfer point), and later
find sets of identifiers that can be coupled in the same way on the route quite
frequently. We skip here the details of the statistic attack that should be clear
to the reader.

A countermeasure against such an attack is to build a meeting graph G: its
vertices are labeled by all cars. We say that two cars A and B are connected
by an edge in G, if there is a transfer point that is visited by A and B and a
passenger leaving A may transfer to B – no other car of the same line as B visits
the transfer point in the meantime. Having graph G we determine partition of
its vertices into independent sets, each marked with a different color.

The scheme of collecting data is that from one period of time we store only
data from cars of a single color in G. This assures that we cannot use correlation
from the transfer points. The ID’s on the tickets are changed each month, so
statistic analysis of such data becomes very complex.
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Anonymity Set versus Anonymity. So far we have focused our attention on
the size of anonymity sets - as it is often the case in the anonymity literature.
However even if the size of this set is large, one should be aware of the danger of
data mining based on particular properties of a given application. For instance,
not all rides with the same ID can be attributed to the same person - this follows
from impossibility of certain routes. Another potential chance for traffic analysis
is utilizing possible personal behavior patterns.

In a classical approach, the population is partitioned into disjoint anonymity
sets based on some observable characteristics. With multiple ID’s the situation
is more complex and we cannot confine analysis to a given anonymity set: If we
know that Alice can use identities s1, . . . , sk, then each time we see that identifier
si is used, we must consider all other passengers holding the same si. In order
to exclude them we have to analyze them and therefore take into account their
anonymity sets. However, these anonymity sets are different than the anonymity
set of Alice. So in principle proceeding this way we take into consideration all
participants of the protocol and the number of cases that have to be considered
explodes.

5 Application - Simple Identifier Tags in Shops

In many systems with diverse objects (like shops), RFID tags are very useful for
managing physical objects. As before, the problem is that an object can be used
for tracing the clients. Of course, one can kill the tags when leaving a shop, but
we can achieve something even if killing is impossible.

We consider an additional requirement: a tag must be readable without
any electronic equipment. For instance, there are bar code numbers printed on
a sticker containing an RFID-tag so that they are readable by a human. This
is motivated by possible hardware failures, lack of appropriate readers at some
locations, or dual systems in which RFID-tags are functioning in parallel with
printed codes.

While it is easy to insert printed codes during manufacturing phase, they
cannot be easily changed later. So we require a predistribution scheme: ID-tags
coming to a user are already set and a new ID cannot be assigned to a tag.

The second limitation is the size of ID’s. If it is small, then we can reuse the
memory place saved. Moreover, if a printed ID is to be read by a human, it
is less error-prone to have a short ID. Secondly, if an object is leaving a shop,
then its ID should not serve for tracing its holder. So we are again in a scenario
considered in Sec. 4, where repetitions between tags serve for hiding information.

We can use two-choices random assignment scheme in the following way:

– Each RFID tag receives two predistributed ID’s. Apart from being recorded
in the tag, they are printed on a sticker with the RFID tag.

– Once an item holding the tag arrives in a system, it is checked which of the
ID’s from the sticker is still unused in the system. One of them is chosen.
Then the printed code of the second ID is marked or made unreadable while
its electronic version is erased releasing some of tag’s memory.
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– The chosen ID is also recorded in the system in a database holding all ID’s
of objects in the system.

6 Distribution with DHT

The idea of the protocol presented and analyzed in this paper can be used in
other application areas. We mention an example of this kind.

In distributed memory systems based on addressing with distributed hash ta-
bles (DHT) it is usually the case that demand for data/services is very nonuni-
form. There are popular and unpopular topics. So, given a distribution of an
address space, we wish to allocate the hot topics so that no server is responsible
for more than one of them. It has to be done without changing the basic principle
that the location of a given service/data is available at address indicated by the
hash value. The problem is that it is not known at the moment of designing the
system which topics will become popular. So in particular we cannot adjust the
hash function to the list of most popular topics.

A simple solution is to use two-choices random assignment principle. Loca-
tion of a topic X is indicated by two values H(X, 1) and H(X, 2), where H is
an appropriate hash function. In a regular case, we assign to X the location
indicated by H(X, 1). In case of a conflict one can move X to the location in-
dicated by H(X, 2). According to our results, this allows to avoid conflicts for
much larger lists of hot topics. At the same time, accessing data is not harder
than before. Two hops necessary to reach the right location at some situations
are compensated by a better response time.

Note that we are not focusing here on load balancing of topics (their number is
usually much higher than the number of servers), but allocating at most one hot
topic to each server. This is motivated by the fact that from efficiency point of
view it is more important to avoid collisions between hot topics than to equalize
the number of topics allocated to the servers.

7 Analysis of k-Choice Protocol

The estimation of probabilities related to the birthday paradox has a big litera-
ture. We use the methodology from [11] to obtain precise estimations. First let
us recall the following well known facts:

(i) 1 − x ≤ e−x ,

(ii)
∑k

j=1 j = k(k+1)
2 ,

(iii)
∑k

j=1 j2 = k(k+1)(2k+1)
6 ,

(iv)
∑k

j=1 jb ≤ (k+1)b+1

b+1 ,

(v) ln(1 − x) = −
∑∞

j=1
1
j xj .
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Analysis of Random Assignment Process. Let us fix a number N and let
St denote the event that there was no collision in the first t steps of putting balls
into N bins of the random assignment process. Notice that Pr[S1] = 1 and that
Pr[St+1|St] = 1 − t

N . Obviously St+1 ⊆ St, therefore Pr[St+1] =
∏t

a=1(1 − a
N ).

Recall that BN denotes the first moment when the collision occurs in this process.
Then Pr[BN ≤ t] = 1 − Pr[St] and we have

Pr[BN ≤ t + 1] = 1 −
t∏

a=0

(
1 − a

N

)
. (7)

Lemma 1. If 0 ≤ t < N , then

e−
t(t+1)

2N − (t + 1)3

6N2(1 − t+1
N )

≤
t∏

a=1

(1 − a

N
) ≤ e−

t(t+1)
2N . (8)

Proof. Let aN,t =
∏t

a=1(1 − a
N ). Then

− ln aN,t =
t∑

a=1

∞∑
b=1

1
b

( a

N

)b

=
∞∑

b=1

(
1
b

· 1
N b

t∑
a=1

ab

)
(9)

=
t(t + 1)

2N
+

∞∑
b=2

(
1
b

· 1
N b

t∑
a=1

ab

)
. (10)

Therefore ln aN,t ≤ − t(t+1)
2N and aN,t ≤ exp(− t(t+1)

2N ). Next, we have

− ln aN,t ≤ t(t + 1)
2N

+
∞∑

b=2

(
1
b

· 1
N b

· (t + 1)b+1

b + 1

)
(11)

≤ t(t + 1)
2N

+
t + 1

6

∞∑
b=2

(
t + 1
N

)b

(12)

=
t(t + 1)

2N
+

t + 1
6

·
(

t + 1
N

)2

· 1
1 − t+1

N

. (13)

Therefore

aN,t ≥ exp
(

− t(t + 1)
2N

)
· exp

(
(t + 1)3

6N2(1 − t+1
N )

)
(14)

≥ exp
(

− t(t + 1)
2N

)
·
(

1 − (t + 1)3

6N2(1 − t+1
N )

)
(15)

≥ exp
(

− t(t + 1)
2N

)
− (t + 1)3

6N2(1 − t+1
N )

. (16)

This concludes the proof. �	
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Theorem 1. Let BN denotes the the first moment that a collision occurs in the

random assignment process with N bins. If N ≥ 20 and t ≤
√

πN
2 , then

1 − e
t(t+1)

2N ≤ Pr[BN ≤ t + 1] ≤ 1 − e
t(t+1)

2N +
1√
N

. (17)

Proof. From equation (7) and Lemma 1 we get

1 − e
t(t+1)

2N ≤ Pr[BN ≤ t + 1] ≤ 1 − e
t(t+1)

2N +
(t + 1)3

6N2(1 − t+1
N )

. (18)

The function fN(x) = (x+1)3

6N2(1− x+1
N )

is increasing on interval [0, N − 1), so if t ≤√
πN
2 , then (t+1)3

6N2(1− t+1
N )

≤ fN(
√

πN
2 ). Moreover, the sequence aN=fN (

√
πN
2 )

√
N

is decreasing for N > 4 and a20 ≈ 0.801692. So the theorem follows. �	

Let us recall that E[BN ] ≈
√

πN
2 . Note that from the Theorem 1 we get Pr[BN ≤√

πN
2 + 1] ≈ 1 − e−π/4 ≈ 0.544062.

Analysis of Two-choices Random Assignment Process. Let us fix a num-
ber N and let Zt denote the event that there was no collision in the first t steps
of putting balls into N bins during two-choice random assignment process. No-
tice that Pr[Z1] = 1 and that Pr[Zt+1|Zt] = 1 −

(
t
N

)2. Obviously Zt+1 ⊆ Zt,
therefore Zt+1 =

∏t
a=1(1 −

(
a
N

)2). Let CN denote the first moment when the
collision occurs during this process. Then Pr[CN ≤ t] = 1 − Pr[Zt] and we have

Pr[CN ≤ t + 1] = 1 −
t∏

a=1

(
1 −

( a

N

)2 )
. (19)

Lemma 2. If 0 ≤ t < N , then

e−
t(t+1)(2t+1)

6N2 − (t + 1)5

10N4(1 − ( t+1
N )2)

≤
t∏

a=1

(
1 −

( a

N

)2 )
≤ e−

t(t+1)(2t+1)
6N2 . (20)

Proof. Let aN,t =
∏t

a=1(1 −
(

a
N

)2). Then

− ln aN,t =
t∑

a=1

∞∑
b=1

1
b

( a

N

)2b

(21)

=
∞∑

b=1

(
1
b

· 1
N2b

t∑
a=1

a2b

)
(22)

=
t(t + 1)(2t + 1)

6N2
+

∞∑
b=2

(
1
b

· 1
N2b

t∑
a=1

a2b

)
. (23)
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Therefore

ln aN,t ≤ − t(t + 1)(2t + 1)
6N2

and aN,t ≤ exp(− t(t + 1)(2t + 1)
6N2

) . (24)

Next, we have

− ln aN,t ≤ t(t + 1)(2t + 1)
6N2

+
∞∑

b=2

(
1
b

· 1
N2b

· (t + 1)2b+1

2b + 1

)
(25)

≤ t(t + 1)(2t + 1)
6N2

+
t + 1
10

∞∑
b=2

(
t + 1
N

)2b

(26)

=
t(t + 1)(2t + 1)

6N2
+

t + 1
10

(
t + 1
N

)4 1
1 − ( t+1

N )2
. (27)

Therefore

aN,t ≥ exp
(

− t(t + 1)(2t + 1)
6N2

)
exp

(
(t + 1)5

10N4(1 − ( t+1
N )2)

)
(28)

≥ exp
(

− t(t + 1)(2t + 1)
6N2

) (
1 − (t + 1)5

10N4(1 − ( t+1
N ))2

)
(29)

≥ exp
(

− t(t + 1)(2t + 1)
6N2

)
− (t + 1)5

10N4(1 − ( t+1
N )2)

. (30)

�	
Theorem 2. Let CN denote the first moment that a collision occurs while putting
balls into N bins during two-choices random assignment process. If N ≥ 5 and
t < 3

√
3 · Γ (4

3 ) · N
2
3 , then

1 − e
t(t+1)(2t+1)

6N2 ≤ Pr[CN ≤ t + 1] ≤ 1 − e
t(t+1)(2t+1)

6N2 +
1

N
2
3

. (31)

Proof. From equation (19) and Lemma 2 we get

1 − e
t(t+1)(2t+1)

6N2 ≤ Pr[CN ≤ t + 1] ≤ 1 − e
t(t+1)(2t+1)

6N2 +
(t + 1)5

10N4(1 − ( t+1
N )2)

. (32)

The function fN(x) = (x+1)5

10N4(1−( x+1
N )2)

is increasing on interval [0, N − 1), so if

t ≤ 3
√

3 · Γ (4
3 ) · N

2
3 , then

(t + 1)5

10N4(1 − ( t+1
N )2)

≤ fN ( 3
√

3 · Γ (4
3 ) · N

2
3 ) . (33)

Moreover, the sequence aN = fN( 3
√

3 · Γ (4
3 ) · N

2
3 )N

2
3 is decreasing for N > 2

and a5 ≈ 0.818813. So the theorem follows. �	
Notice that the approximation from Theorem 2 is sharper than the approxima-
tion obtained by Theorem 1. Let us recall that E[CN ] ≈ 3

√
3 · Γ (4

3 ) · N
2
3 . By

Theorem 2 we get Pr[CN < 3
√

3 · Γ (4
3 ) · N

2
3 + 1] ≈ 1 − e−Γ ( 4

3 )2 ≈ 0.509374.
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Abstract. Deniable authentication is a technique that allows one party
to send messages to another while the latter can not prove to a third
party the fact of communication. In this paper, we formalize a natural
notion of deniable security and naturally extend the basic authenticator
theorem by Bellare et al. [1] to the setting of deniable authentication. Of
independent interest, this extension is achieved by defining a deniable
MT-authenticator via a game. This game is essentially borrowed from
the notion of universal composition [6] although we do not assume any
result or background about it. Then we construct a 3-round deniable
MT-authenticator. Finally, as our application, we obtain a key exchange
protocol that is deniably secure in the real world.

Keywords: Deniability, Authentication, Protocol, Key Exchange.

1 Introduction

Authentication is a communication process, in which a receiver is assured of
the authenticity of the peer identity and the authenticity of the incoming mes-
sages. This property can be guaranteed by means of a signature. Since a secure
signature is unforgeable and publicly verifiable, it in other words means undeni-
ability. This undeniability is not always desirable. For example, when you do an
Internet shopping, you do not want your shopping privacy to be transferred to a
third party. In this paper, we will investigate techniques for achieving deniable
authentication.

1.1 Related Work

Deniable authentication was first considered in [12]. Earlier concepts occurred
in [9]. Since deniability essentially requires that whatever computable through
interactions is computable by adversary himself, a natural tool to achieve it
is zero knowledge [16]. However, it is known that under a general complexity
assumption any black-box concurrent zero-knowledge has a round complexity
ω̃(log κ) [26,20,25]. This implies that the practical deniability from it is almost
impossible as most of the applications require concurrency. To overcome this bar-
rier, [15,13,14,19,23,10] relaxed the concurrency with a locally timing constraint.

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 298–312, 2008.
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However, timing constraint is not satisfiable as it artificially increases the de-
lay. An alternative approach is to adopt a non-standard complexity assumption.
Di Rainmondo et al. [11], based on an assumption of plaintext awareness [2,8],
showed that SKEME [21] is deniably secure. But the assumption is very strong.
Another alternative is to adopt a common reference string (CRS) model. In this
setting, efficient concurrent zero-knowledge does exist [7,17]. Unfortunately, it
has been pointed out in the literature (e.g., Pass [24]) that deniability obtained
in this way is not satisfiable as the simulator usually owns a secret of CRS
while it is impossible to a real adversary. Similarly, an original random oracle
[4] based solution is not satisfiable, either. Pass [24] defined a revised random
oracle model (we call it an uncontrollable random oracle (uRO) model), which
is different from the original one in that the output of the oracle is maintained
by an uncontrollable third party (instead of a simulator) although the simulator
can still view the input-output pair of each query. Deniability under this model
is practical since whatever computable by the simulator is computable by the
adversary himself. However, authentication is not a research concern in [24]. As a
summary, known research in deniable authentication is still not very satisfiable.

1.2 Contribution

In this paper, we first present an authentication model [1,5] with featuring a
concurrent computation model [22]. Under this, we formalize a notion of deni-
able security and naturally extend the authenticator theorem in [1] to the setting
of deniable computation. This extension is essentially achieved by deploying a
universal composition technique. This strategy is of independent interest. Then
we construct a provably deniable MT-authenticator based on uncontrollable ran-
dom oracle [24]. Finally, as our application, we obtain a key exchange protocols
that is deniably UM-secure.

2 Model

Bellare et al. [1,5] formalized two models: unauthenticated-link model (UM)
and authenticated-link model (AM) for cryptographic protocols. This model is
very useful in a modular design of UM-secure protocols. On the other hand, a
concurrent composition model (e.g., [22]) is convenient in analysis of protocols.
We now present UM/AM models with featuring [22].

Assume P1, · · · , Pn are n-parties. π is an arbitrary protocol. The execution of
π is modeled as follows. Each party is regarded as a polynomial time interactive
Turning machine. Initially, Pi is invoked with input, identity and random input.
Then he waits for an activation. Pi can be activated by incoming messages from
other parties and/or external input. Once activated, Pi follows the specification
of π by computing

π(input, internal state, incoming message)
=(new state, outgoing messages, output).
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Initial internal state is the party’s input, identity and random input. After each
activation, the internal state is updated by a new state. Each activation could
generate outgoing messages (to other parties). It may also generate a local out-
put and label the sensitive part as ‘secret’. Each Pi could concurrently run many
copies of π. A copy is called a session. Each session has a session ID. The only
requirement for a session ID is its uniqueness in Pi. The input for different acti-
vations of each session in Pi might be different. It is generated by a probabilistic
polynomial time algorithm Φi. For the �th activation of the jth session, the in-
put is x�,j = Φi(�, j, xi, hist), where xi is the initial input to Φi and hist is the
output history of all copies of π in Pi. Note x�,j could be empty. In order of
delivery (also for security), each message sent into the channel is assumed to
contain (sender, sender session ID, receiver, receiver session ID). In addition,
we implicitly assume that π has been ideally initialized by a function I : for
r ← {0, 1}κ, I(r) = I(r)0, I(r)1, · · · , I(r)n, where κ is the security parameter,
I(r)0 is the public information known to all participants, and I(r)i is the secret
key for Pi.

2.1 Unauthenticated-Link Model

Roughly speaking, the unauthenticated-link model is a model for the concurrent
execution of a protocol where a malicious adversary presents. In this model, the
scheduling of events is completely determined by adversary U . Such a scheduling
consists of a sequence of activations to parties. He can activate any party Pi with
an arbitrary incoming message. He can also invoke Pi to start a new session. In
both cases, it is assumed that Φi has already supplied the input (if any). He
can also delete, block, modify and insert any message over the channel. Once
a party completes an activation, the outgoing message and the local output (if
any), except the parts labeled as ‘secret’, are available to U . U can corrupt a
party at any time. When one party gets corrupted, all sessions’ internal states
and the secret key within this party are available to U . A special note ‘corrupted’
is appended to the output of this party. It will not produce an output any more.
In addition, his future action is fully taken by U . U can also corrupt a particular
session in Pi. In this case, he obtains the current internal state for this session. A
special note of corruption is appended to this session’s output. Later, it will not
produce an output any more. The future execution of this session is fully taken
by U . We assume session corruption is possible only if the session has started.
This reflects the practical concern where a session is attacked only if the attacker
sees the session’s activity.

Assume the protocol is initialized by a trusted third party T. Specifically,
before the protocol starts, T takes s ← {0, 1}κ and executes the initialization
function I(s) = {I(s)i}n

i=0. Then he provides I(s)i to party Pi as his secret. The
global public information is I(s)0. At the end of protocol execution, T outputs

I(s)0 ∪ {I(s)i | Pi corrupted, 1 ≤ i ≤ n}.

The final output of a party is defined to be the concatenation of his output
history from all sessions. Let x = (x1, · · · , xn), where xi is the initial input for



Deniable Authentication on the Internet 301

Φi. Let r = (r0
0 , r1

0, r
0
1 , r

1
1 , · · · , r0

n, r1
n) be the random input, where r1

0 for U , r0
0

for T, r0
i for Pi and r1

i for Φi. Let Φ = (Φ1, · · · , Φn). We use Advπ,U ,Φ(x, r) to
denote the output of U , and use UnAuthπ,U ,Φ(x, r)i to denote the output of Pi.
UnAuthπ,U ,Φ(x, r)0 denotes the output of T. Let

UnAuthπ,U ,Φ(x, r)=Advπ,U ,Φ(x, r), UnAuthπ,U ,Φ(x, r)0, · · · ,
UnAuthπ,U ,Φ(x, r)n.

Let UnAuthπ,U ,Φ(x) be the random variable describing UnAuthπ,U ,Φ(x, r). Our
inclusion of the output of T in the global output is for defining deniable security
later (See Section 2.3).

2.2 Authenticated-Link Model

Authenticated-link model is similar to unauthenticated-link model, except that
any outgoing message sent by an uncorrupted party (if not blocked) will be
faithfully delivered.

Authentication Functionality. The following functionality (See Figure 1) is
to formalize the authenticated channel. Unlike [6], here we directly consider the
multiple sessions of the functionality. This seems helpful to simplify the presen-
tation. The action of P̃i is defined as follows. Whenever upon input (send, P̃j , m),
copy it to the input tape of F̂ ; whenever receiving (receiv, id, P̃�, P̃i, m) from F̂ ,
directly output it. The procedure (in Figure 1) for P̃i to send m to P̃j is called
a session for P̃i, P̃j and F̂ , respectively. We simply say a F̂ -session. Assume an
uncorrupted sender P̃i never sends a message m twice. This convention allows us
to easily identify a replay attack. Thus, a session for an uncorrupted sender can
be identified by m itself. A session in F̂ or in a receiver P̃j can be identified by
id (for simplicity, we assume id ← {0, 1}κ never repeats in this paper).
However, when a party P̃i is corrupted, our functionality allows Â, in the name
of P̃i, to send any m to P̃j (through F̂). This reflects the concern when one party
is adversarial, cryptographic authentication techniques can not prevent it from
flooding a receiver. Further remarks follow. First, message exchanges between

F̂ runs with parties P̃1, · · · , P̃n and adversary Â

- Whenever receiving (send, P̃j , m) from P̃i, take id ← {0, 1}κ, send (id, P̃i, P̃j , m)
to Â and wait for a bit c from Â. After Â computes c (it could take arbitrary
length of time), it sends (c, id) back to F̂ .

- After receiving (c, id) from Â, if c = 1 and if (id, P̃i, P̃j , m) for some (P̃i, P̃j , m)
has been sent to Â but (∗, id) was not received before, send (receiv, id, P̃i, P̃j , m)
to P̃j . In any case, mark id as ‘answered’.

Fig. 1. Ideal functionality F̂ for authentication
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P̃� and F̂ are ideally secure and immediate (i.e., no adversary plays between).
Second, Ã can have an arbitrary delay to return (c, id). This reflects the nature
of an asynchronous network. c = 1 means the message m is not blocked. Third,
Â can corrupt any P̃i or a session in it. If a session is corrupted, the session state
(i.e., input or output for this session) is provided to Â and a note ‘corrupted’ is
appended in his output. The future action is fully taken by Â. If P̃i is corrupted,
all the sessions in it are corrupted by Â. In addition, the future action of P̃i is
taken by Â. Especially, Â can represent P̃i to send any message m (including a
previously sent message) through F̂ to a party P̃j .

Authenticated-Link model. We are now ready to present the authenticated-
link model (AM). Let P1, · · · , Pn be n parties for executing π. AM follows the
order in UM, except messages are sent/received through F̂ and the adversarial
behavior is restricted correspondingly. Formally,

- When Pi needs to send a message m to Pj , it invokes P̃i in Figure 1 with
input (send, P̃j , m) to do this.

- All incoming messages for a party Pj are received through reading the output
of P̃j .

- Upon output (receiv, id, P̃i, P̃j , m) of P̃j , Pj executes π with incoming mes-
sage m.

The action of an adversary A is as follows.

• When Pi invokes P̃i with input (send, P̃j , m), A plays the role of Â in Figure
1 to participate.

• When a session sid in Pi is corrupted, it is assumed that all the F̂-sessions
of P̃i that send/receive messages for session sid are corrupted. As a result,
A will receive the internal state of Pi in π including states from these F̂ -
sessions. Finally, a note ‘corrupted’ appears in the output of session sid.
Later it is no longer active. Its action will be fully taken by A.

• When a party Pi is corrupted, all sessions in Pi are corrupted. As a result,
the secret key I(r)i and all internal states are available to A. The future
action of Pi is taken by A.

The protocol is initialized by a third party T. Specifically, before the proto-
col starts, T takes s ← {0, 1}κ and executes the initialization function I(s) =
{I(s)i}n

i=0. Then he provides I(s)i to party Pi. The global public information
is I(s)0 for all parties. In addition, T can execute an extra function I ′(s′) =
{I ′(s′)i}n

i=0 for s′ ← {0, 1}κ. Initially, I ′(s′)0 and I(s)0 will be provided to A.
Later whenever Pi is corrupted, I(s)i and I ′(s′)i will be provided to A. At the
end of protocol execution, T outputs

{I(s)0, I(s′)0} ∪ {I(s)i, I
′(s′)i | Pi corrupted, 1 ≤ i ≤ n}.

Note our treatment for introducing the extra I ′(s′) is for defining deniable se-
curity (See Section 2.3), where I ′(s′) will be the initialization function for the
protocol realizing F̂ . As for UM, let x = (x1, · · · , xn), where xi is the initial input
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for Φi. Let r = (rf , r0
0, r

1
0 , r

0
1 , r

1
1 , · · · , r0

n, r1
n) be the random input, where rf is for

F̂ , r0
0 is for T, r1

0 is for A, r0
i is for Pi, r1

i is for Φi. Analogous to UM, we can de-
fine the adversary output AdvF̂

π,A,Φ,I′(x, r), the output of T AuthF̂
π,A,Φ,I′(x, r)0,

the output of party Pi AuthF̂
π,A,Φ,I′(x, r)i, the global output AuthF̂

π,A,Φ,I′(x, r)

and the corresponding random variable AuthF̂
π,A,Φ,I′(x). Note in the UM case,

I ′ is empty. Also since I is already implicitly included in π, there is no need to
explicitly label it on the above variables.

2.3 Deniable Security

For a protocol π to be deniably secure, we essentially hope whatever computable
by an attacker through interactions can be computed by himself alone. There are
two factors to prevent a simulator from executing such a deniable computation.
First, x could be unknown. However, if x is private, it is hard to see what
type of deniability can be formalized. To simplify the problem, we only consider
functionalities, where x is not a secret. For instance, in key exchange, xi is
a request to carry out key exchange. One may wonder why not just define the
security model such that the adversary additionally plays the role of Φ to supply
protocol inputs. We stress that for some functionalities such as oblivious transfer
and e-voting, the inputs are secret. Thus, the adversary is not allowed to know
them unless the underlying party gets corrupted. The perfect version of security
in a multi-party computation is formalized as an ideal process, where the parties
hands their inputs to a trusted party who feeds back an output for each party by
computing the functionality himself. Details can be found in the literature (e.g.,
[22]). In our setting, input x is not a secret. It follows that this formulation
can also be regarded as an ideal version of deniable security. Again following
the multi-party tradition, the deniable security of a protocol π can be defined as
requiring an ideal process simulator to simulate a real system such that the global
output of the ideal process is indistinguishable to that in the real execution.
However, the second problem comes. Recall that in π, each party Pi receives a
secret key I(r)i from the setup function I and an adversary is unable to access
an uncorrupted I(r)i. Thus, in order to be deniable, a simulator should not be
allowed to know uncorrupted I(r)i either. To do this, we let a third party T to
take I(r) = {I(r)i} for r ← {0, 1}κ and provide I(r)0 to ideal process simulator.
Later, I(r)i is provided to the latter if and only if Pi is corrupted. At the end
of the simulation, T output I(r)0 and all corrupted I(r)i. The global output in
the ideal process is expanded with the output of T. If π is a F̂ -hybrid protocol,
then I used by T in the above is replaced by (I, I ′) for an arbitrary given extra
I ′. We use IDEALG,S,Φ,(I,I′) to denote the global output in the ideal process for
computing functionality G, where an adversary is S, the input function is Φ, the
initialization function is I and the extra initialization function is I ′. This global
output is the concatenation of output by T, {Pi} and adversary (or simulator)
S. We use REALπ,O,Φ,I′(x) to denote the global output in the real process (i.e.,
in executing π), where O is the adversary. When π is an F̂ -hybrid protocol, this
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global output is AuthF̂
π,O,Φ,I′(x). When π is a protocol in the UM, this global

output is UnAuthπ,O,Φ(x), where I ′ is enforced to be empty.

Definition 1. Let π be a protocol with initialization function I for computing a
functionality G. Let I ′ be arbitrary extra initialization function (I ′ is empty if π
is a UM protocol). π is said to be deniably secure if for any feasible x, I ′ and any
PPT adversary O against π there exists a PPT adversary S against the ideal
process such that

IDEALG,S,Φ,(I,I′)(x)
c≡ REALπ,O,Φ,I′(x). (1)

3 Deniable Authentication Theorem

Essentially, we wish to construct a protocol ρ to realize F̂ . Then for any pro-
tocol π in the F̂ -hybrid model (i.e., AM), we replace F̂ by ρ and hope the
composed protocol (denoted by πρ) is secure. Bellare et al. [1] proposed a no-
tion of MT-authenticator, which is a realization of F̂ in the UM. They confirmed
the above result when ρ is a MT-authenticator. However, here we are mainly
interested in finding a ρ that does not introduce additional undeniability. Their
MT-authenticator does not guarantee this since the simulator there initializes
the MT-authenticator himself. In order to be deniable, a simulator should not be
allowed to know the secret key (say, Iρ(r)i) of party in ρ unless he is corrupted.
To achieve this, we introduce a third party T to generate and maintain parties’
private keys. Especially, a simulator is allowed to access Iρ(r)i if and only if
party i is corrupted. This is what we have done in the authenticated-link model.
We formalize this intuition into the following notion of deniable authentication.

Definition 2. Assume ρ is a protocol for computing F̂ . Let π be any protocol
in the F̂-hybrid model. Let Iρ be the initialization function for ρ. πρ is said to be
deniably authenticated if for any adversary U against πρ and any x, there exists
an adversary A against π such that

AuthF̂
π,A,Φ,Iρ

(x)
c≡ UnAuthπρ,U ,Φ(x). (2)

Since MT-authenticator in [1] provides an authenticated transformation for any
AM protocol, a question is whether there exists a natural property for ρ such
that as long as ρ satisfies it πρ will be deniably authenticated for any π. In
the following, we introduce a notion of deniable MT-authenticator. We show
that given a deniable MT-authenticator ρ, for any π in the F̂ -hybrid model, πρ

is deniably authenticated. We define this notion through two protocol games.
These game are essentially borrowed from the notion of universal composition
[6] although we do not need any result or background about it.

The first game is denoted by G0. Assume P̃1, · · · , P̃n is running ρ in the UM
with a dummy adversary A0. Z is a PPT interactive Turing machine. Assume
Iρ(r) = {Iρ(r)i}n

i=0 is the initialization function for ρ. Initially, Z will receive
the public information Iρ(r)0. On the one hand, Z plays the role of Φ to supply
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inputs for P̃i. On the other hand, Z can supply A0 with instructions obeying the
UM rules at any time. These instructions include (1) starting a session at some
P̃i or (2) activating a session with a specific incoming message or (3) corrupting a
session or a party. Upon an instruction, A0 follows it faithfully. In case of (1)(2),
A0 reports to Z the outgoing message (if any) generated by the activated session.
In case of (3), A0 reports the collected information. Z can read the outputs from
{P̃i}. He can get the reports from A0 by reading his output. At the end of the
game (which is decided by Z), Z outputs a bit b′. This completes the description
of G0. Now we define the second game. Denote it by G1. Assume P̃1, · · · , P̃n is
executing F̂ with an adversary A1. A PPT machine Z is described as follows.
Initially, a third party Tρ takes Iρ(r) = {Iρ(r)i}n

i=0 for r ← {0, 1}κ and provides
Iρ(r)0 to both A1 and Z. Later Iρ(r)i is provided to A1 if P̃i is corrupted. The
remaining description for Z (i.e., supplying inputs to P̃i and instructions to A1)
is exactly as in G0, except A1 instead of A0 will respond to these instructions.
The action of A1 is arbitrary, except that he follows the rules of ideal process in
computing F̂ (see Section 2.2). At the end of G1, Z generates a bit b′. Now we
are ready to define our notion of deniably secure MT-authenticator.

Definition 3. Let ρ be a protocol for computing F̂ . ρ is said to be a deniable
MT-authenticator if there exists a PPT simulator A1 such that for every PPT
machine Z,

Pr[Z(G0) = 1] − Pr[Z(G1) = 1] (3)

is negligible.

Essentially, Gb is placed in a black box. The task of Z is to guess which game is
inside. Intuitively, G0 is the execution of ρ by {P̃i} and adversary A0 in the UM,
except that A0 is instructed by Z and that the inputs of each P̃i is supplied by
Z too. G1 is the execution of F̂ by {Pi} and adversary A1 in the AM, except
the input of P̃i is supplied by Z and that A1 has to pretend to be A0 s.t. Z
can not decide whether he is interacting with G1 or with G0. In order for Z to
fail in realizing which is the case, one might hope that A1 internally simulates
the execution of ρ with the initialization of Iρ by himself (thus he knows all
parties’ secret keys). In this way, as long as the output of the internal simulated
ith party is identical to that of P̃i, then Z can not distinguish G1/G0 since
the simulation can be perfect as in the real execution of ρ in G0. However, Z
has the official public key Iρ(r)0 of ρ received from T. If A1 initializes ρ by
himself, the simulation will not be consistent with Iρ(r)0. For example, Z could
realize that a message reported by A1 is computed using a public-key not in
Iρ(r)0. In this case, Z immediately realizes he is interacting with G1. Thus, to
make Definition 3 satisfied, A1 needs to simulate the execution of ρ based on
Iρ(r)0 (and corrupted {Iρ(r)i}). The following theorem says, if such a A1 indeed
exists, then composing ρ with F̂ -hybrid protocol π will give arise to a deniably
authenticated πρ. Formally,

Theorem 1. If ρ is a deniable MT-authenticator and π is a protocol in the
F̂-hybrid model, then πρ is deniably authenticated.
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Before our actual proof, we first present the main idea. For an UM adversaryU , we
need to present an AM simulator A such that the global output in the AM is com-
putationally indistinguishable to that in the UM. Essentially, A follows U , except
the part in executing F̂ , where A activates A1 through a sequence of instructions.
If the ideal process in executing F̂ with A1 is replaced with the real execution of ρ
with A0, then A becomes identical to U . Thus, if (2) is violated, we can construct a
PPT machine Zρ to distinguish G0 and G1 as follows. Zρ simulates {Pi} in π and Φ,
and also follows A, except that whenever he needs to simulate a message transmis-
sion, he does it through the challenge game Gb for b ← {0, 1}. Finally, Zρ provides
the simulated global output to a distinguisher and outputs whenever he does. If
b = 1, the global output in the simulation of Zρ is distributed as AuthF̂

π,A,Φ,Iρ
(x);

otherwise, it is distributed as UnAuthπρ,U ,Φ(x). As a result, violation of (2) im-
plies a non-negligible advantage of Zρ, contradicting the assumption of ρ. Now we
start to implement the above idea.

Proof. Let U be against πρ. Assume I(r) = {I(r)i}n
i=0 and Iρ(r′) = {Iρ(r′)i}n

i=0

be the initialization function for π and ρ respectively. With the above idea in
mind, we first construct A against π in the F̂ -hybrid model. A will involve in
executing π in the F̂ -hybrid model with n parties as an AM adversary. For ease
of presentation, we use Pi, P̃i and P ′

i to denote the ith party in executing π, ρ

(or F̂), and πρ respectively. The code of A is as follows.

a. Initially, A will receive I(r)0 for π and an extra initialization Iρ(r′)0 (sup-
posedly for ρ) from T. Pi will receive I(r)i and I(r)0 from T. On the one
hand, A is involved in the execution of π with P1, · · · , Pn and F̂ . On the
other hand, he internally activates U with I(r)0 and Iρ(r′)0 and simulates
πρ with U by playing the roles of (uncorrupted) P ′

1, · · · , P ′
n. To do this, A

will initialize A1 with Iρ to assist his simulation. This internal simulation
will be useful to his action in π. Details follow.

b. Whenever Pi wishes to send m to Pj , Pi will play the role of P̃i (in Figure 1)
to send (send, P̃j , m) to F̂ , who will take id ← {0, 1}κ and send (id, P̃i, P̃j , m)
to A. A then activates A1 with (id, P̃i, P̃j , m). After seeing any output by
A1, forward it to U .

c. Whenever U requests to deliver a message msg to P ′
j , activate A1 to deliver

msg to P̃j in ρ. In turn, if A1 generates any output msg′, A provides it to
U . (Remark: as the output of A0 in such a query is to report the outgoing
message from Pj , the output of A1 is supposed to be a simulation of such a
message.) If A1 generates an outgoing message (c, id) to F̂ , A sends (c, id)
to F̂ as his reply for the request of bit c.

d. Whenever U requests to see an output of P ′
i , collect the output of Pi in π

(not including the parts labeled as ‘secret’) and provide it to U . Note since
both A and U are not allowed to see the secret parts, this simulation is
perfect.

e. Whenever U asks to corrupt a session id in P ′
i , corrupt the corresponding

session in π and obtain the session state stat. In addition, he, the role of Z
in G1, requests A1 to corrupt all the sessions in P̃i that sending messages
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containing session id (Recall each message contains the sender session ID of
π; See the protocol syntax in Section 2). As a result, A1 will output simulated
internal states stat′ for all these sessions. A merges stat′ and stat to provide
a complete session state st for session id of P ′

i in the simulated πρ. Finally,
A provides st to U .

f. Whenever U asks to corrupt a party P ′
i , corrupt Pi in π to get I(r)i and

then obtain the secret key Iρ(r)i (from T by requesting A1 to corrupt P̃i).
Obtain internal states for all sessions in Pi through session corruption as in
item (e). Finally, provide all the information to U .

Finally, A outputs whatever U does.
We claim that A will satisfy (2). Otherwise, we construct a PPT machine Zρ

to distinguish G0/G1 with a non-negligible advantage. To do this, we first show
that the simulation of A can be completed by black-box access to the game
G1. Indeed, we only need to check the black-box access restriction for A can be
satisfied.

– In item (a), this will be violated when A initializes A1 with Iρ(r′)0. However,
since in G1, T already initializes A1 with it, this operation is not required
any more.

– In item (b), the code exactly follows the description of G1, except that A
forwards the request (id, P̃i, P̃j) to A1. Thus, under the black-box access to
G1, A only needs to feed input (send, P̃j , m) to P̃i and read the output of A1

(if any).
– In item (c), A only needs to feed the instruction “deliver message msg to

P̃j” to A1. The remaining computation will be perfectly simulated in G1.
– Item (d)(e)(f) do not violate black-box restriction.

This revision does not change the global output of the simulation (i.e.,
AuthF̂

π,A,Φ,Iρ
(x)). On the other hand, when the black-box G1 is replaced with G0,

then the global output of the simulated game is distributed exactly as
UnAuthπρ,U ,Φ(x). Now we are ready to describe the code of Zρ. Given black-box
Gb, auxiliary input x and Iρ(r′)0, he initializes {I(r)i} for π in F̂ -hybrid mode,
simulates {Pi} faithfully, plays the role of Φ, and also follow the revised A with
black-box access to Gb. Finally, Zρ provides the global output out of the simulated
game to the distinguisher of equation (2) and outputs whatever he does. Note that
if b = 0, then out is distributed according to the right hand of equation (2); the left
hand of (2) otherwise. Thus, non-negligible advantage of the distinguisher implies
non-negligible advantage of Zρ, contradiction to assumption on ρ. �

Corollary 1. Assume ρ is a deniably MT-authenticator and π is deniably secure
in the F̂-hybrid model, then πρ is deniably secure in the UM.

Proof. Let I, Iρ be the initialization function for ρ and π, respectively. By The-
orem 1, for any UM adversary U against πρ, there exists an AM simulator A
against π such that

AuthF̂
π,A,Φ,Iρ

(x)
c≡ UnAuthπρ,U ,Φ(x). (4)
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Assume π is to realize the functionality G. Since π is deniably secure, there must
exists an ideal process simulator S such that

IDEALG,S,Φ,(I,Iρ)(x)
c≡ AuthF̂

π,A,Φ,Iρ
(x). (5)

Combining (4)(5), we conclude the proof. �

4 Uncontrollable Random Oracle Based Deniable
MT-Authenticator

In this section, we will construct a deniable MT-authenticator from random
oracle. Notice that the original random oracle [4] is completely controlled by a
simulator. Especially, if an oracle query is issued by the simulator himself, he
can first choose the output and then decide the query input. This provides too
much freedom to a simulator. As pointed out by Pass [24], a solution obtained
in this way is not deniable as a real attacker does not have this right at all.
The random oracle we use here is defined by Pass. This object is maintained
by an uncorruptible third party but all the input-output pairs are seen by the
simulator. We call it Uncontrollable Random Oracle (uRO). Deniability makes
sense in this model since whatever computable by a simulator is computable by
an attacker himself.

Pi Pj

m ��
m||Ti(r)||H(r,Pj,Pi,m)��

m||H(r,Pi,Pj ,m) ��

Fig. 2. Our Deniable MT-Authenticator uRO-Auth (Note the complete details appear
in the context)

Now we describe our uRO based MT-authenticator. We call it uRO-Auth MT-
authenticator. Assume Pi wishes to send a message m to Pj . Let Ti be the public-
key of a trapdoor permutation owned by party Pi and Di be the trapdoor for
Ti. Pi first sends m to Pj . Pj then takes r ← {0, 1}κ, computes and sends back
m‖Ti(r)‖H(r, Pj , Pi, m) to Pi. Receiving m‖α‖β, Pi computes r′ = Di(α). If
r′ �=⊥, it checks whether β = H(r′, Pj , Pi, m). If yes, he computes and sends out
m||γ to Pj , where γ = H(r′, Pi, Pj , m). If r′ =⊥ or β is not successfully verified,
he does nothing. Upon receiving m‖γ, Pj checks whether γ = H(r, Pi, Pj , m).
If yes, he generates a local output “(receiv, id, Pi, Pj , m)” for id ← {0, 1}κ;
otherwise, it does nothing. The graphic interpretation of the protocol is presented
in Figure 2.
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Theorem 2. If H is an uRO, then uRO-Auth is a deniable MT-authenticator.

Proof. Keep the notations as in the definition of deniable MT-authenticator.
We need to construct a simulator A1 such that for any PPT machine Z

Pr[Z(G0) = 1] − Pr[Z(G1) = 1] (6)

is negligible. The code of A1 is as follows. First of all, T randomly samples
{(Ti, Di)} and provides {Ti} to both Z and A1. The uncontrollable random
oracle H is assumed to work as follows. It maintains a list LH which is initially
empty. Upon a hash query x, this H-oracle checks whether x was queried before.
If not, it takes y ← {0, 1}κ and adds (x, y) to LH ; otherwise, it takes the existing
record (x, y) from LH . The answer to query x is y. The detailed simulation by A1

is as follows. Essentially, A1 internally simulates ρ based on Iρ(r) and corrupted
Iρ(r)i in order to properly behave in the execution of F̂ . We will use Pi and P̃i

to denote the ith party in the internal simulation of ρ and the external execution
of F̂ .

I1 Whenever A1 receives a message (id, P̃i, P̃j , m) (from F̂) and is asked for a
bit c, he internally simulates Pi to send a flow one message m to Pj in his
simulated uRO-Auth and reports this flow one message to Z (intuitively, let
Z believe he is interacting with real execution of uRO-Auth).

I′1 Whenever A1 was requested to start a session in the name of corrupted Pi to
authenticate a message m to Pj , A1 first in the name of corrupted P̃i sends
(send, P̃j , m) to F̂ . The remaining action of this query is to follow item I1.

I2 Whenever Z requests A1 to deliver a message msg from Pi to a responder
Pj (i.e., Pj plays the authentication receiver in the protocol), A1 does the
following. A1 represents Pj to do so honestly in the simulation of uRO-Auth.
If msg is a flow one message, he reports the simulated flow two message back
to Z; otherwise, msg is flow three message. In this case, if the simulated
Pj accepts, c = 1; c = 0 otherwise. Feedback (c, id) to F̂ , where if some
(id, P̃i, P̃j , m) was received from F̂ but (∗, id) has not been feedback, take
id as in this received tuple; otherwise id ← {0, 1}κ. In any case, if c = 1, A1

simulates Pj to generate an output (receiv, id, Pi, Pj , m). Denote the event
that c = 1 but (id, P̃i, P̃j , m) was never received before by Bad0; denote the
event P̃i is uncorrupted and c = 1 but (c∗, ∗) on m for a bit c∗ was sent to
F̂ by Bad1. Note under ¬Bad0 ∧ ¬Bad1, outputs of Pj and P̃j are identical.

I3 Whenever A1 is asked to deliver a Flow2 message m||α||β to Pi, A1 checks
whether LH has a record ((r′, Pj , Pi, m), β) for some r′ such that α = Ti(r′).
If the check fails, it terminates this session; otherwise (in this case r′ is
unique since Ti is a permutation), asks H-oracle for query (r′, Pi, Pj , m).
Assume the answer is γ. He then simulates to send out m||γ to Pj and
reports this message to Z. This simulation is perfect except when β happens
to be valid while (r′, Pj , Pi, m) satisfying α = Ti(r′) was not queried to H-
oracle (this covers the attack by forging flow two message without query
(r′, Pj , Pi, m) to H-oracle). We note this event by E1. We know that the
number of Flow2 message is upper bounded by run time of Z (denoted by
Rz). Then, Pr[E1] ≤ Rz

2κ .
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I4 Whenever A1 is requested to reveal a session in Pt, A1 represents Pt to do
so honestly. No matter Pt is a sender or receiver of m, we have that before
Flow2 message the session state of Pt is m while after Flow2 message the
session state of Pt is m||r′ Note the above session state is well defined if
event ¬E1 holds. A1 then reports the collected session state back to Z.

I5 When A1 is requested to corrupt Pt, he first obtains Dt from T, then com-
bines all the internal states in sessions in Pt. Finally report them to Z. This
simulation is perfect under event ¬E1.

From the above simulation, under ¬Bad0 ∧ ¬Bad1, the outputs of Pi and P̃i

are exactly identical. In addition, the simulation of A1 differs from the real
execution of uRO-Auth only if E1 occurs. Thus, under ¬Bad0 ∧ ¬Bad1 ∧ ¬E1,
the view of Z is identical to when interacting with G0. So it remains to show
that Pr[Bad0 ∨ Bad1 ∨ E1] is negligible. First, Bad0 occurs if uncorrupted Pj

successfully verifies a flow three message (m, γ) and thus attempts to feedback
a bit (c, id) to F but he never received a (id, P̃i, P̃j , m) from the latter. Bad1

implies two uncorrupted sessions accepts m. Since no uncorrupted sender sends
the same m twice, at lest one session has no sender session. Thus, Bad1 occurs
only if r taken in these two receiver sessions happen to be identical or otherwise
if (r, Pi, Pj , m, γ) with different r are consistent for both sessions (which has
a probability R2

z

2κ , as for at least one session (r, Pi, Pj , m) was not queried to

H-oracle prior to receipt of γ). This gives Pr[Bad1] ≤ 2R2
z

2κ . We now bound
Pr[Bad0 ∧ ¬E1]. Let ε be the probability that a trapdoor permutation adversary
succeeds within run time Rz. We show that Pr[Bad0 ∧ ¬E1] ≤ nRzε + Rz/2k.
Intuitively, a Bad0 ∧ ¬E1 implies Z is able to decrypt the permutation in flow
two in order to forge a valid flow three message. Details will appear in the full
paper.

Since Pr[Bad0 ∨ E1 ∨ Bad1] ≤ Pr[Bad0 ∧ ¬E1] + Pr[E1] + Pr[Bad1] ≤ nRzε +
2Rz+2R2

z

2κ , we have Pr[Z(G1) = 1] − Pr[Z(G0) = 1] ≤ nRzε + 2Rz+2R2
z

2κ too. This
concludes our proof. �

5 Application to Deniable Key Exchange

Key exchange is a communication procedure in which participants establish a
temporarily shared secret key. To evaluate the security, several models are pro-
posed in the literature [1,3,5]. Here we use the model in [18], a slightly revised
version of [1]. In this model, an ideal process is defined. Then a real protocol λ
is constructed. λ is said to be secure if for any adversary against λ, there exists
an adversary against the ideal process such that the global output in these two
worlds are indistinguishable. Here the ideal process as well as the security defini-
tion should be slightly modified to be consistent with that in Section 2.3. In [18],
a F -hybrid secure key exchange protocol Encr-KE was proposed (See Figure 3),
where (G(1κ), E ,D) is a semantically secure public-key encryption scheme. Notice
that this protocol has an empty initialization function. It follows that Encr-KE
is deniably secure in the F -hybrid model in the sense of Definition 1 (note the
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Pi Pj

(eki, dki) ← G(1κ)
(Pi,Pj,s,I,eki) ��

k = Ddki(C)
Output k,

erase other data

k ← K, C = Eeki(k)
state={k},

erase other data

(Pj ,Pi,s,R,C)��

(Pi,Pj,s,ok) �� Output k

Fig. 3. AM-secure Key Exchange Protocol Encr-KE, Details see [18]

original proof needs to be slightly modified in order to cater our formalization
of authenticated-link model).

Denote the key exchange protocol obtained by applying uRO-Auth to Encr-KE
by uROE-KE. From the deniable authenticator theorem, we have

Theorem 3. uROE-KE is a deniably secure key exchange protocol in the UM.
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Abstract. Key privacy is a notion regarding the privacy of the owner of a public
key, which has important applications in building (receiver) anonymous channels,
or privacy-enhanced authentication�signature schemes. Key privacy is considered
to be an orthogonal (i.e., independent), notion from data privacy, while the key
privacy of many public key encryption schemes has not been explored, though
their data privacy is comparatively well understood. In this paper, we study key
privacy of many practical encryption schemes and identify evidences that key pri-
vacy is not comparable to data privacy. We also formalize key privacy in the plain-
text checking attack model and point out some generic transforms to enhance the
key privacy of an encryption scheme. Interestingly, these well-known techniques
have been used to enhance data security. Finally, we give detailed security anal-
yses on the signed hashed-ElGamal encryption [27] in the random oracle model,
of both key privacy and data security against chosen ciphertext attack. Again, this
specific example supports our claim on the relation of two notions.

1 Introduction

Key privacy [4] is a notion regarding receiver anonymity, which captures an adver-
sary’s inability to learn any knowledge about the encryption key used for a given ci-
phertext. It has many applications, e.g., building an anonymous channel providing re-
ceiver anonymity. Also encryption schemes with key privacy are often used in generic
constructions to build privacy-enhanced signature schemes.

Key privacy is considered as a totally di�erent notion from data privacy, e.g., seman-
tic security, and the authors of [4] mentioned that “it is not hard to see that the goals
of data privacy and key privacy are orthogonal.” They then explained this by showing
some concrete encryption schemes which have data privacy but without key privacy,
e.g., RSA-OAEP [8].

On the other hand, however, there exist some facts which seem to imply a strong re-
lationship between key privacy and data privacy. Many natural semantically secure en-
cryption schemes, e.g. ElGamal [12] and Cramer-Shoup [10], already have key privacy.
Furthermore, Hayashi and Tanaka [18] pointed out, a well-known technique providing
strong data privacy, i.e. [15], is also e�ective to upgrade the underlying scheme to have
chosen ciphertext security, though their discussions are limited to plaintext awareness
(PA) [5]. By “plaintext awareness”, informally, it is required that an adversary should
have already known corresponding plaintext before it queries a decryption oracle. PA

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 313–327, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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has been a useful but very strong notion that helps to prove an encryption scheme has
strong data privacy against adaptive chosen ciphertext attack (CCA) [20,25].

In this paper, we reconsider the relationship between key privacy and data privacy
from a di�erent perspective, and confirm that these two notions are actually orthogonal.
However, instead of merely giving counterexamples, we give clear evidence. We show,
some cryptographic techniques for data privacy happen to be able to upgrade key pri-
vacy, but they don’t provide key privacy. Towards this goal, as an intermediate step, we
study key privacy in the plaintext checking attack model and show that orthogonality of
the two notions still holds in this model. Then we prove that (1) key privacy and data
privacy are orthogonal (as pointed out by Bellare et al.), but (2) (natural) techniques
(FO��� [14], REACT [21]) for achieving data privacy against chosen-ciphertext attacks
can also straightforwardly applied to obtain key privacy against the same attack (CCA).
As another strong evidence for these claims, we give a security analysis of the signed
hashed-ElGamal encryption [27] in the random oracle model, for both key privacy and
data privacy. Existence of such schemes especially supports the second claim since this
does not satisfy PA.

1.1 Our Contributions

Previous research [4] gives clear conclusions that the ElGamal encryption has key pri-
vacy against chosen plaintext attack and the Cramer-Shoup encryption has key privacy
against chosen ciphertext attack, secure encryption1, both under the decisional DiÆe-
Hellman (DDH) assumption. However, consider the DHIES [1] or ElGamal-REACT
[21]. To prove data privacy of these schemes, one has to grant the simulator with access
to a DDH oracle, furthermore, the access to the DDH oracle is essential for the proof
[29]. Then it is already not obvious whether these useful schemes have key privacy in a
group where DDH is easy, since no previous work has been done regarding key privacy
under non-decisional versions of DiÆe-Hellman assumptions.

On the other hand, consider some encryption schemes, such as the signed hashed-
ElGamal encryption, in fact, this scheme is not plaintext aware, as we will prove later.
Thus within known techniques, even if one proves the key privacy against chosen plain-
text attack, to investigate key privacy against chosen ciphertext attack, one has to start
from scratch. Then a natural question arises, whether we can do it more intelligently
when dealing with key privacy rather than these brute force treatments? Previous stud-
ies didn’t provide with us ready tools to study these schemes.

Our contribution is three-fold. We first give formal evidences that key privacy is
orthogonal to data privacy. We then elaborate that well-known transforms to acquire
chosen ciphertext security for data privacy, such as FO��� [14] and REACT [22], are
still e�ective to upgrade underlying schemes to have key privacy against chosen cipher-
text attack. Finally, we give a specific security proof with exact security reductions on
the data privacy and key privacy, namely indistinguishability against chosen ciphertext
attack (IND-CCA) security and indistinguishability of keys against chosen ciphertext

1 In fact, these are the only two practical schemes whose key privacy are analyzed besides those
based on RSA assumptions in [4] and those acquired via the second Fujisaki-Okamoto trans-
form [14] in [18].
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attack (IK-CCA) security of the signed hashed-ElGamal encryption. We further show
that the signed hashed-ElGamal encryption is not plaintext aware.

As an independent interest, we formalize the notion of key privacy in the plaintext
checking attack (PCA) model [21]. A plaintext checking attack is a chosen plaintext
attack plus a plaintext checking oracle that decides whether a ciphertext encrypts a
given plaintext.

2 Preliminary

In this section, we review some basic definitions and security notions of public key
encryption and symmetric key encryption, signature schemes, some number theoretic
assumptions as well as variants of the ElGamal encryption.

Notations. Define x �R X as x being uniformly chosen from a finite set X. If A is
an algorithm, x�A means that the output of A is x. When � is not a finite set nor an
algorithm, x�� is an assignment operation. A function f (k) is negligible, if for any
constant c there exists k0 � �, such that f (k) � (1�k)c for any k � k0.

2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms� � (K�E�D). K is the ran-
domized key generation algorithm, which takes a security parameter k, generates a pair
of key (pk� sk), where pk is a public key and sk is a secret key. Denote � and � as the
plaintext and ciphertext spaces, respectively. E is the possibly randomized encryption
algorithm, which takes pk and a plaintext m � � as input, together with internal ran-
dom coin r, and outputs a ciphertext c as the output, denoted as c � E(pk�m; r). D is the
deterministic decryption algorithm, which takes sk and a ciphertext c as input, output
the corresponding m, or “�” if decryption algorithm fails, denoted as m � D(sk� c). We
require that� meets standard correctness requirement, namely, for all (pk� sk) � K(1k),
and all m � �, D(sk�E(pk�m; r)) � m.

Indistinguishability. The widely accepted security notion for public key encryp-
tion is indistinguishability against adaptive chosen ciphertext attack (IND-CCA)
[16,11,20,25,5].

Definition 1 (IND-CCA). Let � � (K�E�D) be a public key encryption scheme. Let �
be an adversary. Let�� be a decryption oracle that replies the corresponding plaintext
upon a query on ciphertext c. We define the advantage of � as

Ad�ind-cca
��� (k) � Pr

�
b� � b

(pk� sk) � K(1k); (m0�m1� s) � ���(pk);
b �R 	0� 1
; c� � E(pk�mb); b� � ���(c�� s)

�
�

1
2

where � is forbidden to query c� at ��. A scheme is (�� t)-IND-CCA secure if any
adversary with running time t, has advantage at most � in winning the above game.
Furthermore, we say a public key encryption scheme is IND-CCA secure if for any PPT
adversary, � is negligible.
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Key Privacy. We now review the security notion for key privacy, i.e., indistinguisha-
bility of keys against adaptive chosen ciphertext attack (IK-CCA) [4].

Definition 2 (IK-CCA). Let � � (K�E�D) be a public key encryption scheme. Let � be
an adversary. Let �� be a decryption oracle that replies the corresponding plaintext
upon a query on ciphertext c. We define the advantage of � as

Ad�ik-cca
��� (k) � Pr

����������b� � b
(pk0� sk0) � K(1k); (pk1� sk1) � K(1k);
(m�� s) � ���(pk0� pk1); b �R 	0� 1
;

c� � E(pkb�m�); b� � ���(c�� s)

���������� �
1
2

where� is forbidden to query c� on��. A scheme is (�� t)-IK-CCA secure if any adver-
sary with running time t, has advantage at most � in winning the above game. Further-
more, we say a public key encryption scheme is IK-CCA secure if for any PPT adversary,
� is negligible.

For indistinguishability against chosen plaintext attack (IK-CPA), everything will be the
same to the above experiment, except that � is not given access to ��.

Plaintext Awareness. Informally, plaintext awareness [7,5] states an intuition that if an
adversary can produce a valid ciphertext, it should “have already known” the plaintext.
Plaintext awareness (PA) is another important notion regarding encryption schemes se-
cure against chosen ciphertext attack (CCA) and many encryption schemes (especially
those with random oracles) are built on this idea. On the other hand, there are some
attempts to formalize the notion in the standard model, e.g. [19,6], but these definitions
seem quite artificial. Moreover, PA is more like a means rather than a goal, since many
useful encryption schemes are not plaintext aware [13].

To formulate the intuition, an adversary � is given a public key pk and access to a
random oracle. Additionally, it is provided with a ciphertext generation oracle ��(pk)
which with input pk, randomly chooses m � �, and outputs a ciphertext �. To be
plaintext aware, � should necessarily infer m from � and oracle queries to .

Definition 3 (PA). Let � � (K�E�D) be a public key encryption scheme, let 	 be the set
of all corresponding random functions, let� be an adversary, U be a plaintext extractor
and  be a random oracle. � is additionally given access to an ciphertext generation
oracle ��(pk). Denote the list � that contains all the random oracle queries from � to
 and the list � that contains all the replies by ��(pk). We require the queries of � to
��(pk) is not included in � and interaction between ��(pk) and  is not included in �.
For any k � �, define

S ucpa
����U(k) � Pr

�
U(�� �� �� pk) � D�(sk� �)

 �R 	; (pk� sk) � K(1k);
(�� �� �) � ����

�(pk)

�

The above definition is only defined in the single public key model, it is easily
generalized to multiparty setting by modifying the key generation and oracle access
for� in the above experiment, since the code of the extractor U can be used for multiple
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instances of the same encryption algorithm. A recent work [18] did this in more details,
particularly with the FO������ transform [15].

Plaintext Checking Attack (PCA). Okamoto and Pointcheval [21] defined this attack
model called plaintext checking attack (PCA), potentially motivated by an interesting
property of some elliptic curves. In such an attack model, in addition to the public key,
the adversary is given access to a plaintext checking oracle ���, which upon inputs of
plaintext�ciphertext pair (m� c) and a public key pk, returns “���” if D(sk� c) � m and
“��” otherwise. This attack model is important and the security proof of many useful
encryption scheme is based on this formulation [21,1]. We note that in a single public
key setting, usually, the public key pk need not to be part of the inputs to ���.

We review here the security notion of onewaysness of data privacy against plaintext
checking attack. Informally, onewayness means that it is computationally infeasible to
“undo” the encryption without knowing the secret key.

Definition 4 (OW-PCA). Let � � (K�E�D) be a public key encryption scheme. Let
� be an adversary, and ��� be a plaintext checking oracle, We define the success
probability of � as

S uccow-pca
���

(k) � Pr

�
m� � m� (pk� sk) �K(1k); m� �R�;

c� �E(pk�m�); m� ��	
�(c�� pk)

�

A scheme is (�� t)-OW-PCA secure if any adversary with running time t, succeeds with
probability at most � in winning the above game. Furthermore, we say a public key
encryption scheme is OW-PCA secure if for any PPT adversary, � is negligible.

Remark 1. An important previous belief on PCA is that indistinguishability is mean-
ingless in this model, whereas onewayness can be meaningful. To see this, since the
adversary can query the plaintext checking oracle with its target ciphertext and one of
its chosen message, thus easily breaks the indistinguishability of the scheme. However,
we believe if ruling out this trivial attack, one can still define indistinguishability of
data privacy in plaintext in the PCA model. The formulation of the security is quite
straightforward and we omit here.

2.2 Digital Signature

A signature scheme 
 consists of three algorithms 
 � (G�S�V). The randomized
key generation algorithm G takes a security parameter k, and generates signing key
si�k and verification key �k. The possibly randomized signing algorithm S takes as
inputs si�k and m � 	0� 1
�, where m is a message, and outputs a signature �. The de-
terministic verification algorithm V takes as inputs �k, m and �, and outputs a sym-
bol  � 	�		�
�� ���	�
, denoted as  � V(�k�m� �). We require that for all
(si�k� �k)(� G(1k)), all m � 	0� 1
�, �		�
� � V(�k�m�S(si�k�m)).

Unforgeability. Here, we mainly consider strong unforgeability, i.e., sUF-CMA [3],
rather than the weaker version (UF-CMA) [17]. Let 
 � (G�S�V) be a signature scheme.
Let � and k be an adversary and a security parameter, respectively.
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Definition 5 (sUF-CMA). Denote 	(�i�mi)
qs as the set contains all qs pairs of queries
and replies between� and��, where �� is a signing oracle which for a given message
m, returns a corresponding signature �. The success probability of � is defined as

S uccsuf-cma
��� (k) � Pr

�
V(�k�m�� ��) � �		�
� (�k� si�k) � Gen(1k);
�(���m�) � 	(�i�mi)
qs (���m�) � ���(�k)

�
�

We say 
 is (t� �)-sUF-CMA secure if for any� in time bound t,�’s success probability
is at most �. Especially, we say that 
 is sUF-CMA secure if � is negligible.

2.3 Number Theoretic Assumptions

We briefly review the discrete logarithm (DL), the computational DiÆe-Hellman
(CDH), the decisional DiÆe-Hellman (DDH), and the gap DiÆe-Hellman (GDH) as-
sumptions.

Definition 6 (Assumptions). Let � be a cyclic group of order q, where q is a large
prime, let � be a generator of � and a� b� c �R �

�
q. The (t� �)-DL assumption holds in

� if for given (�� �) � �2, no t-time algorithm finds x � �q such that � � �x with prob-
ability at least �. The (t� �)-CDH assumption holds in � if for given (�� �a� �b) � �3, no
t-time algorithm finds �ab with probability at least �. The (t� �)-DDH assumption holds
in� if no t-time algorithm has with at least � advantage, where for an algorithm�,�’s
advantage �� is defined as �� � 1

2 � Pr[�(�� �a� �b� �ab) � 1] � Pr[�(�� �a� �b� �c) � 1]�.
The (t� �)-GDH assumption [22] holds in � if for given (�� �a� �b) � �3, no t-time al-
gorithm with polynomial bounded number of accesses to � finds �ab with probability at
least �, where � is a decision oracle which for a given (�� �a� �b� T ) � �4, returns 1 if
T � �ab or 0 otherwise.

2.4 Some Variants of ElGamal Encryption

The signed ElGamal encryption [30,27] was proposed as a highly secure upgrade to the
plain ElGamal encryption [12], which combines the ElGamal encryption with Schnorr
signature [26]. Because of its good homomorphic property, the signed ElGamal en-
cryption is widely used to construct threshold encryptions, with various applications
like mix-net and auctions schemes. On the other hand, it has been a long-standing open
problem to prove the security of the signed ElGamal encryption scheme based on rea-
sonable assumptions. Jacobsson and Schnorr provided a security analysis of the signed
ElGamal assuming both random oracles [8] and generic groups [28]. Another natural
generalized version of the signed ElGamal was proposed in [27], namely the signed
hashed-ElGamal, however, even the data privacy of this variant has not been well stud-
ied except brief discussions mentioned in [27,2]. We recall these schemes in Table 1.
Let � be a group of prime order q, and let � � � be a generator. Denote the public key
as pk and the secret key as sk.

3 Key Privacy in the PCA Model

We sketch the intuition of the formalization before define key privacy in the PCA model,
which is the first result of this work. We also give discussions on its reasonability,
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Table 1. Some variants of the ElGamal encryption

Plain ElGamal Hashed-ElGamal Signed Hashed-ElGamal

K

x �R �q, � � �x.
Public key:
pk � �� �, se-
cret key: sk � x.
The message space
is �.

Let H : � � �0� 1�� be a
hash function. Choose x �R

�q, � � �x . Public key:
pk � (�� �� H), Secret key:
sk � x. The message space
is �0� 1��.

x �R �q, � � �x. Let H1 : � �

�0� 1�� and H2 : �2 � �0� 1�� � �q be
two hash functions. Public key: pk �

(�� �� H1� H2), Secret key: sk � x. The
message space is �0� 1��.

E

For m � �, r �R

�q, c1 � �r , c2 �

m � �r. Ciphertext:
c � (c1� c2).

For m � �0� 1��, r �R �q,
c1 � �r , c2 � m � H(�r). Ci-
phertext: c � (c1� c2).

For m � �0� 1��, r� s �R �q, c1 � �r ,
c2 � m � H1(�r). d � H2(�s� c1� c2) and
z � s � rd. Ciphertext: c � (c1� c2� d� z).

D
For c� � (c�1� c

�

2),
output m� � c�2�c�1

x

as the plaintext.

For c� � (c�1� c�2), output m� �

c2 � H(c�1
x) as the plaintext.

For c� � (c�1� c
�

2� d
�� z�), test if

H2(�zc�d�

1 � c�1� c
�

2) � d�. If ‘���’,
output m� � c�2 � H(c�1

x) as the plaintext;
otherwise output “	”.

because this attack model appears to be stronger than CPA and weaker than CCA in the
sense of key privacy. In the end of this session, we further give further evidence that key
privacy is orthogonal to data privacy.

Recall that the plaintext checking attack was only defined in the single public key
setting, we first has to extend it to multiple public key setting and give the corresponding
definition. The key observation is that a query to the plaintext checking oracle should be
paired with a public key. In fact, this also fits the single public key model. Since there is
only one public key, the public key is usually omitted in each plaintext checking query.

On the other hand, to make the indistinguishability meaningful in PCA model, for
the target ciphertext queried with one of the chosen public keys, the plaintext checking
oracle returns a special symbol “�” (cf. replayable chosen ciphertext attack RCCA [9]).
With such limitation to an oracle access, the plaintext checking oracle may no longer
trivially leak information regarding the public key.

Definition 7 (IK-PCA). Let � � (K�E�D) be a public key encryption scheme. Let �
be an adversary, and ��� be a plaintext checking oracle with limitations as discussed
above. We define the advantage of � as

Ad�ik-pca
���

(k) � Pr

����������b� � b
(pk0� sk0) � K(1k); (pk1� sk1) � K(1k);
(m�� s) � �	
�(pk0� pk1); b �R 	0� 1
;

c� � E(pkb�m�); b� � �	
�(s)

���������� �
1
2

A scheme is (�� t)-IK-PCA secure if any adversary with running time t, has advantage at
most � in winning the above game. Furthermore, we say a public key encryption scheme
is IK-PCA secure if for any PPT adversary, � is negligible.

For the security goal of key privacy, an adversary will not necessarily gain any direct
“help” via its access to a plaintext checking oracle, thus plaintext checking attack (PCA)
may be meaningful in this setting. However, the plaintext to query the plaintext checking
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oracle may depend on the public key, thus it may be a stronger attack even in the sense
of key privacy. Based on above discussions we prove the following theorem:

Theorem 1. There is a public key encryption scheme that is IK-CPA secure but not
IK-PCA secure.

Proof. Consider the plain ElGamal encryption. It is known from [4] that under the DDH
assumption, it is IK-CPA. It is suÆcient to show it is not IK-PCA.

To see this, we construct an IK-PCA adversary that defeats the ElGamal encryption.
After setups, the IK-PCA adversary chooses m� �R �, and submits to the challenger.
The challenger chooses b �R 	0� 1
, and returns the challenge ciphertext c� � (c1� c2) �
(�r�m� � �r

b), where r �R �q. Now the adversary just needs to query (2 � m�� c�) with
c� � (c1� 2 � c2) to the plaintext checking oracle on public key �1. If b � 1, the pair will
be always valid and 0 otherwise, so the adversary always breaks the indistinguishability
of keys of the scheme. ��

One may argue that in the above attack we are tricky because if we assume the existence
of plaintext checking oracle, the plain ElGamal encryption no longer has data privacy.
However, we are considering key privacy, and a scheme with key privacy can in fact
has no data privacy at all. To show that IK-PCA is a proper notion which lies between
IK-CPA and IK-CCA, we present the following theorem:

Theorem 2. There is a public key encryption scheme that is IK-PCA secure, but not
IK-CCA secure.

Proof. Consider the hashed-ElGamal encryption. We claim it is not IK-CCA secure.
To see this, we construct an IK-CCA adversary as follows: After setup, the adversary
is given the public key pk0 � (�� �0�H1) and pk1 � (�� �1�H2). 2 The adversary then
chooses m� �R 	0� 1
�, and submits it to the challenger. The challenger chooses b �R

	0� 1
 and returns c� � (c1� c2) � (�r�m� � Hb(�r
b)). Now the adversary just need to

query (c�� pk1) to the decryption oracle, where c� � (c1� c2 � Æ) and Æ �R 	0� 1
�. If the
decryption oracle returns m� � Æ, then the adversary output “1”; otherwise “0”.

It is easy to verify that c� is a valid ciphertext according to pkb and m��Æ. Therefore,
we conclude the adversary guess the value of b with probability “1”.

Next, we shall prove the hashed-ElGamal is IK-PCA under gap DiÆe-Hellman
(GDH) assumption. Here for simplicity, we consider the case that H1 and H2 are the
same random oracle. The basic idea is that since the information of the public key can
only be accessed via hash queries, thus any adversary that breaks the IK-PCA security of
the scheme must have queried to the random oracle regarding the chosen public key. On
the other hand, given a GDH problem instance, utilizing the random self-reducibility of
the GDH problem, the simulator can create two independent public keys that distributes
identically as the real attack.

We write above idea in more details. A GDH adversary � can be constructed as
follows: for a given GDH instance (A � �� B � �a�C � �b), where a� b are unknown,�
then interacts with the IK-PCA adversary � as follows:

2 H1 and H2 can be of di�erent implementations, as long as their input and output domain are
the same.
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� gives pk0 � (A� Br0�H) and pk1 � (A� Br1�H) to � as two public keys, where
r0� r1 �R �q and H is a random oracle controlled by �. Since r0 and r1 are uniformly
distributed in �q, then the simulated public keys pk0 and pk1 are indistinguishable from
the real game where pk0 � (A� �0�H) and pk1 � (A� �1�H). Moreover,� simulates the
following oracles:

Random Oracle queries: �maintains a �-list with two entries (hi�Hi). Where a query
on hi comes, � queries its own decision oracle whether (A� B� �Æ� hi) (Æ � 0� 1) is
a DiÆe-Hellman tuple. If “yes”, � stops simulation and output h1�rÆ

i as its answer.
Otherwise, � searches �-list, if there exists such an entry, � returns the corre-
sponding Hi. Otherwise, � then chooses Hi �R 	0� 1
�, adds (hi�Hi) to the list and
returns Hi to �.

Plaintext Checking queries: On a query (m� c) on public key pkÆ (Æ � 	0� 1
), where
c � (c1� c2), � searches in the �-list whether there exists an entry (hi�Hi) such
that (�� c1� �Æ� hi) is a DiÆe-Hellman tuple (this can be done via querying its own
decision oracle) and c2 � m � Hi. If both of above hold, return “���”. Otherwise
“��”.

Challenge query: When � signals a chosen message m� to �, on which it would like
to be challenged,� chooses a bit �R 	0� 1
 and R �R 	0� 1
�, set c� � (B�m� R)
and returns the challenge c� to �.

Since the information of  can only be gained by querying �abr� to the random ora-
cle. From above descriptions one easily verifies that � answers the random oracle, the
plaintext checking and the challenge queries perfectly. Then �’s success probability is
exactly the same as the real attack. Combining all above discussions, � succeeds with
probability at least ��. ��

Furthermore, we would like to present an important claim of our paper, namely, data
privacy and key privacy are totally unrelated.

Theorem 3. There is a public key encryption scheme that is IK-ATK secure but not
IND-ATK secure; there is a public key encryption scheme that is IND-ATK secure but
not IK-ATK secure, where ATK � 	CPA�CCA
.

Proof. We only give sketch of the proof, since it is not diÆcult to write a long but
more precise (though tedious) one. To see the first half of the statement, given an en-
cryption scheme with both IND-ATK and IK-ATK security (in short IND-IK-ATK), e.g.,
the Cramer-Shoup [10], we can modify it to an IK-ATK secure encryption yet without
data privacy. All will remain the same, except that for the encryption algorithm, we ap-
pend the plaintext m to the ciphertext c. Now it is easy to see, the modified encryption
scheme is not IND-ATK. On the other hand, since the new encryption algorithm does
not produce ciphertexts that give more information on the public key than the original
encryption scheme, it is still IK-ATK secure.

To see second half of the statement, we can do similar as above: for an IND-IK-
ATK secure encryption scheme, just append the public key to the ciphertext. It is easily
verified then this modified encryption scheme has no key privacy but is still IND-ATK
secure. ��
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4 Generic Transforms for Key Privacy

We here also discuss some generic transforms to enhance the chosen ciphertext security
of an encryption scheme regarding key privacy. Informally and briefly speaking, for an
IK-CPA secure encryption, to enhance it to an IK-CCA secure one, one just needs to
additionally simulate the decryption oracle. This is quite diÆcult in the standard model,
since the simulator has to do decryptions without the secret keys. The classic Naor-
Yung paradigm is sure to apply here, as long as the new components introduced to the
encryption scheme do not leak any information of the public key.

In the random oracle model, however, this can be done easily and eÆciently. A re-
cent work formulates the plaintext awareness in the two public key model and use the
plaintext extractor provided via plaintext awareness to simulate the decryption oracle.
Based on this idea, some famous generic transforms to enhance data privacy, like (two)
Fujisaki-Okamoto (FO) [14,15] and REACT [21] transforms are all capable to construct
a plaintext extractor, which can be used to for simulation of the decryption oracle.

Recall the construction of such plaintext extractors in the original papers. It is not
diÆcult to rewrite the proofs for the two public key setting just like what has been done
in [18] via the FO������ transform [15]. In fact, the theorem attests exactly our claim
that key privacy is unrelated to chosen ciphertext security.

Theorem 4. The FO��� and REACT transform are both capable to enhance IK-CPA
security to IK-CCA security.

For the limit of space, some related definitions and the detailed proof is left to the full
version of this paper [31]. Theorem 4 tells that FO��� and REACT are both generic
for key privacy enhancement, however, it is worth noting that “unnatural” implementa-
tions may still leak information of keys. In fact, our proofs require the symmetric key
encryption should have key privacy. However, unlike public key encryption, the seman-
tic security of implies its key privacy. For completeness, we review the model and the
notion of key privacy for symmetric key encryption in Appendix A.

5 Analysis on Signed Hashed-ElGamal Encryption

In this section we give analyses on data privacy and key privacy of the signed hashed-
ElGamal encryption. Since the data privacy (IND-CCA) has been studied [27,2] before,
however, without details, we give a brief but much specific proof. We focus on non-
plaintext awareness and the key privacy properties of the scheme, namely we prove the
following theorem.

Theorem 5. The signed hashed-ElGamal is IND-CCA and IK-CCA secure and not PA.

We split the proof into three parts, each shown by a lemma. The theorem then follows
Lemma 1, 2 and 3. For data privacy, we first review a previous result on the security of
the Schnorr signature in Proposition 1. Since the GDH assumption implies the DL as-
sumption, combining Proposition 1 and Lemma 1, we conclude signed hashed-ElGamal
is secure under the GDH assumption.
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Proposition 1. ([24]) The Schnorr Signature is (�s� t1)-sUF-CMA secure, assuming the
discrete logarithm problem in G is (120686qht1� 10(qs � 1)(qs � qh)�q)-hard, where qh

is number of random oracle queries, qs is the number of signing queries and q is the
order of subgroup G.

Lemma 1. The signed hashed-ElGamal is (� � �s� (t1 � t2 � O(k)))-IND-CCA secure,
assuming the (�� t2)-GDH assumptions holds and the Schnorr Signature is (�s� t1)-sUF-
CMA secure.

Proof Ideas. To show a more general result, we present the following encryption
scheme. For the hashed-ElGamal encryption, we append to it an (�s� 1� ts)-sUF-CMA
secure signature scheme. The Schnorr signature satisfies such security dentition ac-
cording to [23]. We describe the algorithms of such encryption scheme. The signature
scheme used in signed hashed-ElGamal is a special case by using Schnorr Signature
[26] and shown in Figure 1.

The key generation just runs the key generation algorithm of the hashed-ElGamal
encryption, the public key and secret key are (pk� sk) as before. That is, pk � (�� ��H)
and sk � (x�H), such that � � �x. We note that additional hash functions may be used,
then also include the hash functions into the public key.

The encryption algorithm first calls the key generation algorithm of the signature
scheme, generates a (one-time) verification�signing key pair (�k� sk). Then it does just as
the hash ElGamal encryption, except that it also bundles the public key of the signature
scheme into the a hash function, namely, it produces c � (c1� c2), where c1 � �r is
the same as before, however, c2 � H(�k� �r). Then a signature � is produced on c. The
ciphertext is (c� �� �k). Note that if we use Schnorr signature, then we get a very eÆcient
scheme: the verification key is not necessary to be explicitly included into the ciphertext,
since it is exactly c1. In following proofs, we will assume �k is not compressible.

The decryption algorithm first verifies the signature � is a correct signature on c ac-
cording to �k. If this fails, it halts and output “�”. Otherwise, it proceeds to undo the
hashed-ElGamal encryption using the decryption algorithm of hashed-ElGamal encryp-
tion as shown in Table 1.

Proof. We next show the above encryption scheme is (���s� t1�t2�O(k))-IND-CCA se-
cure, if the (�� q� t1)-GDH assumption holds and the signature scheme used is (�s� 1� t2)-
sUF-CMA secure. Towards the claim, suppose a GDH solver � interacts with an IND-
CCA adversary � as follows.

Key Generation: � receives its GDH problem instance (A � �� B � �a�C � �b), and
sets � � Cr� and pk � (�� ��H), where r� �R 	0� 1
� and H is a random oracle
controlled by �. � gives pk to �.

Random Oracle queries: � maintains a �-list with four entries (�i� c1i� hi�Hi). Where
a query comes for (�i� hi),� searches �-list, if there exists such an entry (�i� �� hi�Hi),
where “�” means “not of interest”, � returns the corresponding Hi. Otherwise, �
chooses Hi �R 	0� 1
� and adds (�i� c1i� hi�Hi) to the list. Additionally, if there exists
an entry with (�i� c1i� ��Hi) in the list, where �mains empty entry, and (A� c1i�Cr� � hi)
is a DiÆe-Hellman tuple, � completes the entry with (�i� c1i� hi�Hi). In both cases,
� returns Hi to �.
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Decryption queries: On a decryption query on (c� �� �k), � first verifies � is a valid
signature on c under �k. If this fails, � simply returns “�”. Otherwise, � searches
for the �-list. � splits c � (c1� c2), if there exists an entry with (�k� c1� hi�Hi), such
that (�� c1� �� hi) is a DH-tuple, � then returns Hi � c2 as the plaintext. Otherwise,
if (�k� c1� hi) is not queried before, � chooses Hi �R 	0� 1
� adds (�k� c1i� ��Hi) to
�-list and returns Hi � c2 as the plaintext.

Challenge query: When � outputs a pair of chosen message (m0�m1), � chooses
 �R 	0� 1
 and R� �R 	0� 1
� and sets c� � (B�m� � R). � also queries its own
signing oracle on c� under �k�. After the signing oracle�s returns a signature�� on
c�, � forwards (c�� ��� �k�) to � as the challenge ciphertext. Additionally, � adds
(�k�� B� ��R) to �-list.

After � submits a guess on , � searches �-list for (�� B� hi� �) (recall � means “not of
interest”), such that (A� B�C� h1�r�

i ) is a DiÆe-Hellman tuple. If there does not exist such
a tuple, � chooses D �R � and halts.

From above descriptions, we can verify the simulations of random oracle, decryption
oracle and challenge oracle are perfect. Since the information of  is perfectly hiding
without querying �abr� to the random oracle. Then if� gainst any advantage on guessing
 correctly, � must have queried hi � �abr� already, except that � queries a decryption
query on (c�� ��) with �� � ��, where �� is a valid signature on c� regarding �k�, how-
ever, in this case, � has already broken the signature scheme, thus this event happens at
most �s. Note that in above proof we only require � queries the signing oracle exactly
once. This proves our claim on success probability of �. The running time of � is ver-
ifiable from the above descriptions. ��

Lemma 2. The signed hashed-ElGamal is (� � �s� (t1 � t2 � O(k)))-IK-CCA secure,
assuming the (�� q� t2)-GDH assumptions holds and the Schnorr signature is (�s� t1)-
sUF-CMA secure.

Proof Ideas. The idea here works as a combination of those of IK-PCA security of
hashed-ElGamal and IND-CCA of signed hashed-ElGamal shown before. Basically �
randomizes its GDH challenge into two public keys and interacts with a public key
distinguisher �. As the signature scheme does not leak information on the public key,
the only way to distinguish which public key was used to compute the challenge is
by directly querying some necessary information at the random oracle. Thus � can
successfully extracts the answer for its own GDH problem.

Proof. � interacts with � in the following manner:

Key Generation: � receives its GDH problem instance (A � �� B � �a�C � �b). �
sets pk0 � (��Cr�0 �H) and pk1 � (��Cr�1�H), where r�0� r

�
1 �R 	0� 1
� and H is a

random oracle controlled by � and gives pk0 and pk1 to �.
Random Oracle queries: � maintains a �-list with four entries (�i� c1i� hi�Hi). Where

a query comes for (�i� hi), � searches �-list, if there exists such an entry with
(�i� �� hi�Hi), � returns the corresponding Hi. Again “�” means “not of interest”.
Otherwise, � chooses Hi �R 	0� 1
� and adds (�i� �� hi�Hi) to the list. Here � mean
empty. Additionally, if there exists an entry with (�i� c1i� ��Hi) in the list, where �
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mains empty entry, and (A� c1i�Cr�0 � hi) or (A� c1i�Cr�1 � hi) is a DiÆe-Hellman tuple,
� completes the entry with (�i� c1i� hi�Hi). In both cases, � returns Hi to �.

Decryption queries: On a decryption query on (c� �� �k) regarding pkÆ (Æ � 	0� 1
), �
first verifies � is a valid signature on c under �k. If this fails, � simply returns “�”.
Otherwise,� splits ci � (c1i� c2i), searches in the �-list. If there exists an entry with
(�k� c1i� hi�Hi), such that (A� c1i�Cr�

Æ � hi) is a DH-tuple,� then returns Hi � c2 as the
plaintext. Otherwise, if (�k� c1i� hi) is not queried before, � chooses Hi �R 	0� 1
�,
adds (�k� c1i� ��Hi) to �-list and returns Hi � c2 as the plaintext.

Challenge query: When � outputs a chosen message m�, � chooses  �R 	0� 1
 and
R� �R 	0� 1
� and sets c� � (B�m � R). � also queries its own signing oracle on
c� under �k�. After the signing oracle �s returns a signature �� on c�, � forwards
(c�� ��� �k�) to � as the challenge ciphertext.

After � submits a guess on , � searches �-list for (�� B� hi� �), such that (A� B�C�

h
1�r�

�

i ) is a DiÆe-Hellman tuple. If there does not exist such a tuple, � returns D �R �

and halts.
With a similar discussion as before, we remark that the simulations of random oracle,

decryption oracle and challenge oracle are again perfect. However, � may not utilize
the hash queries submitted by �, if (c�� ��� �k�) is submitted for decryption query and
�� is a valid signature on c� under verification key �k�. However, this event happens
with probability at most �s, because the signature scheme is (�s� t2)-sUF-CMA secure.
(In above proof we only require � queries the signing oracle exactly once.) Thus �
succeeds solving the GDH problem with probability at least � � �s. The running time of
� is (t1 � t2 � O(k)), which can be verified from the description of �. ��

Lemma 3. The signed hashed-ElGamal is not PA.

Proof Sketch. We give the idea of the proof here. An adversary� can produce a valid
ciphertext (c� �) � (c1� c2� �) where c1 � �r and c2 �R 	0� 1
�, � is a valid signature
on c. Especially, � construct the ciphertext without querying (�k� c1� �) to the random
oracle H. To extract the plaintext m, even if the plaintext extractor has all the random
oracle queries of�, since (�k� c1� �) hasn’t been queried before, if the plaintext extractor
can be constructed, i.e., DH((sk� c1� c2� �) can be constructed on the transcript given, but
the existence of this knowledge extractor will contradicts the unpredictability of H.

Proof. For the signed hashed-ElGamal encryption, if the plaintext extractor can be con-
structed, that is, we can set H(�) to be m�c2. As mentioned above, H is a random oracle
whose output is uniformly random, and c2 is fixed already, thus m can only be extracted
with probability at most 2��, which is negligible. contradicting the definition of plain-
text extractor. ��
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A Symmetric Key Encryption

A (deterministic) symmetric key encryption (SKE) consists of two algorithms � �

(Enc�Dec). The encryption algorithm Enc with input a secret key � � 	0� 1
�0 and a
plaintext m � 	0� 1
�1 , outputs a ciphertext c, denoted as c � Enc(��m). The decryption
algorithm Dec with input � � 	0� 1
�0 and the ciphertext c, outputs a plaintext m �

	0� 1
�1 , denoted as m � Dec(�� c).

Definition 8 (Key Privacy for SKE). Let � � (Enc�Dec) be a SKE scheme. Let �
be an adversary and �� be an encryption oracle that on a plaintext query (�� ) where
 � 	0� 1
, returns a corresponding ciphertext c� under the secret key sk�. Denote the
advantage of � in the following game:

Ad�ik-cpa
���

(k) � Pr

����������b� � b
�0 �R 	0� 1
�0 ;�1 �R 	0� 1
�0 ;

(m�� s) ����(1�1); b �R 	0� 1
;
c� �Enc(�b�m�); b� ����(c�� s)

���������� �
1
2

� is (�� t)-IK-CPA secure if any adversary with running time t, gains advantage at most
� in winning the above game. Furthermore, we say a symmetric key encryption scheme
is IK-CPA secure if for any PPT adversary, � is negligible.

For a deterministic symmetric key encryption scheme, key privacy is quite related to
the length of the secret key rather than the space of the randomness for a public key
encryption scheme.

http://staff.aist.go.jp/r-zhang/research/papers.html#KeyPrivacy
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Abstract. We formalize a generic method of constructing efficient group
signatures, specifically, we define new notions of unlinkable randomizable
signature, indirectly signable signature and Σ-protocol friendly signature.

We conclude that designing efficient secure group signatures can be
boiled down to designing ordinary signatures satisfying the above three
properties, which is supported by observations that almost all currently
known secure efficient group signatures have alternative constructions in
this line without deteriorating the efficiency.
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1 Introduction

In brief, a group signature scheme is composed of the following steps: (1) GM,
the group manager, along with some third trusted party, chooses the security
parameters as well as a group secret key and a group public key. (2) Any group
member candidate is required to choose his member secret key, and run an in-
teractive protocol with GM to join in the group, during which GM generates
a signature on the member secret key blindly, i.e., not knowing the secret key
value, the signature is also called member certificate. (3) Any group member can
generate group signatures using his group signing key which includes member
secret key and member certificate.

A common paradigm of constructing group signatures [1,2,3,4] is as follows:
GM adopts an ordinary signature scheme to generate membership certificate for
group members, i.e., sign on some secret key known only to members. The group
signature is in fact a non-interactive zero-knowledge proof of knowledge of mem-
ber certificate and member secret key, transformed in Fiat-Shamir’s heuristic
method [5] from interactive proofs.
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Recently, a kind of randomizable signatures (given a signature of a message,
someone other than the signer can get a new signature with respect to the same
message) have been adopted in some schemes [6,7,8,9] to generate membership
certificates. The following construction of group signature has been widely recog-
nized: to sign on a message, a member firstly randomizes his member certificate,
then generates a proof of knowledge of member secret key and part of the ran-
domized member certificate. This method might result in more efficient group
signature because the relation between member secret key and other items is
much simplified due to concealing only part of the randomized member certifi-
cate instead of concealing it all in previous constructions.

We formalize the characteristics of randomizable signatures that are required
to build secure efficient group signatures. Specifically, we define new notions
of unlinkable randomizable signature, indirectly signable signature, Σ-protocol
friendly signature.

We conclude that designing efficient secure group signatures can be boiled
down to designing ordinary signatures satisfying the above three properties,
which is supported by observations that almost all currently known secure ef-
ficient group signatures (except [10]) have alternative constructions in this line
without deteriorating the efficiency, i.e., the signature schemes used to generate
member certificates in the group signature can be modified into randomizable
signatures with unlinkability, indirectly signability and Σ-protocol friendliness.
For example, the scheme in [7] can be seen as the randomizable version of the
well known ACJT scheme [4], satisfying the above three characteristics.

Apart from pointing out the obvious alternative constructions of some current
group signatures, we propose the more complicated alternative constructions of
others. They include the alternative construction of the scheme [11] from ran-
domizable signatures (denoted as NSN04*). We propose two new randomizable
signatures (denoted Wat05+, ZL06+) resulting in new efficient group signatures.
We also slightly improve the scheme with concurrent join [12] by replacing the
member certificate generation signature with an randomizable signature (de-
noted as BBS04+).

Organization. The new notions of unlinkable randomizable signature, indi-
rectly signable signature, Σ-protocol friendly signature are presented in Section
3, where you can also find the new randomizable signatures satisfying the above
three properties: NSN04*, Wat05+, ZL06+. A generic construction of group sig-
natures from the above randomizable signature is described in Section 4.1 as
well as its security analysis (Section 4.2). We present the slight improvement to
the group signature with concurrent join [12] in Section 4.3.

2 Preliminary

Notations. If (P, V ) is a non-interactive proof for relation ρ, P (x, w, R) denotes
the operation of generating a proof for (x, w) ∈ ρ under the common reference
string R, V (x, π, R) denotes the operation of verifying a proof π.
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Definition 1 (wUF-ATK[13]). A signature scheme DS=(Gen, Sig, Ver) is
wUF-ATK secure (ATK ∈ {CMA, ACMA}), i.e., weakly unforgeable against
ATK attack, if for every probabilistic polynomial-time algorithm A, it holds that

AdvwUF−ATK
DS,A = Pr{(pk, sk)←Gen(1k), (m, σ)←AOSig(sk,.)(pk, ATK) :

V er(pk, m, σ) = 1, m /∈ Q} < ε(k)

where ε(k) is a negligible function, the probability is taken over the coin tosses
of algorithms Gen, Sig and A. Q denotes the set of queries to oracle OSig(sk,.)

made by A.

3 The New Notions

3.1 Unlinkable Randomizable Signature (URS)

Definition 2 (Randomizable Signature). A randomizable signature scheme
is a digital signature scheme that has an efficient signature randomization algo-
rithm Rnd besides algorithms (Gen,Sig,Ver):

– Gen: N→K: a probabilistic polynomial-time algorithm with input k (called
security parameter), output (pk, sk) ∈ K, where K is a finite set of possible
keys; pk is called public key, sk is secret key kept to the signer, i.e., the
owner of the instance of the signature scheme.

– Sig: K×M→S: a probabilistic polynomial-time algorithm with input (sk, m),
where sk is the same output from K above, m ∈ M , M is a finite set of
possible messages. Output is σ = (Υ, Ξ) ∈ S, where Υ is randomly chosen
and independent from m, Ξ is calculated from Υ , m and sk.

– Ver: K×M×S→{0, 1}: a deterministic polynomial-time algorithm with input
(pk, m, σ), output 1 if σ is valid, i.e., σ is really computed by the owner of
the signature instance, output 0 otherwise.

– Rnd: M × S → S: a probabilistic polynomial-time algorithm with a message
m and a signature (Υ, Ξ) on it, output a (Υ ′, Ξ ′) �= (Υ, Ξ) that is also a
signature on m.

Expunlink−b
A (k), b ∈ {0, 1}: (pk, sk) $←− Gen(1k), (m0, Υ0, Ξ0, m1, Υ1, Ξ1)

$←−
A(sk, pk), If Ver(pk, m0, 〈Υ0, Ξ0〉) = 0 or Ver(pk, m1, 〈Υ1, Ξ1〉) = 0, return 0.

(Υ ′, Ξ ′) $←−Rnd(mb, Υb, Ξb), b′ ← A(sk, pk, Ξ ′). return b′.

Definition 3 (Perfectly Unlinkable). A randomizable signature rDS = (Gen,
Sig, Ver, Rnd) is perfectly unlinkable if for any algorithm A, the distribution of
output of Expunlink−b

A (k) (defined above) are the same for b ∈ {0, 1}, that is

Pr{Expunlink−1
A (k) = 1} = Pr{Expunlink−0

A (k) = 1}.

The above equation is identical to

Pr{Ξ ′ $←− Rnd(m1, Υ1, Ξ1)|(pk, sk) $←− Gen(1k), (〈m0, Υ0, Ξ0〉, 〈m1, Υ1, Ξ1〉)
$←− A(sk)}

= Pr{Ξ ′ $←− Rnd(m0, Υ0, Ξ0)|(pk, sk) $←− Gen(1k), (〈m0, Υ0, Ξ0〉, 〈m1, Υ1, Ξ1〉)
$←− A(sk)}.
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Definition 4 (Statistically Unlinkable). A randomizable signature rDS =
(Gen, Sig, Ver, Rnd) is statistically unlinkable if for any algorithm A, the sta-
tistical distance between output of Expunlink−b

A (k) (defined above) for b ∈ {0, 1}
is negligible, that is

∑
|Pr{Expunlink−1

A (k) = 1} − Pr{Expunlink−0
A (k) = 1}| < ε(k),

where the sum is over all random choices of Gen, A and Rnd.

Definition 5 (Computationally Unlinkable). A randomizable signature rDS
= (Gen, Sig, Ver, Rnd) is computationally unlinkable if for any probabilistic poly-
nomial time algorithm A, the probability between output of Expunlink−b

A (k) (defined
above) for b ∈ {0, 1} is negligible, that is

Pr{Expunlink−1
A (k) = 1} − Pr{Expunlink−0

A (k) = 1} < ε(k)

The above definitions of unlinkability can be further weakened by not allow-
ing the adversary obtain the secret key, but granting access to signing oracle
Osig(sk, .) as in experiment Expw−unlink−b

A (k) defined below. Then we get weak
perfectly unlinkability, weak statistically unlinkability, weak computationally un-
linkability analogously.

Expw−unlink−b
A (k), b ∈ {0, 1}: (pk, sk) $←− Gen(1k), (m0, Υ0, Ξ0, m1, Υ1, Ξ1)

$←− AOsig(sk,.)(pk), If Ver(pk, m0, 〈Υ0, Ξ0〉) = 0 or Ver(pk, m1, 〈Υ1, Ξ1〉) = 0,

return 0. (Υ ′, Ξ ′) $←−Rnd(mb, Υb, Ξb), b′ ← AOsig(sk,.)(pk, Ξ ′). return b′.

Definition 6 (Unlinkable Randomizable Signature). A (perfectly, statisti-
cally, computationally) URS urDS=(Gen,Sig,Ver,Rnd) is a randomizable signa-
ture that is also (perfectly, statistically, computationally) unlinkable respectively.

3.2 Σ-Protocol Friendly Randomizable and Indirectly Signable
Signature

Definition 7 (Σ-protocol Friendly Randomizable Signature). Arandom-
izable signature rDS=(Gen, Sig, Ver, Rnd) is Σ -protocol friendly if there exits a
Σ -protocol P for relation R = {(Ξ, 〈Υ , m〉)|V er(pk, m, 〈Υ , Ξ〉) = 1}, that is [14]

– P is of 3-move form, and if Prover and Verifier follow the protocol, Verifier
always accepts.

– From any Ξ and any pair of accepting conversations with different initial
message from Prover on input the same Ξ, one can efficiently compute (Υ, m)
such that (Ξ, 〈Υ , m〉) ∈ R.

– There exists a polynomial time simulator M, which on input Ξ, and a random
second message sent from Verifier, outputs an accepting conversation with the
same probability distribution as between the honest Prover, Verifier on input Ξ.

The following concept of indirectly signable is actually a restatement of signa-
tures on committed message [6].

Definition 8 (Indirectly Signable). A signature is indirectly signable if there
exists aoneway functionf (as defined inChapter 9.2.4, [15] ormoretechnically as in
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Chapter 2.2, [16]) andanefficient algorithmSigf thatSig(sk, m)=Sigf(sk, f(m)).

That is Pr{(pk, sk, f) $←− Gen(1k), m
$←− M , v ← f(m), σ ← Sigf(sk, v) : Ver(pk,

m, σ) = 1} = 1, and for any probabilistic polynomial time algorithm A, Pr{(pk, sk,

f) $←− Gen(1k), m
$←− M , v ← f(m), m′ ← A(sk, v) : m′ = m} < ε(k).

Actually signatures with above characteristics have been proposed and adopted
explicitly or implicitly [7,6,8,9], see Table 1 (the scheme on the right is the

Table 1. Comparison of signatures and URS

ACJT [4] CL02 [7]

Let n = pq be an RSA modulus. Se = [2le − 2μe , 2le + 2μe ], Sm = [2lm − 2μm ,
2lm + 2μm ], Ss = [2ls − 2μs , 2ls + 2μs ], μe > lm.

Gen. a, c
$←− QR∗

n, sk = (p, q), pk = (n,
a, c, Se, Sm).

Sig. If |m| = lm, e
$←− Se ∩ Prime, A ←

(amc)
1
e mod n.

Ver. Given m, (e, A), check if |m| = lm,
Ae = amc mod n.

Rnd. -

Gen. a, b, c
$←− QR∗

n, sk = (p, q), pk = (n,
a, b, c, Se, Sm, Ss).

Sig. If |m| = lm, e
$←− Se ∩ Prime, s

$←−
Ss, A ← (ambsc)

1
e mod n. Υ = (e,

s), Ξ = (A)
Ver. Given m, (Υ , Ξ) = (e, s, A),

check if |m| = lm, |s| = ls, Ae =
ambsc mod n.

Rnd. Given m, (Υ , Ξ) = (e, s, A), choose
random r with length lr = ls−le−1,
Υ ′ = (e, s + re), Ξ ′ = (Abr).

CL04 [6] CL04+.

Let G1 = 〈g〉, G2 = 〈g̃〉 be p order cyclic groups that there exists a bilinear map
e : G1 × G2 → G3.

Gen. x, y
$←− Z∗

p , sk = (x, y), X = g̃x, Y = g̃y, pk = (p, g, g̃, G1, G2, e, X, Y ).

Sig. d
$←− G1, Υ =NULL, Ξ = (d, dy,

dx+mxy).
Ver. Given m, (Υ , Ξ) = (a, b, c), check

if e(a, Y ) = e(b, g̃), e(a, X)e(b,
X)m = e(c, g̃).

Rnd. Given m, (Υ , Ξ) = (a, b, c), r
$←−

Z∗
p , Υ ′ =NULL, Ξ ′ = (a′, b′, c′) =

(ar, br, cr).

Sig. d
$←− G1, s

$←− Z∗
p , Υ = (s), Ξ = (ds,

dsy , dx+mxy).
Ver. Given m, (Υ , Ξ) = (s, a, b, c), check

if e(a, Y ) = e(b, g̃), e(a, X)e(b,
X)m = e(c, g̃)s.

Rnd. Given m, (Υ , Ξ) = (s, a, b, c), r1,

r2
$←− Z∗

p , Υ ′ = (s′) = (r2s), Ξ ′ =
(a′, b′, c′) = (ar1r2 , br1r2 , cr1).

BBS04 [8] BBS04+

Gen. x
$←− Z∗

p , w = g̃x, h1
$←− G1. sk = (x), pk = (p, G1, G2, g, g̃, h1, e, w).

Sig. s
$←− Z∗

p , A ← (hm
1 g)

1
x+s .

Ver. Given m, (s, A), check if e(A,
wg̃s) = e(hm

1 g, g̃).
Rnd. -

Sig. s, t
$←− Z∗

p , A ← (hm
1 g)

t
x+s , Υ = (s,

t), Ξ = (A).
Ver. Given m, (Υ , Ξ) = (s, t, A), check

if e(A, wg̃s) = e(hm
1 g, g̃t).

Rnd. Given m, (Υ , Ξ) = (s, t, A), r
$←−

Z∗
p , Υ ′ = (s, rt), Ξ ′ = (Ar).
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corresponding URS signature with indirect signability and Σ-protocol friendli-
ness with respect to the scheme on the left).

To illustrate the unlinkable randomness, take Scheme A in [6] as an example
(shown in Table 1). If we set Υ =NULL, Ξ = (a, b, c), it is not even computation-
ally unlinkable, because anyone can check if (m1, a

′, b′, c′) or (m0, a
′, b′, c′) is a

valid signature. That is why group signatures adopting the above signature only
result in selfless anonymity (a weaker anonymity where the adversary should not
know the message m)[9].

If we set Υ = (a), Ξ = (b, c), then it is still not even computationally unlinkable,
but is weak computationally unlinkable assuming DDH is hard over group G1.

If we further set Υ = (a, b), Ξ = (c), then it is perfectly unlinkable. So
it is rather easy to come up with an unlinkable randomizable signature, just
reveal the randomized signature as less as possible. But revealing too little of
the randomized signature may lose Σ-protocol friendliness.

3.3 Some New Unlinkable Randomizable Signatures

NSN04*. As we have mentioned, the ACJT scheme [4] has an alternative con-
struction utilizing URS CL02. As for the scheme in [11], no similar alternative
has been proposed. In this section, we propose a new URS NSN04*, which can
be adopted to build a new efficient group signature.

[11] NSN04*.
Let G be a p order additive cyclic group, and e : G × G → G

′ a bilinear map on
G = 〈P 〉.
Gen. γ

$←− Z∗
p , Ppub = γP , P0

$←− G, sk = (γ), pk = (p,G, G′, P, P0, Ppub, e).

Sig. a
$←− Z∗

p , A = 1
γ+a

[mP + P0].

Ver. Given m, (a, A), check if e(A,
Ppub + aP ) = e(mP + P0, P ).

Rnd. -

Sig. (a, b, c)
$←− Z∗

p
3, A = 1

γ+a
[mP +

(b + γc)Ppub + P0], Υ = (a, b, c),
Ξ = (A).

Ver. Given m, (Υ , Ξ) = (a, b, c, A),
check if e(A, Ppub + aP ) = e(mP +
bPpub + P0, P )e(cPpub, Ppub).

Rnd. Given m, (Υ , Ξ) = (a, b, c, A), r
$←−

Z∗
p , Υ ′ = (a′, b′, c′) = (a, b + ra,

c + r), Ξ ′ = (A′) = (A + rPpub).

Lemma 1. NSN04* is wUF-ACMA if q-SDH problem in G is hard, where q is
polynomial in |p|. See the full paper for the proof.

NSN04* is indirectly signable if we define f(m) = mP assuming Computational
Diffie-Hellman problem on G is hard. Obviously, NSN04* is perfectly unlink-
able because each randomized Ξ ′ only consists of one element that is generated
independently and randomly each time.

NSN04* is Σ-protocol friendly, because there exists an efficient Σ-protocol
for the relation {(m, a, b, c)|e(A, Ppub)e(A, P )a = e(P , P )me(Ppub, P )be(P0,
P )e(Ppub, Ppub)c}.
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Wat05+. The recently proposed signature in [17], which is provable secure
under CBDH assumption (Computational Bilinear Diffie-Hellman assumption)
without random oracle, is also an URS if only we change a bit on it, see the
following restatement with an extra algorithm Rnd.

Wat05+
Let G, G

′ be two p order cyclic groups, and there exists a bilinear map e :
G × G → G

′. G = 〈g〉.
Gen. Set secret key sk = (x), pk = (e, g1, g2, u, u′, ui, i = 0, .., l), where g1, g2, u,

u′, ui are all elements from G, g1 = gx, l is the maximum binary length of a
message to be signed.

Sig. Given a message m with length at most l, the signature (Υ , Ξ) is Υ = (s),

Ξ = (a, b) = (gr, gx
2 (u′�l

i=1 umi
i )r)us, where s

$←− Zp. Note that (a, bu−s) is
a signature of m according to the scheme in [17].

Ver. Given a message m and its signature (Υ , Ξ) = (s, a, b), it is a valid signature
on m if e(b, g) = e(u′, a)e(g2, g1)

�l
i=1 e(ui, a)mie(u, g)s.

Rnd. On input pk, message m, and a signature (Υ , Ξ), where Υ = (s), Ξ = (a, b),

choose (r1, r2)
$←− Zp × Zp, set Υ ′ = (s′) = (s + r1), Ξ ′ = (a′, b′) = (agr2 ,

b(u′�l
i=1 umi

i )r2ur1). The new randomized signature on m is (Υ ′, Ξ ′).

Wat05+ is wUF-ACMA. The proof is easy, omitted here.
Wat05+ is Σ-protocol friendly, because there exits efficient Σ-protocol for the

relation {(m1, ..., ml, s)| e(b, g)= e(u′, a) e(g2, g1)
∏l

i=1 e(ui, a)mie(u, g)s}.
Wat05+ is indirectly signable if we define f(m) =

∏l
i=1 umi

i , it is one way
if l = O(k), where k is the security parameter. That is because the probability
of f(m) = f(m′) for m �= m′ is about 1/p, i.e., the solution to f(m) = c for a
random c ∈ G is unique non-negligibly. To obtain the unique solution, 2l tests
must be carried out.

Wat05+ signature is perfectly unlinkable, because a′ and b′ are obtained from
independent random variables.

Note that the original scheme Wat05 [17] is already utilized in the compact
group signature [18]. But Wat05+ has not been adopted anywhere.

ZL06+. ZL06+ is a new URS similar to the standard signature proposed in [19].

ZL06+
Let G1 be a p order cyclic group that exists a bilinear map e : G1 × G2 → G3.
G1 = 〈g〉, G2 = 〈g̃〉.

Gen. Select (x, y)
$←− Z∗

p ×Z∗
p , set X = gx, Y = gy, �X = g̃x, �Y = g̃y. The secret key

is sk = (x, y), public key is pk = (X, Y , �X, �Y , g, g̃, e, p).
Sig. Given a message m ∈ Zp, its signature is (Υ , Ξ), where Υ = (s), Ξ = (a,

b) = (gr, gr(x+my)+sx+xy), (r, s)
$←− Z∗

p × Zp.

Ver. Given a signature (Υ , Ξ) = (s, a, b) of m, check if e(b, g̃) = e(a, �X �Y m)e(X,
�Y )e(X, g̃)s. If the equation holds, then accept (Υ , Ξ) as a valid signature of
m, otherwise reject it as invalid.

Rnd. On input pk, message m, and a signature (Υ , Ξ) = (s, a, b), choose random r1,
r2 ∈ Zp ×Zp, output (Υ ′, Ξ ′) where Υ ′ = (s′) = (s+r1), Ξ ′ = (a′, b′) = (agr2 ,
b(XY m)r2Xr1).
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ZL06+ is wUF-ACMA secure under the assumption proposed in [19]. The
proof is easy, omitted here.

ZL06+ is Σ-protocol friendly, because there exits efficient Σ-protocol for the
relation {(m, s)| e(b, g̃) = e(a, X̃) e(a, Ỹ )m e(X, Ỹ )e(X , g̃)s}.

ZL06+ is indirectly signable if define f(m) = gm assuming Computational
Diffie-Hellman problem on G1 is hard.

ZL06+ signature is perfectly unlinkable, because a′ and b′ are obtained from
independent random variables.

4 Group Signature from URS

Definition 9 (Group Signature [20]). A group signature is a signature scheme
composed of the following algorithms between GM (including IA, issuing authority,
and OA, opening authority), group members and verifiers.

– Setup: an algorithm run by GM (IA and OA) to generate group public key
gpk and group secret key gsk.

– Join: a probabilistic interactive protocol between GM (IA) and a group mem-
ber candidate. If the protocol ends successfully, the candidate becomes a new
group member with a group signing key gski including member secret key
mski and member certificate certi; and GM (IA) adds an entry for i (de-
noted as regi) in its registration table reg storing the protocol transcript, e.g.
certi. Sometimes the procedure is also separated into Join and Iss, where
Join emphasize the part run by group members as well as Iss denotes the
part run by IA.

– GSig: a probabilistic algorithm run by a group member, on input a message m
and a group signing key gski = (mski, certi), returns a group signature σ.

– GVer: a deterministic algorithm which, on input a message-signature pair
(m, σ) and GM’s public key gpk, returns 1 or 0 indicating the group signature
is valid or invalid respectively.

– Open: a deterministic algorithm which, on input a message-signature pair
(m, σ), secret key gsk of GM (OA), and the registration table reg, returns
identity of the group member who signed the signature, and a proof π.

– Judge: a deterministic algorithm with output of Open as input, returns 1 or
0, i.e., the output of Open is valid or invalid.

4.1 Generic Construction of GS

Select an URS DS= (Ks,Sig,Ver,Rnd) which is indirectly signable with a one
way function f , a probabilistic public encryption PE= (Ke, Enc,Dec).

Define the following relations:

ρ: (x, w) ∈ ρ iff x = f(w).
ρ1: (〈pke, pks, C, Ξ〉, 〈w, Υ , r〉) ∈ ρ1 iff Ver(pks, w, (Υ , Ξ))=1

and C=Enc (pke, f(w), r) and (pks, ·) ← Ks, (pke, ·) ← Ke.
ρ2: (〈pke, C, m〉, 〈w〉) ∈ ρ2 iff Dec(pke, w, C) = m and (pke, .) ← Ke.
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Assume (P, V ), (P1, V1) and (P2, V2) are non-interactive proofs for relation ρ,
ρ1 and ρ2, which have access to common reference string R, R1 and R2 respec-
tively. Let SIM , SIM1, SIM2 be their corresponding simulation algorithm. The
detailed definition of non-interactive proof is referred to [20].

(P, V ) is also defined to be with an online extractor (in the random oracle
model), i.e., it has the following features (let k be the security parameter) [21]:

1© Completeness: For any random oracle H , any (x, w) ∈ ρ, and any π ←
PH(x, w, R), it satisfies Pr {V H(x, π, R) = 1} ≥ 1 − ε1(k), where ε1(k) is a
negligible function.

2© Online Extractor: There exists a probabilistic polynomial time algorithm
K, the online extractor, such that the following holds for any algorithm A. Let
H be a random oracle, QH(A) be the answer sequence of H to queries from A.
Let w ← K(x, π, QH(A)), then as a function of k, Pr{(x, w) /∈ ρ, V H(x, π,
R) = 1} < ε2(k), where ε2(k) is a negligible function.

GS is constructed as follows, see Table 2 for the details.

Setup. Select an instance of DS and PE, let secret key of DS be the secret key
of IA, secret key of PE be the secret key of OA.

Table 2. Algorithms Setup, GSig, GVer, Open, Judge of GS

Algorithm Setup(1k):

R
$←− {0, 1}P (k), R1

$←− {0, 1}P1(k),

R2
$←− {0, 1}P2(k), (pks, sks) ← Ks(1

k),
(pke, ske) ← Ke(1

k),
gpk = (R, R1, R2, pke, pks),
ok = (ske), ik = (sks).
return (gpk, ok, ik).

Algorithm Join:

User i
pki,π−−−→ IA: User selects ski, pki =

f(ski), π = P (pki, ski, R)

User i
certi←−−− IA: IA checks if V (pki, π,

R) = 1, calculates certi = Sigf (sks, pki),
sets regi = pki.
User i: sets gski = (pki, ski, certi).

Algorithm GSig(gpk, gski, m):
Parse certi as (Υ , Ξ),
Parse gpk as (R, R1, R2, pke, pks),
(Υ ′, Ξ ′) = Rnd(gpk, ski, Υ , Ξ);
C ← Enc(pke, pki, ri), ri random;
π1 = P1(〈pke, pks, m, C, Ξ ′〉, 〈ski, Υ ′,
ri〉, R1).
σ = (C, Ξ ′, π1).
return σ.

Algorithm GVer(gpk,m,σ):
Parse σ as (C, Ξ ′, π1),
Parse gpk as gpk = (R, R1, R2, pke, pks),
Return V1(〈pke, pks, C, Ξ ′〉, π1, R1).

(Note that π1 here denotes the signature
on m transformed from the non-interactive
proof.)

Algorithm Open(gpk, ok, reg,m, σ):
Parse gpk as gpk = (R, R1, R2, pke,
pks),
Parse σ as (C, Ξ ′, π1),
If GVer(gpk, m, σ) = 0, return ⊥.
M ← Dec(ske, C),
If M = regi, ∃i, id ← i, else id ← 0.
π2 = P2(〈pke, C, M〉, 〈ske〉, R2),
return (id, τ ), where τ = (M , π2).

Algorithm Judge(gpk, reg,m, σ, i, M, π2):
Parse gpk as gpk = (R, R1, R2, pke, pks),
Parse σ as (C, Ξ ′, π1),
If GVer(gpk, m, σ) = 0, return ⊥.
return V2(〈pke, C, M〉, π2, R2).
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Join. User i selects its member secret key ski in message space of DS, computes
pki = f(ski), generates π, a non-interactive zero-knowledge proof of knowledge
of ski for relation ρ. IA checks the correctness of π and generates a DS signature
on ski: certi = Sigf(sks, pki) = Sig(sks, ski), sets regi = pki. The group signing
key of i is gski = (certi, ski).

GSig. On input (gpk, gski, m), parse certi into (Υ , Ξ), firstly derive a new
certification (Υ ′, Ξ ′) = Rnd(gpk, ski, Υ , Ξ); then encrypt pki with PE: C =
Enc(pke, pki, ri) where ri is random; then generate π1, a non-interactive zero-
knowledge of proof of knowledge of (ski, Υ ′, ri) for relation ρ1; in the end,
transform π1 into a signature on m using any method of transforming a non-
interactive zero-knowledge proof into a signature [5,22,23,24], we also use π1

to note the transformed signature for simplicity. The group signature on m is
σ = (C, Ξ ′, π1).

GVer. On input (gpk, m, σ), parse σ as (C, Ξ ′, π1), check the correctness of
π1, return 1 if it is correct, return 0 otherwise.

Open. On input (gpk, ok, reg, m, σ), parse σ as (C, Ξ ′, π1). OA firstly checks
the validity of the group signature σ on m, if it is not valid, stops; otherwise
decrypts C to get M , and generates π2, a proof of knowledge of decryption key
ok for relation ρ2. If M = pki for some pki in reg, return the corresponding index
or identity and π2, else returns zero and π2.

Judge. Check the correctness of π2, return 1 if it is correct, return 0 otherwise.

Comparison. The above generic construction can be seen as a particular case
of the construction in [20]:

In [20], the group signature is σ = (C, π1) = (Enc(pke, 〈i, pki, Υ , Ξ, s〉, ri),
π1), where s = S(ski, m) and π1 is a proof of knowledge of (pki, Υ , Γ , s, ri)
satisfying Ver(pks, 〈i, pki〉, (Υ , Ξ)) = 1, C = Enc(pke, 〈i, pki, Υ , Ξ, s〉, ri), and
V (pki, m, s) = 1. (S, V ) is the signature generation and verification algorithms
of an independent signature scheme.

However in this construction, the group signature is σ = (C, Ξ ′, π1) =
(Enc(pke, pki, ri), Ξ ′, π1), where π1 is a transformed signature of the proof
of knowledge of (ski, Υ ′, ri) satisfying Ver(pks, ski, (Υ ′, Ξ ′)) = 1 and C =
Enc(pke, f(ski), ri).

The construction is more efficient in that less items are encrypted in C and the
relation between member secret key, member certificate and other items is much
simplified, thus efficient proof of knowledge of encrypted context is obtained.

4.2 Security Proofs

The above generic group signature utilizing unlinkable randomizable signature
can be proved secure according to the proof methods for the security results in
[20] under a variant model (see the full paper).
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Lemma 2. The above GS is anonymous if DS is computationally unlinkable,
PE is IND-CCA2, (P1, V1) is a simulation sound, computational zero-knowledge
proof, (P2, V2) is a computational zero-knowledge proof.

Lemma 3. The above GS is traceable if DS is wUF-ACMA, (P1, V1), (P2, V2)
are sound proofs of knowledge and (P, V ) is a proof of knowledge with online
extractor (in random oracle model).

Lemma 4. The above GS is non-frameable if f(·) is one way function, (P, V )
is a computational zero-knowledge proof, (P1, V1) and (P2, V2) are sound proofs
of knowledge.

Note that there is a gap between the generic construction GS and the realization
of it by adopting the Σ-protocol friendly URS’ we have described earlier (the
reason we require Σ-protocol friendliness is from efficiency consideration), be-
cause Σ-protocols (after they are transformed into non-interactive forms [5]) are
not guaranteed simulation sound. It can be fixed in proof by utilizing rewinding
techniques [25,26] so that an adversary, even after it has been given simulated
group signatures, can not generate a valid group signature unless the ciphertext
therein is correctly constructed.

4.3 Improvement to a Group Signature

Review of KY05’s Scheme
Setup. At first, select the following public parameters:
– two groups G1 = 〈g1〉, G2 = 〈g2〉 of order p(length is lp bits), and there

exists a bilinear map e : G1 × G2 → GT .
– an RSA modulus n of ln bits.
– three integer ranges S, S′, S where S′ ⊂ S ⊂ Zφ(n), the upper bound of S′′

is smaller than the lower bound of S.
– an RSA modulus N of lN bits, choose G ∈ QRN2 so that 〈G〉 is also N -th

residues, 
〈G〉 = φ(N)/4.

Then IA selects 1© γ, δ
$←− Zp, set w = gγ

2 , v = gδ
2; 2© α, β

$←− Zp, u
$←− G1, set

u′ = uα/β, h = uα(u′)β = u2α; 3©g, f1, f2, f3
$←− QRn; 4© a collision resistant

hash function HASH.
OA selects 1© a1, a2, a3

$←− Z�N/4�, set H1 = Ga1 , H2 = Ga2 , H3 = Ga3 ; 2© a
universal one-way hash function family UOHF, and a hash key hk.

Group public key gpk = {g1, g2, u, u′, h, w, v, g, f1, f2, f3, n, N , G, H1, H2,
H3, hk, G1, G2, GT , e, UOHF}. Group secret key gsk = {γ, δ, a1, a2, a3}.

Join. A user selects x = x1x2, x1
$←− S′′, sends x to IA; IA checks whether

x ∈ S′, if that is the case, selects r
$←− Z∗

p , s
$←− Z∗

p , calculates σ ← g
s

γ+x+δr

1 ,
sends (r, s, σ) to the user; the user checks if e(σ, wgx

2vr) = e(g1, g2)s, if so, sets
cert = (x, r, s, σ), msk = (x1, x2).

GSig. If a user with member certificate (x, σ, r) and member secret key (x1, x2)
wants to generate a group signature on m, he firstly computes T1, T2, T3, T4,
T5, C0, C1, C2 as follows.
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T1 = uz, z
$←− Zp in G1; T2 = (u′)z′

, z′ $←− Zp in G1; T3 = hz+z′
σ in G1; T4 =

gyfx1
1 , y

$←− S(1, 2ln−2) in QRn; T5 = gy′
fx2
2 f t

3, y′ $←− S(1, 2ln−2) in QRn; C0 =

Gt, t
$←− S(1, 2lN−2) in Z∗

N2 ; C1 = Ht
1(1+N)x in Z∗

N2 ; C2 =‖ (H2H
H(hk,C0,C1)
3 )t ‖

in Z∗
N2 .

Then he generates a signature of knowledge by applying the Fiat-Shamir
heuristic [5] on a proof of knowledge of the fourteen witnesses θz, θz′ , θx, θxz,
θxz′ , θr, θrz′ , θx1 , θx2 , θy, θy′ , θyx2 , θt that satisfy the following relations:

T1 = uθz , T2 = (u′)θz′ , 1 = T
−θx
1 uθxz , 1 = T

−θx
2 (u′)θxz′ ,

1 = T
−θr
1 uθrz , 1 = T

−θr
2 (u′)θrz′ , T4 = gθy f

θx1
1 , 1 = T

−θx2
4 gθyx2 f

θx
1 ,

T5 = g
θy′ f

θx2
2 f

θt
3 , θx ∈ S′, θx′ ∈ S′′, C0 = Gθt ,

C1 = H
θt
1 (1 + N)θx , C2

2 = (H2H
H(hk,C0,C1)
3 )2θt ,

e(g1, g2)/e(T3, w) = e(T3, v)θr e(T3, g2)
θxe(h, g2)

−θxz−θxz′ e(h, v)−θrz−θrz′ e(h, w)−θz−θz′

The realization of the above signature of knowledge is quite standard, so we omit
it here. The output is (T1, T2, T3, T4, T5, C0, C1, C2, c, sz, sz′ , sxz, sxz′ , sr, srz,
srz′ , sx, sx1 , sx2 , sy, sy′ , syx2, st).

GVer. The verification is achieved by checking the above proof of knowledge,
omitted here.

Open. Firstly the group signature is verified as well as the relation C2
2 =

C
2(a2+a3H(hk,C0,C−1))
0 is checked. If all the tests pass,OAcomputesx = (C1C

−a1
0 −

1)/N , then checks if there exists a matching member certificate in the database
maintained by IA.

Group Signature KY05+
Replacing the member certificate signature with the following BB04+ signature,
the scheme in [12] can be improved.

BB04+
Let G1, G2 be two p order cyclic groups, and there exists a bilinear map
e : G1 × G2 → G3. G1 = 〈g〉, G2 = 〈g̃〉.

Gen. It chooses x
$←− Z∗

p , y
$←− Z∗

p , and sets sk = (x, y), pk = (p, G1, G2, g, g̃, X,
Y , e), where X = g̃x, Y = g̃y.

Sig. On input message m, secret key sk, and public key pk, choose (s, t)
$←− Z∗

p
2,

compute A = g
t

x+m+ys , output the signature (Υ , Ξ) where Υ = (s, t), Ξ = (A).

Note that (s, A
1
t ) is a valid [27] signature on m.

Ver. On input pk, message m, and purported signature (Υ , Ξ) = (s, t, A), check
that e(A, XY sg̃m) = e(gt, g̃).

Rnd. On input pk, message m, and a signature (Υ , Ξ) = (s, t, A), choose r
$←− Z∗

p ,
output (Υ ′, Ξ ′) where Υ ′ = (s′, t′) = (s, rt), Ξ ′ = (A′) = (Ar).

It is easy to prove the wUF-ACMA of BB04+, similar to the original scheme
[27]. Obviously, BB04+ is perfectly unlinkable because each randomized Ξ ′ only
consists of one element that is generated independently and randomly each time,
but it is not indirectly signable because m must be known to calculate a signature
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on it. BB04+ is Σ-protocol friendly, because there exists an efficient Σ-protocol
for the relation {(m, s, t)|e(A, X)e(A, Y )se(A, g̃)m = e(g, g̃)t}.

Now we turn back to the group signature of KY05+. Public parameters and
algorithms Setup, Join, Open are exactly as [12], except that key-setup for linear
ElGamal encryption is eliminated.

GSig. If a user with member certificate (x, σ, r) and member secret key (x1,
x2) wants to generate a group signature on m, he firstly computes (σ′, s′, T4,
T5, C0, C1, C2) as described in the following table.

σ′ = σr′
, s′ = r′s r′ $←− Z∗

p in G1

T4 = gyfx1
1 y

$←− S(1, 2ln−2) in QRn

T5 = gy′
fx2
2 f t

3 y′ $←− S(1, 2ln−2) in QRn

C0 = Gt t
$←− S(1, 2lN −2) in Z∗

N2

C1 = Ht
1(1 + N)x in Z∗

N2

C2 =‖ (H2H
H(hk,C0,C1)
3 )t ‖ in Z∗

N2

Then he generates a signature of knowledge by applying the Fiat-Shamir
heuristic [5] on a proof of knowledge of the nine witnesses (θx, θx1 , θx2 , θy, θy′ ,
θyx2 , θt, θr, θs′) that satisfy the specified relations in the following table.

gθyf
θx1
1 = T4, gθy′ f

θx2
2 fθt

3 = T5, T
−θx2
4 gθyx2 fθx

1 = 1,

e(σ′, wgθx
2 vθr ) = e(g1, g2)

θs′ , Gθt = C0, Hθt
1 (1 + N)θx = C1,

(H2H
H(hk,C0,C1)
3 )2θt = C2

2 , θx ∈ S′, θx′ ∈ S′′.

Note that the number of witnesses that need proving is fewer than that of
[12]. Thus a group signature of KY05+ is (σ′, T4, T5, C0, C1, C2, c, sr, sx, sx1 ,
sx2 , sy, sy′ , syx2 , st, ss′), about 7|p| = 1190 bits shorter than [12].

If we view x = x1x2 as a one way function since factoring of x is hard,
KY05+ is an application of the proposed generic construction on BB04+ except
that a non-interactive zero-knowledge proof of knowledge with online extractor
is not adopted in Join. The security of it follows from that of proposed generic
construction and [12].
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Abstract. The research on the attack algorithm for a MD5 collision is
one of the focuses in cryptology nowadays. In this paper, by analyzing
the properties of the nonlinear Boolean functions used in MD5 and the
differences in term of XOR and subtraction modulo 232, we prove that
some sufficient conditions presented by Jie Liang and Xuejia Lai are also
necessary to guarantee the differential path and give a set of necessary
and sufficient conditions to guarantee the output differences of the last
two steps. Then we present an improved collision attack algorithm on
MD5 by using the set of necessary and sufficient conditions. Finally, we
analyze the computational complexity of our attack algorithm which is
0.718692 times of that of the previous collision attack algorithms.

1 Introduction

Many cryptographists have been focusing on analyzing the hash functions since
Eurocrypt’04, when Wang et al. declared that they found a collision for MD5.
MD5 is one of the important hash functions which are widely implemented in
digital signature and many other cryptographic protocols. To guarantee the se-
curity of the applications in cryptography, the hash functions should be one-way
and collision-resistant.

In the last three years, many cryptographists have tried to study the sufficient
conditions for a MD5 collision proposed by Wang et al., and the message modi-
fication techniques to improve the efficiency of attack algorithms. Philip Hawkes
et al. [1] mused on the way of producing collisions of MD5 by analyzing the
collision pairs declared by Wang et al. in Eurocrypt’04. In Eurocrypt’05 Wang
et al. [2] presented a differential path for a MD5 collision and gave the sufficient
conditions to guarantee the differential path. However, according to a number
of computer simulations, Jun Yajima and Takeshi Shimoyama [3] found that
the sufficient conditions given by Wang et al. in [2] are not sufficient actually
and modified some of the sufficient conditions. Yuto Nakano et al. [4] pointed
out that there were 16 redundant conditions in [2] according to computer sim-
ulations and then explained why they are redundant. Yu Sasaki et al. [5] gave
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the way to construct sufficient conditions in searching collisions of MD5. Ad-
ditionally, Jie Liang and Xuejia Lai [6] added several conditions to the set of
sufficient conditions presented in [2] to guarantee that the left shift rotation and
subtraction modulo 232 can be commuted in a particular way which is used in
the attack for MD5 collisions, and proposed a fast attack algorithm using small
range searching technique. At the same time, Zhangyi Wang et al. [7] studied
the same question as [6] but they proposed a different algorithm to yield a col-
lision of MD5. Marc Stevens [8] optimized the set of sufficient conditions and
presented a new algorithm for the first block. Since the probability that all the
sufficient conditions for a MD5 collision are satisfied randomly is too small, Wang
et al. [2] proposed message modification to make most of the sufficient conditions
satisfied deterministically, which can improve the computational complexity of
the attack algorithm. Then the authors give new techniques of message modi-
fication in [6] [7] [9] [10] [11] respectively which all can make more conditions
satisfied deterministically. Yu Sasaki et al.[10] pointed that there are 14 sufficient
conditions in the second round could be satisfied deterministically by advanced
multi-message modification techniques. So in this paper we will use the multi-
message modification techniques in [10] to make the sufficient conditions from
1-22 steps satisfied deterministically. Recently, Hongbo Yu et al. [12] presented
multi-collision attack on the compression functions of MD4, which presented 4-
collision using two different differential paths. The 4-collision means that there
are 4 different messages producing the same hash value. However, for a certain
differential path for MD5 collisions, there may be more than one set of sufficient
conditions to hold it, which is the object we seek for in this paper.

In this paper, we will analyze the properties of the nonlinear Boolean functions
in MD5, and then prove that the sufficient conditions from 24-61 steps but step
35 presented by Jie Liang and Xuejia Lai are also necessary to guarantee the
differential path and give the necessary and sufficient conditions to guarantee the
output differences of the last two chaining values. Since we obtain the necessary
and sufficient conditions for some steps, we propose an attack algorithm for MD5
collisions. In our improved attack algorithm, we just test whether the output
differences are what we desired and don’t need to check whether the sufficient
conditions holds, which will increase the probability that the algorithm continues
to the next step and improve the efficiency of the attack algorithm. Finally, we
will compare the computational complexity of our attack algorithm with that of
the previous attack algorithms.

2 Description of MD5 Algorithm and Notations

MD5 is a hash function that generates a 128-bit hash value for a message with
any length. It includes the integer addition modulo 232, the left shift rotation,
and nonlinear Boolean functions. The initial values are given as follows:

A = 0x67452301, B = 0xefcdab89, C = 0x98badcfe, D = 0x10325476.

The compression function of MD5 has four rounds, and each round has 16
steps. Chaining values a, b, c and d are initialized as a0 = A, b0 = B, c0 =
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C, d0 = D. One of the chaining values is updated in each step and computation
is continued in sequence. In each step, the operation is as follows:

a = b + ((a + f(b, c, d) + m + const) ≪ k)
d = a + ((d + f(a, b, c) + m + const) ≪ k)
c = d + ((c + f(d, a, b) + m + const) ≪ k)
b = c + ((b + f(c, d, a) + m + const) ≪ k)

where ′+′ is addition modulo 232, const and k are step-dependent constants,
m is a 32-bit message word and the 512-bit message block is divided into 16
32-bit message words. ′x ≪ k′ is the left shift rotation of x by k bits. f is a
round-dependent function:

Round1 : f = F (x, y, z) = (x ∧ y) ∨ ((¬x) ∧ z)
Round2 : f = G(x, y, z) = (x ∧ z) ∨ (y ∧ (¬z))
Round3 : f = H(x, y, z) = x ⊕ y ⊕ z

Round4 : f = I(x, y, z) = y ⊕ (x ∨ (¬z))

Throughout this paper, for x =
∑32

i=1 xi2i−1 ∈ Z/(232), xi ∈ {0, 1}, we call
xi the i-th bit of x, and we will use following symbols:

M0(M
′

0 ): the first block of the input message.
M1(M

′

1 ): the second block of the input message.
ai, bi, ci, di: the i-th values of a, b, c, d for (M0, M1) (1 ≤ i ≤ 16).
a

′

i, b
′

i, c
′

i, d
′

i: the i-th values of a, b, c, d for(M
′

0, M
′

1) (1 ≤ i ≤ 16).
ai,j , bi,j , ci,j , di,j : the j-th bit of ai, bi, ci, di ( 1 ≤ i ≤ 16, 1 ≤ j ≤ 32).
a

′

i,j , b
′

i,j , c
′

i,j , d
′

i,j : the j-th bit of a
′

i, b
′

i, c
′

i, d
′

i ( 1 ≤ i ≤ 16, 1 ≤ j ≤ 32).
aa1, bb1, cc1, dd1: the initial values of the second iteration.
Hi(H

′

i): the hash value before the (i+1)-st iteration (i ≥ 0).
mi: the i-th 32-bit message word (0 ≤ i ≤ 15 ).
x ≪ k: the left shift rotation of x by k bits.
�X , δX : �X = (X

′ − X)mod232, δX = X
′ ⊕ X(X ∈ {ai, bi, ci, di, φi}).

|A|: the number of elements included in the set A.

3 Our Attack Algorithm on MD5

Wang et al. proposed a differential path to produce a two-block collision for MD5
in [2] and gave a set of sufficient conditions to guarantee the differential path.
Then Jie Liang and Xuejia Lai [6] modified the set of sufficient conditions, which
is relatively accurate so far and will be used in this paper. Then the authors gave
different techniques of message modification in [6] [7] [9] [10] [11] respectively
which all can make more conditions satisfied deterministically. In our attack
algorithm, we use the message modification presented by Yu Sasaki et al.[10]
to make all the conditions from 1-22 steps satisfied deterministically and other
conditions in the remaining steps will be satisfied randomly. However, we find
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that the sufficient conditions are not necessary to guarantee the differential path
from 63-64 steps. Since step 63 and step 64 are the last two in attack algorithms,
the sufficient conditions make the probability that the attack algorithms con-
tinue to the last two steps reduce, which increases the complexity of the attack
algorithms greatly. In this section, we first review the differential path proposed
by Wang et al.. Then using the properties of the nonlinear Boolean functions
in MD5 algorithm, we prove that the sufficient conditions from 24-61 steps ex-
cept for step 35 are also necessary to guarantee the differential path, and give
the necessary and sufficient conditions to guarantee the differential path from
step 63 to step 64. Finally, using the set of necessary and sufficient conditions
for a MD5 collision, we will present an attack algorithm on MD5 and compare
the computational complexity of our attack algorithm with that of the previous
algorithms in detail.

3.1 The Differential Path Proposed by Wang et al.

Finding a differential path which generates collisions with high probability is the
first step of the collision attack on MD5. However, so far, few papers have been
published about how to find a suitable differential path. So, in this paper we
still use the differential path proposed by Wang et al. in [2], which is described
as follows:

�H0 = 0
(M0,M

′
0)−→ �H1

(M1,M
′
1)−→ �H = 0,

where M
′

0−M0 =(0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0), M
′

1−M1 =(0, 0, 0, 0,
231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0) and �H1 = (231, 231 + 225, 231 + 225, 231 +
225) = (�a16,�d16,�c16,�b16). Moreover, we can refer to the table 3 and table
5 in [2] to get the output difference of each step.

3.2 The Set of Necessary and Sufficient Conditions to Guarantee
Differential Path

Some Properties of the Nonlinear Boolean Functions used in MD5.
There are four nonlinear Boolean functions used in MD5 algorithm. In this part,
we only analyze the properties of the three nonlinear Boolean functions used in
the last three rounds since we will derive the necessary and sufficient conditions
from 24-64 steps.

Lemma 1. Let x, y, z, x
′
, y

′
, z

′ ∈ Z/(232), �x = 0, �y = 231, �z = 231 and
G(x, y, z) = (x∧ z)∨ (y ∧ (¬z)). Then �G(x, y, z) = 0 if and only if x32 ⊕ y32 ⊕
z32 = 0.

Lemma 2. Let x, y, z, x
′
, y

′
, z

′ ∈ Z/(232), �x = 0, �y = 0, �z = 231 and
G(x, y, z) = (x ∧ z) ∨ (y ∧ (¬z)). Then �G(x, y, z) = 231 if and only if y32 =
x32 ⊕ 1.

Lemma 3. Let x, y, z, x
′
, y

′
, z

′ ∈ Z/(232) and H(x, y, z) = x ⊕ y ⊕ z. Then
(1) If �x = �y = 0, then �z = 231 if and only if �H(x, y, z) = 231.
(2) If �x = �y = 231, then �z = 231 if and only if �H(x, y, z) = 231.
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Lemma 4. Letx, y, z, x
′
, y

′
, z

′ ∈ Z/(232),�x = �y = �z = 231 and I(x, y, z) =
y ⊕ (x ∨ (¬z)). Then

(1) �I(x, y, z) = 231 if and only if x32 = z32.
(2) �I(x, y, z) = 0 if and only if z32 = x32 ⊕ 1.

The set of the necessary and sufficient conditions. Using the properties of
the nonlinear Boolean functions described above, we can prove that the sufficient
conditions in table 4 of [6] are also necessary to guarantee the differential path
from 24-61 steps but step 35.

Proposition 1. The sufficient conditions presented by Jie Liang and Xuejia Lai
are also necessary to guarantee the differential path from 24-61 steps except for
step 35 in the first iteration.

Proof. From the table 3 in [2], we get the output differences from 24-61 steps.
In step 24, we know that

b6 = c6 + ((G(c6, d6, a6) + b5 + m4 + 0xe7d3fbc8) ≪ 20)

and �c6 = 0, �d6 = �a6 = �b5 = 231 and �m4 = 231. To achieve �b6 = 0, it
is necessary and sufficient to have �G(c6, d6, a6) = 0. By lemma 1, we know that
c6,32 = d6,32⊕a6,32 is necessary and sufficient condition to hold �G(c6, d6, a6) =
0. Moreover, from the table 4 of [6] we know that d6,32 = a6,32 holds to guarantee
the output difference in step 23, so c6,32 = 0 is necessary and sufficient condition
to hold �G(c6, d6, a6) = 0.

Henceforth, in the same way we can prove that the sufficient conditions pre-
sented by Jie Liang and Xuejia Lai in [6] are also necessary to guarantee the
differential path from 24-61 steps but step 35 in the first iteration. Hence, we
have proved the proposition 1.

Remark 1. In step 35 and step 62, we know that the two extra conditions in
table 4 of [6] are necessary and sufficient to guarantee that the left shift rotation
and subtraction modulo 232 can be commuted. If the two operations can be
commuted, the output difference in step 35 is held and the condition a16,32 =
c15,32 is necessary and sufficient to hold �I(a16, b15, c15) = 231 by lemma 4
and thereby guarantee the output difference in step 62. Hence, the sufficient
conditions in [6] are also necessary to ensure that the two operations can be
commuted and the output differences are held.

In the following part, we will derive the necessary and sufficient conditions to hold
the last two output differences which are �c16 = 231 +225 and �b16 = 231 +225.
Firstly, we give out two lemmas as follows.

Lemma 5. Let xi, yi, αi, βi ∈ {0, 1} and h(xi, yi) = xi ∨ (yi ⊕ 1). Then

h(xi ⊕ αi, yi ⊕ βi) ⊕ h(xi, yi) =

{
yiαi, if βi = 0;
yiαi ⊕ xi ⊕ αi ⊕ 1, if βi = 1.
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Lemma 6. Let X
′
, X ∈ Z/(232) and �X = (X

′ − X)mod232. Then �X =
231 + 225 if and only if X

′

i = Xi holds for each i with 1 ≤ i ≤ 25, and one of the
following conditions is satisfied:

(1) X
′

32 = X32, and X
′

26+t = 0, X26+t = 1 for every t with 0 ≤ t ≤ 5;
(2) X

′

32 ⊕ X32 = 1, and there exists a q with 0 ≤ q ≤ 5 such that X
′

26+q =
1, X26+q = 0, and X

′

26+t = 0, X26+t = 1 for each t with 0 ≤ t < q, X
′

26+t =
X26+t for each t with q < t ≤ 5.

Proof. (1) Let X
′

< 225. Hence �X = 231 + 225 if and only if X = (X
′ −

�X)mod232 = [X
′ − (231 +225)]mod232 = 231 − 225 +X

′
which is equivalent to

that X32 = 0, X26+t = 1 for each t with 0 ≤ t ≤ 5, and X
′

i = Xi holds for each
i with 1 ≤ i ≤ 25.

Now we suppose that X
′ ≥ 225, then there exists an i with 0 ≤ i ≤ 6, such

that X
′

26+i = 1. Put q = min{i : X
′

26+i = 1, 0 ≤ i ≤ 6}, then X
′

26+t = 0 for
every t with 0 ≤ t < q.

Let q = 6. Then there exists an integer b with 0 ≤ b < 225, such that X
′
=

231 + b. Hence �X = 231 + 225 if and only if

X = (X
′ −�X)mod232 = [(231 + b) − (231 + 225)]mod232 = (232 − 225) + b

which is equivalent to that X26+t = 1 for each t with 0 ≤ t ≤ 6 and X
′

i = Xi for
every i with 1 ≤ i ≤ 25.

Thus, �X = 231 + 225 is equivalent to that X
′

32 = X32, and X
′

26+t = 0,

X26+t = 1 for every t with 0 ≤ t ≤ 5, and X
′

i = Xi for every i with 1 ≤ i ≤ 25.
(2) Let 0 ≤ q < 6. Then there exists an integer b with 0 ≤ b < 225 and an

integer d with 0 ≤ d < 26−q, such that X
′
= 226+qd+225+q +b. Hence X

′

26+t = 0
for each t with 0 ≤ t < q. Hence �X = 231 + 225 if and only if

X = (X
′
−�X)mod232 = [(226+qd + 225+q + b) − (231 + 225)]mod232

= [(226+qd − 231) + (225+q − 225) + b]mod232

=

{
(226+qd − 231) + (225+q − 225) + b, if d ≥ 25−q;
(231 + 226+qd) + (225+q − 225) + b, if d < 25−q.

Since d ≥ 25−q if and only if 226+qd ≥ 231, it is equivalent to that X32 =
X

′

32 ⊕ 1, X26+t = 1 for each t with 0 ≤ t < q, X26+q = 0, and X
′

26+t = X26+t

for each t with q < t ≤ 5,and X
′

i = Xi for every i with 1 ≤ i ≤ 25. Now we have
proved lemma 6.

Remark 2. Since X −X
′
= 231 − 225 if and only if X

′ −X = 232 − (231 − 225) =
231+225. Hence, if we exchange X

′
with X in (1) and (2) of lemma 6, then we can

obtain the necessary and sufficient conditions to hold �X = X
′ −X = 231−225.

Using the results in lemma 5 and lemma 6, we can get the set of necessary
and sufficient condition to hold �c16 = 231 + 225 and �b16 = 231 + 225 as a
consequence of theorem 1 and theorem 2.
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Theorem 1. Let c15, b15, a16, d16, c16, b16 ∈ Z/(232) be the chaining values in
MD5 algorithm, �c15 = �b15 = �a16 = 231, �d16 = 231 + 225 and �m2 = 0.
Then �c16 = 231 + 225 if and only if one of the following conditions is satisfied:

(1) d16,32 = b15,32, for some q with 0 ≤ q ≤ 5 such that d16,26+q = 0,
d16,26+t = 1 for each t with 0 ≤ t < q and b15,26+t = 0 for each t with 0 ≤ t ≤ q.

(2) d16,26+t = 1 for each t with 0 ≤ t ≤ 6 and b15,26+t = 0 for each t with
0 ≤ t ≤ 5.

Proof. From the 63rd step of MD5 in the first iteration, we know that

c16 = d16 + [I(d16, a16, b15) + c15 + m2 + 0x2ad7d2bb] ≪ 15,

where I(d16, a16, b15) = a16 ⊕ (d16 ∨ (¬b15)).
From �d16 = 231 + 225, �c15 = 231 and �m2 = 0, we know that �c16 =

231 +225 iff �I(d16, a16, b15) = 231, which is equivalent to δI(d16, a16, b15) = 231.
From �b15 = �a16 = 231, we know δb15 = δa16 = 231. From the proof of lemma
4, we know that

δI(d16, a16, b15) = (δd16&b15) ⊕ (δb15&d16) ⊕ (δd16&δb15) ⊕ δa16 ⊕ δb15

= (δd16&b15) ⊕ ((d16 ⊕ δd16)&231).

By lemma 6, we may divide �d16 = 231 + 225 into two cases:
Case 1: δd16mod225 = 0, d

′

16,32⊕d16,32 = 1 and there exist a q with 0 ≤ q ≤ 5
such that d

′

16,26+q = 1, d16,26+q = 0, and d
′

16,26+t = 0, d16,26+t = 1 for each t

with 0 ≤ t < q, d
′

16,26+t = d16,26+t for each t with q < t ≤ 5. Then

δd16 = d
′

16 ⊕ d16 = 231 ⊕
q⊕

t=0

225+t.

Hence

δI(d16, a16, b15) = [(231 ⊕
q⊕

t=0

225+t)&b15] ⊕ {[d16 ⊕ (231 ⊕
q⊕

t=0

225+t)]&231}

= [(d16 ⊕ b15)&231] ⊕ [(
q⊕

t=0

225+t)&b15] ⊕ 231.

So δI(d16, a16, b15) = 231 iff [(d16 ⊕ b15)&231] ⊕ [(
⊕q

t=0 225+t)&b15] = 0, which
is equivalent to d16,32 = b15,32 and b15,26+t = 0 for each t with 0 ≤ t ≤ q. Hence
δI(d16, a16, b15) = 231 if and only if (1) holds in this case.

Case 2: δd16mod225 = 0, d
′

16,32 = d16,32 and d
′

16,26+t = 0, d16,26+t = 1 for each
t with 0 ≤ t ≤ 5. Then δd16 = d

′

16 ⊕ d16 =
⊕5

t=0 225+t. Hence

δI(d16, a16, b15) = [(
5⊕

t=0

225+t)&b15] ⊕ {[d16 ⊕ (
5⊕

t=0

225+t)]&231}

= (d16&231) ⊕ [(
5⊕

t=0

225+t)&b15].
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So δI(d16, a16, b15) = 231 iff (d16&231) ⊕ [(
⊕5

t=0 225+t)&b15] = 231, which is
equivalent to d16,32 = 1 and b15,26+t = 0 for each t with 0 ≤ t ≤ 5. Hence
δI(d16, a16, b15) = 231 iff (2) holds in this case. Hence theorem 1 holds.

Theorem 2. Let b15, a16, d16, c16, b16 ∈ Z/(232) be the chaining values in MD5
algorithm, �b15 = �a16 = 231, �d16 = 231 + 225, �c16 = 231 + 225 and
�m9 = 0. Then �b16 = 231 + 225 if and only if one of the following conditions
is satisfied:

(1) c16,32 = a16,32, for some q, p with 0 ≤ q ≤ p ≤ 5 such that d16,26+t = 1
for each t with 0 ≤ t < q and d16,26+q = 0, and c16,26+t = 1 for each t with
0 ≤ t < p and c16,26+p = 0, and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ p.

(2) for some q with 0 ≤ q ≤ 5 such that d16,26+t = 1 for each t with 0 ≤ t < q
and d16,26+q = 0, c16,26+t = 1 for every t with 0 ≤ t ≤ 6 and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ 5.

(3) c16,32 = a16,32 ⊕ 1, d16,26+t = 1 for each t with 0 ≤ t ≤ 5, c16,26+t = 1 for
each t with 0 ≤ t < 5 and c16,31 = 0, and a16,26+i = 1 for each i with 0 ≤ i ≤ 5;

(4) d16,26+t = 1 for each t with 0 ≤ t ≤ 5, c16,26+t = 1 for each t with
0 ≤ t ≤ 5 and c16,32 = 0, and a16,26+i = 1 for each i with 0 ≤ i ≤ 5.

Proof. From the 64th step of MD5 in the first iteration, we know that

b16 = c16 + [I(c16, d16, a16) + b15 + m9 + 0xeb86d39] ≪ 21,

where I(c16, d16, a16) = d16 ⊕ (c16 ∨ (¬a16)).
From �c16 = 231+225, �b15 = 231 and �m9 = 0, we know that �b16 = 231+

225 if and only if �I(c16, d16, a16) = 231 which is equivalent to δI(c16, d16, a16) =
231. From �a16 = 231, we know δa16 = 231. From the proof of lemma 4, we know
that δI(c16, d16, a16) = (δc16&a16) ⊕ (δa16&c16) ⊕ (δc16&δa16) ⊕ δd16 ⊕ δa16.

By lemma 6, we may divide �c16 = 231 + 225 and �d16 = 231 + 225 into four
cases:

Case 1: δd16mod225 = 0, d
′

16,32 ⊕ d16,32 = 1 and there exists a q with 0 ≤ q ≤ 5
such that d

′

16,26+q = 1, d16,26+q = 0, and d
′

16,26+t = 0, d16,26+t = 1 for each t

with 0 ≤ t < q, d
′

16,26+t = d16,26+t for each t with q < t ≤ 5; δc16mod225 = 0,
c

′

16,32 ⊕ c16,32 = 1 and there exists a p with 0 ≤ p ≤ 5 such that c
′

16,26+p = 1,
c16,26+p = 0, and c

′

16,26+t = 0, c16,26+t = 1 for each t with 0 ≤ t < p, c
′

16,26+t =
c16,26+t for each t with p < t ≤ 5. Then

δd16 = d
′

16⊕d16 = 231⊕
q⊕

t=0

225+t and δc16 = c
′

16⊕c16 = 231⊕
p⊕

t=0

225+t.
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Hence

δI(c16, d16, a16) = (δc16&a16) ⊕ (δa16&c16) ⊕ (δc16&δa16) ⊕ δd16 ⊕ δa16

= [(
p⊕

t=0

225+t)&a16] ⊕ [231&(a16 ⊕ c16)] ⊕ (
q⊕

t=0

225+t) ⊕ 231

So δI(c16, d16, a16) = 231 iff a16,32 = c16,32 and

[(
p⊕

t=0

225+t)&a16] ⊕ (
q⊕

t=0

225+t) = 0,

which is equivalent to a16,32 = c16,32, q ≤ p and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ p.

Case 2: δd16mod225 = 0, d
′

16,32 ⊕ d16,32 = 1 and there exists a q with 0 ≤ q ≤ 5
such that d

′

16,26+q = 1, d16,26+q = 0, and d
′

16,26+t = 0, d16,26+t = 1 for each t

with 0 ≤ t < q, d
′

16,26+t = d16,26+t for each t with q < t ≤ 5; δc16mod225 = 0,
c

′

16,32 = c16,32, and c
′

16,26+t = 0, c16,26+t = 1 for every t with 0 ≤ t ≤ 5. Then

δd16 = d
′

16 ⊕ d16 = 231 ⊕
q⊕

t=0

225+t and δc16 = c
′

16 ⊕ c16 =
5⊕

t=0

225+t.

Hence

δI(c16, d16, a16) = (δc16&a16) ⊕ (δa16&c16) ⊕ (δc16&δa16) ⊕ δd16 ⊕ δa16

= (231&c16) ⊕ [(
5⊕

t=0

225+t)&a16] ⊕ (
q⊕

t=0

225+t).

So δI(c16, d16, a16) = 231 if and only if c16,32 = 1 and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ 5.

Case 3: δd16mod225 = 0, d
′

16,32 = d16,32, and d
′

16,26+t = 0, d16,26+t = 1 for every
t with 0 ≤ t ≤ 5; δc16mod225 = 0, c

′

16,32 ⊕ c16,32 = 1 and there exists a p with
0 ≤ p ≤ 5 such that c

′

16,26+p = 1, c16,26+p = 0, and c
′

16,26+t = 0, c16,26+t = 1 for
each t with 0 ≤ t < p, c

′

16,26+t = c16,26+t for each t with p < t ≤ 5. Then

δd16 = d
′

16 ⊕ d16 =
5⊕

t=0

225+t and δc16 = c
′

16 ⊕ c16 = 231 ⊕
p⊕

t=0

225+t.
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Hence

δI(c16, d16, a16) = (δc16&a16) ⊕ (δa16&c16) ⊕ (δc16&δa16) ⊕ δd16 ⊕ δa16

= [(
p⊕

t=0

225+t)&a16] ⊕ [231&(a16 ⊕ c16)] ⊕ (
5⊕

t=0

225+t).

So δI(c16, d16, a16) = 231 iff a16,32 
= c16,32 and

(
p⊕

t=0

225+t)&a16] ⊕ (
5⊕

t=0

225+t) = 0,

which is equivalent to p = 5 and a16,26+i = 1 for each i with 0 ≤ i ≤ 5.
Case 4: δd16mod225 = 0, d

′

16,32 = d16,32, and d
′

16,26+t = 0, d16,26+t = 1 for every
t with 0 ≤ t ≤ 5; δc16mod225 = 0, c

′

16,32 = c16,32, and c
′

16,26+t = 0, c16,26+t = 1
for every t with 0 ≤ t ≤ 5. Then

δd16 = d
′

16 ⊕ d16 =
5⊕

t=0

225+t and δc16 = c
′

16 ⊕ c16 =
5⊕

t=0

225+t.

Hence

δI(c16, d16, a16) = (δc16&a16) ⊕ (δa16&c16) ⊕ (δc16&δa16) ⊕ δd16 ⊕ δa16

= [(
5⊕

t=0

225+t)&a16] ⊕ (
5⊕

t=0

225+t) ⊕ (231&c16) ⊕ 231.

So δI(c16, d16, a16) = 231 iff c16,32 = 0 and a16,26+i = 1 for each i with 0 ≤ i ≤ 5.
It is easy to verify that (1)-(4) are equivalent to cases 1-4 respectively. Hence

theorem 2 holds. Now we have proved theorem 2.

Theorem 3. Let c15, b15, a16, d16, c16, b16 ∈ Z/(232) be the chaining values in
MD5 algorithm, �c15 = �b15 = �a16 = 231, �d16 = 231 + 225, �m2 = 0 and
�m9 = 0. Then �c16 = 231 + 225 and �b16 = 231 + 225 if and only if one of the
following conditions is satisfied:

(1) d16,32 = b15,32, c16,32 = a16,32, for some q, p with 0 ≤ q ≤ p ≤ 5 such that
d16,26+t = 1 for each t with 0 ≤ t < q and d16,26+q = 0, and c16,26+t = 1 for
each t with 0 ≤ t < p and c16,26+p = 0, b15,26+t = 0 for each t with 0 ≤ t ≤ q
and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ p.

(2) d16,32 = b15,32, for some q with 0 ≤ q ≤ 5 such that d16,26+t = 1 for each
t with 0 ≤ t < q and d16,26+q = 0, c16,26+t = 1 for every t with 0 ≤ t ≤ 6,
b15,26+t = 0 for each t with 0 ≤ t ≤ q and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ 5.
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(3) c16,32 = a16,32 ⊕ 1, d16,26+t = 1 for each t with 0 ≤ t ≤ 5, c16,26+t = 1 for
each t with 0 ≤ t < 5 and c16,31 = 0, b15,26+i = 0 and a16,26+i = 0 for each i
with 0 ≤ i ≤ 5.

(4) d16,26+t = 1 and c16,26+t = 1 for each t with 0 ≤ t ≤ 5, c16,32 = 0,
b15,26+i = 0 and a16,26+i = 1 for each i with 0 ≤ i ≤ 5.

Proof. This is an immediate consequence of theorem 1 and theorem 2.

Remark 3. By theorem 3, we obtain four sets of necessary and sufficient condi-
tion to guarantee the output differences of c16 and b16 as follows:

Set1: c16,32 = a16,32, d16,32 = b15,32 and for some q, p with 0 ≤ q ≤ p ≤ 5 ,
there hold

d16,26+t =

{
1, if 0 ≤ t < q;
0, if t = q.

and c16,26+t =

{
1, if 0 ≤ l < p;
0, if l = p.

and b16,26+t = 0 for each t with 0 ≤ t ≤ q, and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ p.

Set2: d16,32 = b15,32, for some q with 0 ≤ q ≤ 5, there hold

d16,26+t =

{
1, if 0 ≤ t < q;
0, if t = q.

and b15,26+t = 0 for each t with 0 ≤ t ≤ q and c16,26+t = 1 for each t with
0 ≤ t ≤ 6, and

a16,26+i =

{
1, if 0 ≤ i ≤ q;
0, if q < i ≤ 5.

Set3: c16,32 = a16,32 ⊕ 1, d16,26+t = 1 for each t with 0 ≤ t ≤ 5, c16,26+t = 1
for each t with 0 ≤ t < 5 and c16,31 = 0, b15,26+i = 0 and a16,26+i = 0 for each i
with 0 ≤ i ≤ 5.

Set4: d16,26+t = 1 for every t with 0 ≤ t ≤ 5, b15,26+i = 0 and a16,26+i = 1 for
each i with 0 ≤ i ≤ 5, and

c16,26+t =

{
1, if 0 ≤ t ≤ 5;
0, if t = 6.

Remark 4. From the description of the above four sets, we get some character-
istics of them as follows:

(1) According to the different values of q, p, the Set1 includes 21 sets of suf-
ficient conditions. If q = p = 0, it is the set presented in [6]. Thus, using the
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set of necessary and sufficient condition we will compare the complexity of our
algorithm with that of the previous algorithms.

(2) By the different value of q, the Set2 include 6 sets of sufficient conditions.
(3) The four sets all include the two conditions b15,26 = 0 and a16,26 = 1.

Henceforth, the four sets by removing b15,26 = 0 and a16,26 = 1 are denoted by
Set1

′
, Set2

′
, Set3

′
and Set4

′
respectively.

(4) Since Set3
′
includes 23 conditions, the probability that all the conditions

in Set3
′
are satisfied is 1/223. Similarly, the probability that all the conditions

in Set4
′
are satisfied is also 1/223.

Similarly, for the second iteration, we can also obtain the set of necessary and
sufficient condition to guarantee the differential path from 24-64 steps.

3.3 Our Attack Algorithm for Finding a Collision

According to proposition 1 and theorem 3, we get the sets of necessary and
sufficient conditions to guarantee the output differences from 24-64 steps in the
first iteration. However, the previous algorithms [6] [7] [9] only use the sufficient
conditions to test the output differences, which reduce the probability that the
algorithms continue to the next step. So, in our algorithm we will directly test
whether the output differences are what we needed. Now, we will outline our
attack algorithm for the first block and the second block respectively. (Refer to
the sets of sufficient conditions presented by Jie Liang and Xuejia Lai in [6])

The Algorithm for the First Block. (1) Select random 32-bit values for each
mi with 0 ≤ i ≤ 15.

(2) Using single-message modification to make the sufficient conditions from
step 1 to step 16 satisfied as in [6].

(3) Randomly select a 32-bit values for a5 and make it satisfy the sufficient
conditions in table 3 of [6]. Then update m0,d1,m2,m3,m4,m5.

(4) Use the multi-message modification techniques described in [10] to make
the sufficient conditions from 18-22 steps satisfied deterministically.

(5) Compute the remaining steps. For each step test whether the output
differences holds. If the output differences are not all held, jump to step 3.
Then compute the initial values of the second iteration, if the conditions of the
initial values in the table 3 of [6] are not all satisfied, jump to step 3. Otherwise,
output m0, m1, . . . , m15.

The Algorithm for the Second Block. (1) Select random 32-bit values for
each mi with 0 ≤ i ≤ 13.

(2) Use single-message modification to make the chaining values from step 1
to the step 14 satisfy the sufficient conditions as in [6].

(3) Randomly select two 32-bit values for c4 and b4 respectively but make
them satisfy the sufficient conditions as in [6], then compute the values of m14

and m15.
(4) Use multi-message modification described in [10] to make the sufficient

conditions from 17-22 steps satisfied deterministically.
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(5) Compute the remaining steps. For each step test whether the output differ-
ences holds. If the output difference are not all held, jump to step 3. Otherwise,
output m0, m1, . . . , m15.

3.4 The Comparison between the Complexity of Our Algorithm
and the Previous Algorithms

Since we increase the probability that the differences of c16 and b16 hold by using
the set of necessary and sufficient conditions and the c16 and b16 are the last two
output differences to be held in attack algorithms, our algorithm can improve
the computational complexity of the previous attack algorithms [6][7][9] greatly.
The probabilities that the output differences of c16 and b16 hold are denoted
by Prblock1 and Prblock2 respectively, while in the previous algorithms they are
denoted by Pr

′

block1 and Pr
′

block2 respectively. Now, the probability that at least
one set in Set1

′
is satisfied is denoted by Pr1 and the probability that at least

one set in Set2
′
is satisfied is denoted by Pr2.

Theorem 4. Let b15, a16, d16, c16 ∈ Z/(232) be the chaining values in MD5 al-
gorithm and for some q, p with 0 ≤ q ≤ p ≤ 5,

D1
q = {(d16,26, . . . , d16,31) | (d16,26, . . . , d16,25+q, d16,26+q) = (1, . . . , 1, 0)},

C1
p = {(c16,26, . . . , c16,31) | (c16,26, . . . , c16,25+p, c16,26+p) = (1, . . . , 1, 0)},

A1
q,p = {(a16,27, . . . , a16,31) | (a16,27, . . . , a16,26+q) = (1, . . . , 1)

and (a16,27+q, . . . , a16,26+p) = (0, . . . , 0)},
B1

i = {(b15,27, . . . , b15,31) | (b15,27, . . . , a16,26+q) = (0, . . . , 0)},
Λ1

q,p = {(a, b, c, d)|a ∈ A1
q,p, b ∈ B1

q , d ∈ D1
q , c ∈ C1

p}. (1)

Then Pr1 ≈ 0.347692, Pr
′

block1 = 0.25.

Proof. For any q
′ 
= q or p

′ 
= p,0 ≤ q ≤ p ≤ 5 and 0 ≤ q
′ ≤ p

′ ≤ 5, since
D1

q′ ∩ D1
q = Ø,C1

p′ ∩ C1
p = Ø,A1

q′ p′ ∩ A1
qp = Ø or B1

q′ ∩ B1
q = Ø, we have

Λ1
q′ p′ ∩ Λ1

qp = Ø. Moreover, from equation 1 we have |Λ1
qp| = 26−(p+1) × 25−q ×

26−(q+1) × 25−p = 22(10−q−p). Therefore,

|
⋃

0≤q≤p≤5

Λ1
qp| =

∑
0≤q≤p≤5

|Λ1
qp| =

∑
0≤q≤p≤5

22(10−q−p) = 220 × 1.390782.

Thus, we have

Pr1 =
|
⋃

0≤q≤p≤5 Λ1
qp|

222
=

220 × 1.390782
222

≈ 0.347692.

If q = p = 0, from (1) of remark 4 we know that it is the case in the previous
algorithms, so we have Pr

′

block1 = 0.25.
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Theorem 5. Let b15, a16, d16, c16 ∈ Z/(232) be the chaining values in MD5 al-
gorithm and for some q with 0 ≤ q ≤ 5,

D2
q = {(d16,26, . . . , d16,31) | (d16,26, . . . , d16,25+q, d16,26+q) = (1, . . . , 1, 0)},

C2 = {(c16,26, . . . , c16,32) | (c16,26, . . . , c16,32) = (1, . . . , 1)},
A2

q = {(a16,27, . . . , a16,31) | (a16,27, . . . , a16,26+q) = (1, . . . , 1)

and (a16,27+q, . . . , a16,31) = (0, . . . , 0)},
B2

q = {(b15,27, . . . , b15,31) | (b15,27, . . . , a16,26+q) = (0, . . . , 0)}
Λ2

q = {(a, b, c, d)|a ∈ A2
q , b ∈ B2

q , d ∈ D2
q , c ∈ C2}. (2)

Then Pr2 ≈ 1.627604× 10−4.

Proof. Using the same way as theorem 4, we prove theorem 5.
Since the necessary and sufficient conditions sets are independent, by theorem4,

theorem 5 and (4) of remark 4 we get Prblock1 = Pr1 +Pr2 +2× 223 ≈ 0.347854.
Similarly, we obtain Prblock2 ≈ 0.347854.

The computational complexity that all the sufficient conditions given in [6]
except for d16,26 = 0 and c16,26 = 0 for the first iteration are satisfied is de-
noted by Cblock1(M0) and except for d16,26 = 1 and c16,26 = 1 for the second
iteration we denote Cblock2(M1). Assume that each step is independent and in
the t-th step of our attack algorithm the output differences of the c16 and b16

hold, then the probability that the differences of c16 and b16 hold in our algo-
rithm is (1 − Prblock1)t−1 × Prblock1, the mathematical expectation of which
is 1

Prblock1
= 1

0.347854 . So, the computational complexity of our algorithm is
Cblock1(M0)

0.347854 comparing to Cblock1(M0)
0.25 in the previous algorithms [6] [7] [9], which

implies that the computational complexity of our algorithm for the first block

Table 1. An Example of the Comparison of the Experimental Times(hexadecimal)

LL’s Attack: Block1(M0) LL’s Attack: Block2(M1)

ba9dc4f4 d53ada82 da3101a8 aa5240bd 2f6f6903 e1a8c33f 02ad55ff e3672c0f
599a49ab f6a6ca92 702331b6 6e1028a8 b77a9752 fdbff0b7 177bccfe b2bcdad6
05332dc1 c0b4e7f8 7b5afb1b 8fb0a974 357b278d 8cb756a9 7b7c02fa ddb0e47f
c5be6d0b 090e4d32 29c57fe9 c6a2712f b644d0bc f8dbbcaa 68bdbedd 9c119e29

LL’s Runtime for Block1: 1807min LL’s Runtime for Block2: 253min

Our’s Attack: Block1(M0) Our’s Attack: Block1(M1)

ba9dc4f4 d53ada82 da3101a8 aa5240bd 2f6f6903 21a8c73f 00ad51df e3672c0f
599a49ab f6a6ca92 702331b6 6e1028a8 b73a9352 fd7fecb7 176bccfe b2bd5ad6
05332dc1 c0b4e7f8 7b5afb1b 8fb0a974 357b27ad 8cb756c9 7b7c031a 1db1087b
c5be6d0b 090e4d32 29c57fe9 c6a2712f a5b6b0bc f8dbbca2 760d7e9c 7d34f5c3

Our’s Runtime for Block1: 1350min Our’s Runtime for Block2: 23min
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is 0.25
0.347854 = 0.718692 times of that of the previous algorithms. Similarly, we

can obtain that the computational complexity of our algorithm for the second
block is also 0.718692 times of the previous algorithms. In the previous attack
algorithms, there are 33 conditions for the first block and 27 for the second
block satisfied by trial and error, so the average computational complexity is
about 0.718692 × 233 times MD5 operations(See Table 1 for an comparison of
the experimental times).

4 Conclusion

In this paper, we have presented an improved attack algorithm on MD5. By
analyzing the properties of the nonlinear Boolean functions used in MD5 and
the differences in term of XOR and subtraction modulo 232, we prove that the
sufficient conditions from 24-61 steps but step 35 presented by Jie Liang and
Xuejia Lai are also necessary to guarantee the differential path and give the set
of necessary and sufficient conditions for the last two output differences. For step
35 and step 62, the sufficient conditions are also necessary to ensure that the
left shift rotation and subtraction modulo 232 can be commuted and the output
differences are held. Finally, we analyze the computational complexity of our
attack algorithm which is 0.718692 times of that of the previous collision attack
algorithms and test the result by computer simulations.
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Abstract. We propose the idea of building a secure hash using quadratic
or higher degree multivariate polynomials over a finite field as the com-
pression function. We analyze some security properties and potential
feasibility, where the compression functions are randomly chosen high-
degree polynomials, and show that under some plausible assumptions,
high-degree polynomials as compression functions has good properties.
Next, we propose to improve on the efficiency of the system by using
some specially designed polynomials generated by a small number of
random parameters, where the security of the system would then relies
on stronger assumptions, and we give empirical evidence for the validity
of using such polynomials.

Keywords: hash function, multivariate polynomials, sparse.

1 Introduction

There is a rather pressing need to find new hash functions as of today, after the
work of Wang et al culminated in collisions of some well-known and standard
hash functions [13,14]. One common feature of the currently used hash functions
is that it is more an area of art, where the design of the system is based on
certain procedures and the security of the system is very very difficult to study
from the theoretical point of view. For example, even the work of Wang et al is
still not well understood and people are still trying to analyze the methods used
in some systematical way. [12]

Naturally, one direction is to look for provably secure hash functions, whose
security relies on well-understood hard computational problems. These hashes
tend to be slower, although they have a saving grace in terms of having some
measure of provable security.

In these formulations, the designer seeks a reduction of the security of the
compression function to some other intractable problem. Of course, we should
be careful about these “provably secure” constructions. There are two pitfalls:

– Often, the security reduction has a large looseness factor. The practical result
is that these reductions end up “proving” a very low security level — the com-
plexity of the “underlying hard problem” divided by the looseness factor —
which in a practically-sized instance will be insufficient to satisfy security
requirements [10,9,17].

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 358–371, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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It should be mentioned, however, that often times this kind of reductions
shows that if hard problem A is exponential in a power of n, then so is
cryptosystem B under suitable assumptions. So having a proof still beats
not having one because it implies that there are no real serious gotchas.

– The other possibility is that the security of the hash function may only
loosely depend on the hard problem. The case of NTRU’s signature schemes
exemplify this possibility. One can only say in this case that the scheme is
inspired by the hard problem.

In this paper, we propose our own version, which is inspired by the MQ prob-
lem, and study how well it can work. Our paper is arranged as follows. We first
study the case of random systems. Then we study the case of sparse construc-
tion and present the main theoretical challenges and its practical applications.
We will then discuss other new ideas and the future research in the conclusion.
Much work remains in this area in terms of security reductions and speed-ups.

2 The MQ Frame Work

Problem MQ: Solve a polynomial system, with coefficients and variables in K =
GF(q), where each pi is randomly chosen and quadratic in x = (x1, . . . , xn).

p1(x1, . . . , xn) = 0, p2(x1, . . . , xn) = 0, . . . , pm(x1, ..., xn) = 0, (1)

MQ is NP-hard generically [7]. If instead of quadratics, each pi is of degree
di > 1, the problem may be termed called MP , which is of course no easier than
MQ, so must also be NP-hard. That a problem is NP-hard generically need not
mean that its solution is of exponential time complexity in its parameters on
average, or imply anything about the coefficients. However, today, as m and n
increases to infinity, we believe that the following holds.

Conjecture 2.1. ∀ε > 0, Pr(n/m = Θ(1), MQ can be solved in poly(n)) < ε.

The conjecture above or something similar to it is the basis of multivariate public-
key cryptosystems [6,15] as well as some symmetric cryptosystems [3]. The latest
way of tackling such systems involve guessing at some optimal number of vari-
ables (depending on the method in the closing stage) then use a Lazard-Faugère
solver (XL or F5, [2]). We also believe, and it is commonly accepted that the
complexity to solve the set of equations is indeed exponential, if pi(x1, . . . , xn)
are polynomials of a fixed degree whose coefficients are randomly chosen — say
that pi(x1, ..., xn) are randomly chosen quadratic polynomials. We will assume
this statement as the security foundation.

Under this assumption, the first straightforward idea is to build an iterated
hash using completely random quadratic polynomials as compression functions,
namely the one way function F : K2n → Kn is given by

F (x1, . . . , xn, y1, . . . , yn) = (f1(x1, . . . , xn, y1, . . . , yn), ..., fn(x1, ..., xn, y1, . . . , yn)),
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where each fi is a randomly chosen quadratic polynomial over GF(q). All the
coefficients are chosen randomly. We will use this as a compressor with state x =
(x1, . . . xn), and each input message block is y = (y1, . . . , yn). In the following,
we show that this cannot work and suggest the next improvements, particularly
cubic and stacked (composed) quadratics, and the idea of using the least number
of parameters to determine our maps.

2.1 General Remark on Solvability

A rough estimate of effort to solve these MQ problems: 20 quadratic equations in
20 GF(256) variables: 280 cycles; 24 quadratic in 24 GF(256) variables: 292 cycles.
It is harder to solve higher-order equations: for reference, 20 cubic equations in
20 GF(256) variables takes about 2100 cycles, 24 cubics in 24 GF(256) variables
about 2126 cycles, and 20 quartics in in 20 GF(256) variables about 2128 cycles.

Clearly, the problem for our hash schemes is not going to be the direct solution
(algebraic attack) using a polynomial system solver. The above shows that any
multivariate polynomial systems are not really susceptible to preimage or second
preimage attacks.

Note: There is a special multivariate attack to solve under-defined systems
of equations [5] that applies to this situation where there is a lot many more
variables than equations, but

– the number of variables that it reduces is proportional to the square root of
n, and

– for q > 2 under most optimistic estimates it has proved to be rather useless.

We would then, of course, try multivariate quadratics as the obvious idea.
However, it is not secure because collisions are easy to find:

Proposition 2.1. With randomly chosen F := F (x,y), it is easy to solve the
equation.

F (x1,y1) = F (x2,y2)

Proof
F (x + b,y + c) − F (x,y) = 0

is a linear equation in 2n variables (x,y) and n equations, so must be solvable.

However, we this points out a better way to building a secure hash.

3 The Applications of Sparsity

In Section 3 we show that the compressor and hence the hash function is likely
to be collision-free. In the following sections, we propose some naive instances,
which has the security level at 280 or 2128, but those system are very slow for
practical applications. A natural idea is to use sparse polynomials. This is as in
the case of the central maps of TTS signature schemes, namely we will choose
each of the above polynomial to be a sparse polynomial. However, the security
relies on the following stronger assumption:
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Conjecture 3.1. As n → ∞ and m/n → k ∈ R
+, for any fixed 0 < ε < 1 a

random sparse polynomial system of any fixed degree with a randomly picked
ε proportion of the coefficients being non-zero (and still random, if q > 2) will
still take time exponential in n to solve.

This can be termed a version of the conjecture SMP (sparse multivariate poly-
nomial). SMP is only one of the many conjectures that we can make, because
as long as we are not dealing with packed bits, the speed of the implementation
depends more on the size of the parameter set than how we use the parameters.
If a set of polynomials is determined from a relatively small set of parameters,
we can call them “sparsely determined”.

There is no real reduction known today that reduces SMP to a known hard
problem. However, we can justify this assumption somewhat by trying to solve
these sparse systems, and by extension sparsely generated systems, using the
best tools we have.

– If we solve the system with an XL-with-Wiedemann like attack [16,17], it is
clear that the running time will simply be ε times that of the corresponding
dense problem.

– There is no commercially available implementation of F5, however, it runs at
the same degree as F4 and mostly differ in the fact that F5 avoids generating
extraneous equations that are bound to be eliminated.

– The most sophisticated solver commercially available is MAGMA [4]. We ran
many tests on random systems, random sparse systems, and not necessar-
ily sparse but sparsely generated systems. In every case, solving the sparse
determined systems takes roughly the same amount of time and memory as
the non-sparse ones.

– We know of some specialized methods that solves sparse systems, but some
have a different definition of sparsity than we have here [11], and some are
not well-quantified.

Please see the appendix for the tests that we ran. Clearly, the key is to choose
wisely a correct proportion ε of the nonzero terms.

1. How many we choose such that it is fast?
Our answer: no more than maybe 0.1% (see below).

2. How many we choose such that it is secure?
Our answer: a predetermined fixed percentage.

3. How do we choose the sparse terms?
Our answer: probably randomly.

4 Cubic Construction

Suppose that q = 2k and the F above is changed to a random cubic K2n → Kn,
then the following argument that this compression function is secure.

Let K̄ be a degree n extension of K. We have a map φ which identifies K̄ as Kn.
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Then it is clear from the work of Kipnis and Shamir [8] we can show that F
can be lifted to be a map from K̄ × K̄ to K̄. Then we have

F̄ (X, Y ) =
∑

AijkXqi+qj+qk

+
∑

BijkXqi+qj

Y qk

+

∑
CijkXqi

Y qj+qk

+
∑

DijkY qi

Xqj+qk

+
∑

EijX
qi

Y qj

+
∑

FijX
qi

Xqj

+
∑

GijY
qi

Y qj

+
∑

HiX
qI

+
∑

IiY
qi

+ J.

In this case, we can view all the coefficients as random variables.
We can show that no matter how one the choose the difference of the (X, Y )

coordinates that the coefficients of the difference, namely

F̄ (X + X ′, Y + Y ′) − F̄ (X, Y )

are still linearly independet random variables as a quadratic function.
By mathematical induction, we can prove the following theorem.

Proposition 4.1. Define a function in the Kipnis-Shamir form

F̄ (X, Y ) =
∑

AijkXqi+qj+qk

+
∑

BijkXqi+qj

Y qk
∑

CijkXqi

Y qj+qk

+
∑

DijkY qi+qj+qk

+
∑

EijX
qi

Y qj

+
∑

FijX
qi

Xqj

+
∑

GijY
qi

Y qj

+
∑

HiX
qI

+
∑

IiY
qi

+ J.

where each coeffcients are linear independent random variables and i, j, k are less
than a fixed integer r, the nonzero coefficients of the function

F̄ (X + X ′, Y + Y ′) − F̄ (X, Y )

are also linearly independ random variables.

Proof. Let us first assume that r is zero, we have that

F̄ (X + X ′, Y + Y ′) − F̄ (X, Y )
= (3A000X

′ + B000Y
′)X2 + (C000X

′ + 3D000Y
′)Y 2 + (2X ′B000 + 2Y ′C000)XY

+ (3A000X
′2 + 2X ′Y ′B000 + Y ′2C000 + E00Y

′ + 2F00X
′)X

+ (3D000Y
′2 + 2X ′Y ′C000 + X ′2B000 + 2G00Y

′ + E00X
′)Y

+ A000X
′3 + B000X

′2Y ′ + C000X
′Y ′2 + D000Y

′3 + E00X
′Y ′ + F00X

′2 + G00Y
′2 + H0X

′ + I0Y
′

The first three terms’ coefficients are clearly independent, and involves only the
A000, B000, C000, D000, as long as (X ′, Y ′) are not both zero. Then in the fourth
and the fifth term we have E00Y

′ + 2F00X
′ in X term and 2G00Y

′ + E00X
′ in

the Y term. Therefore the initial 5 coefficients are linearly independent. Finally,
we know that H0X

′ + I0Y
′ in the constant term ensures that all the coefficients

are linearly independent.
Clearly we can see that we write the difference above in the form of

F̄ (X + X ′, Y + Y ′) − F (X, Y ) = Ā × Q × Zt,
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according to the order of degree of the (X, Y ) terms, where

Ā = (A000, ......, I0),

and Q is the coefficient matrix (which may depend on X ′, Y ′) and

Z = (X2, Y 2, XY, X, Y, 1)

Then Q clearly have a blockwise triangular structure, which makes the proof
possible.

Then suppose the theorem is proved when i, j, k < r, we can use the same
trick to proceed to i, j, k ≤ r, namely we will write down

F̄ (X + X ′, Y + Y ′) − F̄ (X, Y ) = Ā × Q × Zt,

where Z is arranged in the form that the first block are the terms involves terms
that either have Xqr

or Y qr

, then the rest. The Ā is arranged in the same way
that the first block contains the terms whose subindices must have r. Then we
can write down the expresssion explicitly and show the independence, just as in
the case r = 0. We will omit the tedious detail here.

Corollary 4.1. For a quadratic map M : K2n → Kn with uniformly chosen
random coefficients, we can construct a cubic map F̄ : K2n → Kn and a differ-
ential X ′, Y ′ such that M(X, Y ) = F̄ (X + X ′, Y + Y ′)− F̄ (X, Y ), such that X ′,
Y ′ and F̄ have uniformly random coefficients or components.

From this proposition, we can infer directly the following important conclusions.

Proposition 4.2. If F̄ is randomly chosen,the function F̄ (X + X ′, Y + Y ′) −
F̄ (X, Y ) is also random as long as X ′ and Y ′ are not both zero.

Therefore we have

Proposition 4.3. If F is randomly chosen,the function F (x+b,y+c)−F (x,y)
is also random as long as b and c are not both zero.

Theorem 4.1. A random cubic F : K2n → Kn (written as F := F (x,y), x,y ∈
Kn) is

1. impossible to invert or to find a second image for, in polynomial time.
2. is impossible find a collision for, in polynomial time.

Proof. From the proposition above, we can assume a attacker knows the dif-
ference of the collision he or she intens to find. In this case, it means that the
attacker have the equation F (x + b,y + c) − F (x,y) = 0 that he or she must
solve if he or she can find the collision. However, we just showed that no matter
how one chooses b and c, the equation can be viewed as a random equation.
Therefore it is impossible to solve in polynomial time.
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5 Random Cubic Polynomial

We use completely random cubic polynomials, namely the one way compression
function is given by

F (x,y) = (f1(x,y), ..., fn(x,y)),

where fi is a randomly chosen cubic polynomial over GF(q). Here x,y ∈ Kn as
before. All the coefficients are chosen randomly. We will use this as a compressor
in a Merkle-Damg̊ard iterated compression hash function. For example we may
use the following Merkle-Damg̊ard like structure:

State: x := (x1, x2, . . . , xn).
Incoming Data Block: y := (xn+1, . . . , x2n).
Compression: F : (GF(q))2n → (GF(q))n.
Initial State: F (P (a1, . . . , an/2), P (an/2+1, . . . , an)), P is a random given

quadratic Kn/2 → Kn.
According to [3], the output of P is impossible to predict or distinguish

from random.
Final Output: in (GF(q))n, possibly with some post-treatment.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic F :

– 40 GF(256) variables into 20: 67300 cycles/byte (6.0 cycles/mult)
– 80 GF(16) variables into 40: 4233000 cycles/byte (3.2 cycles/mult)

Assuming 256-bit hashes (SHA-2), preliminary runs with a generic F :

– 32 GF(216 variables into 16: 48200 cycles/byte (19 cycles/mult)
– 64 GF(256) variables into 32: 3040000 cycles/byte (6.0 cycles/mult)
– 128 GF(16) variables into 64: 9533000 cycles/byte (3.2 cycles/mult)

Some implementation details:

– The coefficients of the map F is taken from the binary expansion of π.
– Multiplication in GF(16) and GF(256) are implemented with tables. In fact,

in GF(16), we implement a 4kBytes table with a where we can multiply
simultaneously one field element by two others.

– Multiplication in GF(216) is implemented via Karatsuba multiplication over
GF(256).

But using a random cubic system is not very efficient in general, the new idea
is the next one namely we will use sparse polynomials.

5.1 Sparse Cubic Polynomial

The idea is the same as above but we choose each of the above cubic polynomial
to be sparse. Note that due to the new result by Aumasson and Meier [1], we
now advise that only the non-affine portion of the polynomials be sparse.
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The key point is to pick a the ratio ε of the nonzero terms. In general, storing
the formula in a sparse form takes extra space and time to unscramble the
storage, so it is never worthwhile to have ε > 1/10 or so in practice. In the
examples in the following, less than 0.2% of the coefficients are non-zero (one in
500). To give one example, there is around 30 terms per equation in a 40-variable
cubic form.

Assuming 160-bit hashes (SHA-1), preliminary runs with a generic sparse F :

– 40 GF(256) variables into 20, 0.2%: 215 cycles/byte
– 80 GF(16) variables into 40, 0.1%: 4920 cycles/byte

Assuming 256-bit hashes (SHA-2), preliminary runs with a generic sparse F :

– 32 GF(216 variables into 16, 0.2%: 144 cycles/byte
– 64 GF(256) variables into 32, 0.1%: 3560 cycles/byte
– 128 GF(16) variables into 64, 0.1%: 9442 cycles/byte

6 Stacked (Composed) Quadratics

Having noted that cubics don’t work so well, another way is to have quartics
which are composed of quadratics. The first quadratic maps 2n variables to 3n,
the second one then maps the 3n to n. This avoids the problem by using a set
of quartic that can still be computed relatively quickly.

The first question is, whether this is a good idea.

Proposition 6.1. Let the compression function F be equal to F2 ◦ F1, with
generic F1 : K2n → K3n, F2 : K3n → Kn.

Proof. Schematically, F−1
2 = F1 ◦ F−1. Hence If we can invert F , then we can

invert F2. This is hard by assumption.

Proposition 6.2. F is collision-resistant.

Proof (Heuristic). We note that F1 has no collisions on average, and if it has
a pair it is hard to find. Thus, a collision on F means a collision on F2, which
poses no problem, but then we will have to solve F1 twice, which is difficult by
assumption.

Now, let us consider a direct differential attack and compute F (b,c). Using the
chain rule, all the polynomials belong to the ideal generated by the polynomials
of F1. Since for generic polynomials we should not see a reduction to zero under
the degree of regularity [2], the solution is at as hard as inverting F1.

Assuming 160-bit hashes (SHA-1), preliminary runs with a function F = F2◦F1,
with generic F1 : K2n → K3n, F2 : K3n → Kn

– 40 GF(256) variables into 20: 27400 cycles/byte
– 80 GF(16) variables into 40: 101200 cycles/byte
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Assuming 256-bit hashes (SHA-2), preliminary runs with F = F2 ◦F1, generic
F1, F2:

– 32 GF(216 variables into 16: 24100 cycles/byte
– 64 GF(256) variables into 32: 64200 cycles/byte
– 128 GF(16) variables into 64: 247000 cycles/byte

In this way we can explore another form of sparsity, which relies on the idea
is that any quadratic map can be written as f ◦L, where f is a certain standard
form and L is an invertible linear map. Now we will instead choose L to be
sparse.

In this instance, the key question are still the same:

1. How many we choose such that it is fast?
2. How many we choose such that it is secure?
3. How do we choose the sparse terms?

In this area, we note that it is not necessary that L be sparse, but only that it be
decided by a relatively small number of parameters, and that the evaluation is
fast. Along these lines, a new construction is the continued sparse compositions,
where we use composition of sparse random linear maps. We propose some in-
stances of these hash functions for practical applications. There are furthermore
several new ideas that should be further studied.

6.1 Sparse Composition Factor: “Rotated” Quadratic Sets

The idea is that any quadratic map can be written as f ◦L, where f is a certain
standard form and L is an invertible affine map. Now we will choose the linear
part of L to be sparse. The obvious standard form for characteristic 2 fields is
to start with the standard form (“rank form”).

f1(x) = x1x2 + x3x4 + · · · xn−1xn.

Let us explain a little why. Let k be a field of characteristic 2. A quadratic
form in n variables over k is defined by Q =

∑
1≤i≤j≤n pijxixj , pij ∈ F .

Theorem 6.1. Any quadratic form over k is equivalent to

Q′ =
ν∑

i=1

xiyi +
τ+ν∑

j=ν+1

(
ajx

2
j + xjyj + bjy

2
j

)
+

d∑
k=1

ckz2
k

with ck �= 0 and 2ν + 2τ + d ≤ n.

When 2ν +2τ + d = n, the form Q′ is regular. The number d is the deficiency of
the form and the form q′ is completely regular, if Q′ is regular and its deficiency
is zero, which corresponding the case that the corresponding symmetric form is
non-degenerate. A randomly chosen is in general expected to completely regular.
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Furthermore, we have

Theorem 6.2. If two quadratic forms over k, ψ + q1 and ψ + q2, are equivalent
and ψ is completely regular, then q2 and q1 are equivalent over F .

We will use this to give a general characterization of a quadratic function. Any
quadratic function f(x1, ..., x2n) can be written in the form

f(x1, .., xn) =
∑

1≤i≤j≤2n

aijxixj +
∑

1≤i≤2n

bixi + c

where aij , bi, c are in k. We know that through a linear transformation of the
form L(xi) = xi + di, if the quadratic part is non degenerate, we can have that

f(L1(x1, .., xn)) =
∑

1≤i≤j≤2n

a′
ijxixj + c′.

From the theorem above we know that there is a linear map L2 such that

f((L2 ◦ L1)(x1, .., xn)) =
∑

1≤i≤n

x2i−1x2i +
∑
i∈S

x2
i + c′,

where S is a set consisting of pairs in the form of (2j − 1, 2j). The simplest form
this kind of function is surely

f((L2 ◦ L1)(x1, .., xn)) =
∑

1≤i≤n

x2i−1x2i + c′,

and its difference from others in some sense are something of the linear nature,
which can be neglected in some way. From this we conclude that a general
quadratic function can be represented as: F ◦ L, where

F =
∑

1≤i≤n

x2i−1x2i + c′,

which is the basis we will use to build our hash function.
Knowing that any quadratic functions from GF(q)k → GF(q) can be written

this way. The key question are similar now: How do we choose L such that it is
fast? How many we choose such that it is secure? How do we choose the sparse
terms?

In this particular instance, there is something that leaps out at us. starting
with x1 := x, we compute f1(x1), then transform x1 	→ x2 := L2x1 + c2, where
L2 has three randomly chosen entries in each row, and f2(x) := f1(x2). Continue
in this vein and do x2 	→ x3 := L3x2 + c3, f3(x) := f1(x3), and so on and so
forth.

A set of quadratic polynomials like this we call “rotated”. “Rotated” quadratics
are obviously a kind of sparsely generated polynomials, and they behave like ran-
dom ones under F4. In Fig. 1 in the appendix, data points denoted “non-random
sparse” polynomials are rotated.



368 J. Ding and B.-Y. Yang

Assuming 160-bit hashes (SHA-1), preliminary runs with a composed
rotated F :

– 40 GF(256) variables into 20: 1720 cycles/byte
– 80 GF(16) variables into 40: 3220 cycles/byte

Assuming 256-bit hashes (SHA-2), preliminary runs with a composed
rotated F :

– 64 GF(256) variables into 32: 8100 cycles/byte
– 128 GF(16) variables into 64: 24100 cycles/byte

Again, we note that the transformation L has random constant terms. This
leads to random affine parts in the structure throughout, to defend against the
attack below.

7 Further Discussion: Variant Ideas and Other Attacks

We see that our hash schemes are roughly on a par speedwise with other schemes
that depends on hard problems. It is true that there may be better formulations
of the same idea, but MQ is a known hard problem, which should lend a measure
of confidence.

7.1 Other Attacks

There are many specialized attacks in multivariate public key cryptography,
especially the true multivariates, that one may think to use to attack our systems.
But one should realize that due to the property of random polynomials, it is hard
to imagine the usual attacks of linear and differential cryptanalysis working since
cubic and quartic equations are so far removed from linearity. From what we can
see, all but two related ones are now inapplicable to attack our hash.

These attacks are proposed by Aumasson and Meier [1]. The points are:

– If the affine part is as sparse as the rest of the polynomials, then there is a
high probability to construct a collision or partial collision.

– There is a way to solve the differential of the hash if we use a cubic con-
struction where the cubic terms are sparse, but this involves searching for a
short vector in a code, and the exact time complexity is unknown.

Both of these ideas apply over GF(2) only, hence our use of GF(16) and larger.
Of course, the specific points still bear more investigation.

7.2 Other Constructions

The key idea here is once we have a sparse construction, we would like to add
some kind of internal perturbation to make system even more complicated. The
key question is about how we add the perturbation. Another idea is to use a
Feistel structure, which might speed up evaluation a lot with random maps,
but requires more set-up and makes any putative pre-image resistance harder to
show. Since the principle is not much different we don’t go in that direction.
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8 Conclusion

In this paper, we present the idea of using randomly polynomials, and randomly
polynomials with sparse property to build hash functions. What is new here
are: the cubic construction, the amplify-compress composed quadratic construc-
tion, and the specially construced systems using compositions of sparse linear
functions.

We present arguments for the security of the system and for the case of sparse
construction. We can improve our ideas with internal perturbation by adding
additional noise into our sparse system. One more idea is to use composite field,
where we explore further field structure to make our system more secure.

It is clear that some of these programming is very preliminary. The idea is
mainly to point out a new direction in developing hash function whose security
relies on a clear hard problems and therefore easier to study and understand,
our work is just the beginning of this new direction and much work need to be
done. We believe the multivariate hash has a very strong potential in practical
applications. Much more work is needed in finding the right constructions and
optimal parameters, and in rigorous proofs of security.
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A Testing

We depict in Fig. 1 some MAGMA-2.13.6 tests we ran, with K = GF(2), 2n
variables and 3n equations. At n = 16 the system started to thrash due to lack
of memory.

Despite the fact that we had a very good workstation with 64 GB of main
memory, this thrashing is perfectly in line with theory. I.e., it should run out of
memory when n = 16.

The tests we did included quadratic, cubic, and a few quartic systems with
number of variable n, number of equations m, and n : m being roughly equal
to 1, 0.8, 0.75, 2/3, and 0.5. We also did systems over GF(2), GF(16), GF(256),
and we went up for as long as the memory allowed.

– Systems with every coefficient randomly chosen.
– Systems with ε proportion of coefficients randomly picked to be non-zero,

then randomly chosen from non-zero field elements. We tried ε being two
percent, one percent, half a percent, and 1 mil (that is 1/1000).

http://www.minrank.org/hfesubreg.ps
http://citeseer.nj.nec.com/kipnis99cryptanalysis.html
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Fig. 1. “Sparsely determined random quadratics” in MAGMA

– We tried systems that have about n and 2n randomly picked non-zero non-
linear terms in every equation (this is very sparse).

– Rotated sets (see Section 6.1) which had 3, 4, and 5 non-zero terms in every
row (or every column, when we made a mistake in the program) of the
transition matrices.

In every test using magma, the running time and memory used was close
to each other which verifies the observation made by several people that the
matrices become reasonably uniformly dense in F4 as we go up in degree.
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Abstract. Public key encryption with keyword search (PEKS) scheme
to enable one to search encrypted keywords without compromising the
security of the original data. In this paper, we propose a new PEKS
scheme based on bilinear pairings. The scheme is computationally consis-
tent. There is no pairing operation involved in the encryption procedure
and so our new PEKS scheme is more efficient than the scheme of Boneh
et.al. in [1]. Then, we provide further discussions on removing secure
channel from PEKS, and present an efficient secure channel free PEKS
scheme. Our two new schemes can be proved secure in the random oracle
model, under the appropriate computational assumptions.
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1 Introduction

In 2004, Boneh et.al [1] proposed the concept of public key encryption with key-
word search (PEKS) scheme to enable one to search encrypted keywords without
compromising the security of the original data. Later, Abdalla et.al [2] provided
further discussions on the consistency properties and new constructions. They
also suggest some new notions such as public-key encryption with temporary
keyword search and identity based encryption with keyword search.

Suppose Bob wants to send Alice a message M with keywords W1, W2, ..., Wn.
Let pkA be Alice’s public key. Bob encrypts M using a standard public key encryp-
tion E(.). He then appends to the resulting ciphertext a list of PEKS ciphertext of
each keyword. That is E(M, pkA)||PEKS(W1, pkA)||...||PEKS(Wn, pkA). This
kind of encrypted messages may be stored in a server. Alice can give the server
a certain trapdoor TW that enables the server to test whether one of the key-
words associated with the message is equal to the word W of Alice’s choice. Given
PEKS(W ′, pkA) and TW , the server can test whether W = W ′. If W �= W ′ the
server learns nothing more about W ′.
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Such PEKS scheme can be widely used in many practical applications. For
instance, Boneh et.al [1] explain that PEKS provides a mechanism that allows
user Alice to have his email server extract encrypted emails that contain a par-
ticular keyword by providing a trapdoor corresponding to the keyword, while
the email server and other parties excluding Alice do not learn anything else
about the email. Shortly after Boneh et al.’s work, Waters et al. [3] showed that
the PEKS scheme can be applied to build encrypted and searchable audit logs.

The schemes in [1,2] need secure channels to transmit trapdoors to the server.
However, building a secure channel is usually expensive. Very recently, Baek
et al. [4] discussed ”removing secure channel”, and provided a notion of secure
channel free public key encryption with keyword search (SCF-PEKS) scheme.

In this paper, we propose a new PEKS scheme based on pairings. Its encryp-
tion procedure needs no pairing operation. So our scheme is more efficient than
the schemes in [1,2]. Just as discussed in [2], our new scheme is computationally
consistent and can be fine in practice. Then, we provide further discussions on
the notion and security model for SCF-PEKS scheme, and present an efficient
SCF-PEKS scheme. The new schemes can be proved secure in the random oracle
model, under the appropriate computational assumptions.

The rest of this paper is organized as follows: In Section 2, we recall some
preliminary works. In Section 3, we present a new PEKS scheme with efficiency
discussions and security proof. In Section 4, we provide further discussions on the
formal model for SCF-PEKS schemes, and present a new efficient SCF-PEKS
scheme with provable security. Finally, we end the paper with a brief conclusion.

2 Preliminaries

2.1 Public Key Encryption with Keyword Search

Definition 1. [1] A public key encryption with Keyword Search (PEKS) scheme
consists of four polynomial-time algorithms:

– KeyGen : Take as input a security parameter λ, generate a public/private
key pair (pk, sk).

– Trapdoor : Take as input the receiver’s private key sk and a word W , pro-
duce a trapdoor TW .

– PEKS : Take as input the receiver’s public key pk and a word W , produce
a searchable encryption of W .

– Test : Take as input the receiver’s public key pk, a searchable encryption
C = PEKS(pk, W ′), and a trapdoor TW = Trapdoor(sk, W ), output 1
(”yes”) if W = W ′ and 0 (”no”) otherwise.

For any keyword W and key pair (pk, sk) = KeyGen(1λ), TW = Trapdoor(sk,
W ), correctness requires that Test(pk, PEKS(pk, W ), TW ) = 1. In [4], the au-
thors provided further discussions on consistency and suggested the definitions
of perfectly consistent, statistically consistent and computationally consistent ac-
cording to the type of the adversaries.
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In [1], Boneh et.al defined a security notion for PEKS schemes– ”indistin-
guishability of PEKS against chosen keyword attack” (IND-CKA).

IND-CKA game

– KeyGen: The challenger runs the KeyGen(λ) algorithm to generate (pk, sk).
It gives pk to the attacker A.

– Phase 1: The attacker A can adaptively ask the challenger for the trapdoor
TW for any keyword W ∈ {0, 1}∗ of his choice.

– Challenge: At some point, the attacker A sends the challenger two words
W0, W1 on which it wishes to be challenged. The only restriction is that the
attacker did not previously ask for the trapdoors TW0 or TW1 . The challenger
picks a random b ∈ {0, 1} and gives the attacker C = PEKS(pk, Wb) as the
challenge PEKS ciphertext.

– Phase 2: The attacker can continue to ask for trapdoors TW for any keyword
W of his choice as long as W �= W0, W1.

– Guess: Eventually, the attacker A outputs b′ ∈ {0, 1} and wins the game if
b = b′.

Such an adversary A is called an IND-CKA adversary. A’s advantage in at-
tacking the scheme E is defined as the following function of the security para-
meter λ:

AdvE,A(λ) = |Pr[b = b′] − 1/2|.
The probability is over the random bits used by the challenger and the adversary.

Definition 2. [1] A PEKS scheme E is IND-CKA secure if for any polynomially
time adversary A, AdvE,A(λ) is negligible.

2.2 Bilinear Pairings

Let (G1, +) and (G2, ·) be two cyclic groups of prime order q. ê : G1 × G1 → G2

be a map which satisfies the following properties.

1. Bilinear: ∀P, Q ∈ G1, ∀α, β ∈ Zq, ê(αP, βQ) = ê(P, Q)αβ ;
2. Non-degenerate: If P is a generator of G1, then ê(P, P ) is a generator of G2;
3. Computable: There is an efficient algorithm to compute ê(P, Q) for any

P, Q ∈ G1.

Such a bilinear map is called an admissible bilinear pairing [5]. The Weil pair-
ings and the Tate pairings of elliptic curves can be used to construct efficient
admissible bilinear pairings.

We review two complexity problems related to bilinear pairings: the Bilin-
ear Diffie-Hellman (BDH) problem [5] and the Bilinear Diffie-Hellman Inverse
(BDHI) problem [6,7]. Let P be a generator of G1, and a, b, c ∈ Z∗

q .

– BDH problem: given P, aP, bP, cP ∈ G1, output ê(P, P )abc. An algorithm
A solves BDH problem with the probability ε if

Pr[A(P, aP, bP, cP ) = ê(P, P )abc] ≥ ε,
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where the probability is over the random choice of generator P ∈ G∗
1, the

random choice of a, b, c ∈ Z∗
q and random coins consumed by A.

– k-BDHI problem: given (P, aP, a2P, ...akP ) ∈ (G∗
1)k+1, output ê(P, P )a−1

.
An algorithm A solves k-BDHI problem with the probability ε if

Pr[A(P, aP, a2P, ...akP ) = ê(P, P )a−1
] ≥ ε,

where the probability is over the random choice of generator P ∈ G∗
1, the

random choice of a ∈ Z∗
q and random coins consumed by A.

We assume through this paper that BDH problem and k-BDHI problem are
intractable, which means that there is no polynomial time algorithm to solve
BDH problem or k-BDHI problem with non-negligible probability.

3 A New PEKS Scheme from Pairings

3.1 The Scheme

The method for obtaining trapdoors from keywords is a simplification of a
method suggested by Sakai and Kasahara [12]. This leads to a more efficient
performance. Let (G1, +) and (G2, ·) be two cyclic groups of prime order q,
ê : G1 × G1 → G2 be an admissible bilinear pairing, H1 : {0, 1}∗ → Z∗

q and
H2 : G2 → {0, 1}log q be two hash functions. P is a generator of G1, μ = ê(P, P ).
The scheme is described as following:

– KeyGen : Pick a random x ∈ Z∗
q , compute X = xP , and output pk = X ,

and sk = x.
– Trapdoor : Take as input secret key x and keyword W , and output TW =

(H1(W ) + x)−1P .
– PEKS : Take as input public key X and a keyword W , select randomly

r ∈ Z∗
q , compute U = rH1(W )P + rX , c = H2(μr) and output (U, c).

– Test : For input public key X , searchable encryption cipher-text (U, c) and
trapdoor TW , test if H2(ê(TW , U)) = c. If so, output 1; otherwise, output 0.

3.2 Consistency and Efficiency

Correctness of the scheme is easily proved as follows:

H2(ê(TW , U)) = H2(ê((H1(W ) + x)−1P, rH1(W )P + rX))
= H2(ê((H1(W ) + x)−1P, r(H1(W ) + x)P ))
= H2(ê(P, P )r) = c.

With the same techniques used in the proof of Theorem 3.3 in [2], we can
prove that our new scheme is computationally consistent. We do not repeat the
details here.

Denote by M an ordinary scalar multiplication in (G1, +), by E an Exp.
operation in (G2, .), and by ê a computation of the pairing. The hash function
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H1 : {0, 1}∗ → G∗
1 used by the schemes in [1,2] usually requires a ”Maptopoint

operation” [5] to map a keyword to an element in G1. As discussed in [5], Map-
topoint operation (denoted by P ) is so inefficient that we can’t neglect it. Do
not take other operations into account. We compare our scheme to the schemes
in [1,2] in the following table.

schemes KeyGen Trapdoor PEKS Test
scheme in [1] 1M 1M + 1P 2M + 1P + 1ê 1ê
scheme in [2] 1M 1M + 1P 1E + 1P + 1ê 1ê

proposed 1M 1M 2M + 1E 1ê

Note: The hash function used in our scheme which maps a keyword to an
element in Z∗

q is so efficient that we usually can neglect it.
Although fruitful achievements [9,10] have been made in enhancing the com-

putation of pairings, the computation of pairings is still the most time-consuming
operations. Our new scheme requires no pairing operation in PEKS procedure.
So our new PEKS scheme is more efficient comparatively in performance.

Some general performance enhancements can also be applied to our scheme.
For pre-selected P ∈ G1 and μ ∈ G2, there are efficient algorithms [11] to
compute rH1(IDX)P and μr for a random r ∈ Z∗

q by pre-computing and storing.

3.3 Security Proof

Theorem 1. Let F0 be an IND-CKA adversary that has advantage ε(λ) within
a time bound T (λ). Suppose F0 makes at most qT > 0 Trapdoor queries, q1 > 0
hash function queries to H1 and q2 > 0 hash function queries to H2. Let n =
max{q1, 2qT }. Then there is an algorithm F1 that solves the n-BDHI problem
with advantage at least ε(λ)/(nq2) with a running time O(T (λ)).

Proof: F1 is given input parameters of pairing (q, G1, G2, ê) and a random
instance (P, aP, a2P, ..., anP ) of the n-BDHI problem, where P is random in G∗

1

and a is a random in Z∗
q . F1 simulates the challenger and interacts with F0 as

follows:

– KeyGen: 1. Randomly choose different h0, h1, ...hn−1 ∈ Z∗
q , and compute

f(x) =
∏n−1

i=1 (x + hi) =
∑n−1

i=0 cix
i.

2. Compute Q =
∑n−1

i=0 cia
iP = f(a)P , aQ =

∑n−1
i=0 cia

i+1P , and Q′ =∑n−1
i=1 cia

i−1P . In the (unlikely) situation where Q = 1G1 , there exists an
hi = −a, hence, F1 can solve the n-BDHI problem directly and abort.
3.Compute fi(x) = f(x)/(x + hi) =

∑n−2
j=0 djx

j . Obviously, (a + hi)−1Q =
(a + hi)−1f(a)P = fi(a)P =

∑n−2
j=0 dja

jP for 1 ≤ i ≤ n.
4. Randomly choose an index t with 1 ≤ t ≤ n, set v = 0, and start by giving
F0 the public key Y = aQ − h0Q.

– Phase 1: H1-queries. F1 maintains a H1 list, initially empty. For a query
W , if W already appears on the H1 list in a tuple (W, g, D), F1 responds
with g. Otherwise, sets v = v + +, Wv = W , if v = t, F1 sets gv = h0,
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Dv = ⊥ (⊥ means null); otherwise, F1 selects a random n ≥ ι > 0 which
has not been chosen and sets gv = hι + h0, Dv = (a + hι)−1Q. In both case,
adds the tuple (Wv, gv, Dv) to H1 list and responds with gv.

– Phase 1: H2-queries. F1 maintains a H2 list, initially empty. For a query
ei, F1 checks if ei appears on the H2 list in a tuple (ei, ui). If not, F1 picks a
random ui ∈ {0, 1}log q, and adds the tuple (ei, ui)to the H2 list. F1 returns
ui to F0.

– Phase 1: Trapdoor queries: For input Wi, without any loss of generality,
we can assume that Wi has already been asked to oracle H1. F1 searches in
H1 list for (Wi, gi, Di). If Di = ⊥ then F1 aborts. Otherwise, F1 responds
with Di.

– Challenge: Once F0 decides that Phase 1 is over it outputs two keywords
W ′

0, W
′
1 on which it wishes to be challenged. F1 responds as follows:

1. F1 runs the above algorithm for responding to H1-queries twice to obtain
(W ′

0, g
′
0, D

′
0) and (W ′

1, g
′
1, D

′
1). If both D′

0 �= ⊥ and D′
1 �= ⊥ then F1 aborts.

Otherwise, F1 responds with the challenge ciphertext (bQ, ξ) for random
selected b ∈ Z∗

q and ξ ∈ {0, 1}log q. (Observe that if (bQ, ξ) is a cipher-
text corresponding to W ′

ι with ι ∈ {0, 1} satisfying D′
ι = ⊥, by defin-

ition, the decryption of C is ξ = H2(ê(TW ′
ι
, bQ)) = H2(ê(a−1Q, bQ)) =

H2(ê(Q, Q)a−1b).)
– Phase 2: H1-queries, H2-queries, Trapdoor queries. F1 responds to

these queries in the same way it does in Phase 1 with the only restriction
that Wi �= W ′

0, W
′
1 for Trapdoor queries.

– Guess: Eventually F0 produces its guess ι′ ∈ {0, 1} for ι.

F1 keeps interacting with F0 until F0 halts or aborts. If F0 produces a guess
ι′, F1 picks a random tuple (ei, ui) from the H2 list. F1 computes α = eb−1

i ,
β = ê(Q′, Q + c0P ) and outputs (α/β)c−2

0 as the solution to the given instance
of n-BDHI problem. (Note that if α = ê(Q, Q)a−1

, then (α/β)c−2
0 = ê(P, P )a−1

.)
This completes the description of F1.
Suppose that in a real attack game F0 is given the public key (Q, Y = aQ −

h0Q) and F0 asks to be challenged on words W ′
0 and W ′

1. In response, F0 is given
a challenge (bQ, ξ). Then, just as discussed in [1], in the real attack game F0

issues an H2 query for either H2(ê(TW ′
0
, bQ)) or H2(ê(TW ′

1
, bQ)) with probability

at least 2ε(λ).
Now, assuming F1 does not abort, we know that F1 simulates a real attack game

perfectly up to the moment when F0 issues a query for either H2(ê(TW ′
0
, bQ)) or

H2(ê(TW ′
1
, bQ)). Therefore, the value H2(ê(TW ′

ι
, bQ)) = H2(ê(Q, Q)a−1b) will ap-

pear in the H2-list with probability at least ε(λ). F1 will choose the correct pair
with probability at least 1/q2.

During the simulation, the probability that F1 does not abort in phases 1 or
2 because of F0’s Trapdoor queries is 1 − qT /n. The probability that F1 does
not abort during the challenge step is 2/n. Because n ≥ 2qT , we know that the
probability that F1 does not abort during the simulation is (1−qT /n)2/n ≥ 1/n.

Therefore, F1’s success probability overall is at least ε(λ)/(nq2).
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3.4 Public-Key Encryption with Temporary Keyword Search

Both [2] and [4] discussed the server’s attack by storing trapdoors. That is,
once the gateway has the trapdoor for a certain period, it can test whether
this keyword was present in past ciphertexts, and can test its presence in any
future ciphertexts. The possible solution is by using public-key encryption with
temporary keyword search [2]. Abdalla et.al [2] provided a construction from
hierarchical encryption. Baek et.al [4] suggested a more efficient solution by
refreshing keywords (appending the time period to the keyword when encrypting
or computing trapdoors). This skill can also be applied to our scheme.

4 PEKS Schemes without Secure Channel

PEKS schemes need secure (encrypted and authenticated) channels between
users and servers. However, building a secure channel is usually expensive. In [4],
Baek et.al suggested a formal model for secure channel free public key encryption
with keyword search (SCF-PEKS) scheme, which defines SCF-PEKS scheme with
six algorithms. In this section, we provide further discussions on the formal
model for SCF-PEKS schemes, and present a new efficient SCF-PEKS scheme
with provable security.

4.1 New Formal Model for SCF-PEKS Schemes

A SCF-PEKS scheme enables the sender to use the server’s public key as well
as the receiver’s public key to generate PEKS ciphertexts. The receiver then can
send a trapdoor to retrieve data associated with the encrypted keyword via a
public channel.

Definition 3. A SCF-PEKS scheme consists of four polynomial-time algorithms:

– KeyGen : Take as input a security parameter λ, generate a public/private
key pair (pk, sk). This algorithm is used to generate key pairs for users (in-
cluding the receiver and the server).

– Trapdoor : Take as input the receiver’s private key skr and a word W , pro-
duce a trapdoor TW .

– PEKS : Take as input the receiver’s public key pkr, the server’s public key
pks and a word W , produce a searchable encryption of W .

– Test : Take as input the server’s secret key sks and the receiver’s public key
pkr, a searchable encryption S = PEKS(pkr, pks, W

′), and a trapdoor TW =
Trapdoor(skr , W ), output 1 (”yes”) if W = W ′ and 0 (”no”) otherwise.

Consistency requires that for any keyword W , receiver’s key pair (pkr, skr) =
KeyGen(1λ), server’s key pair (pks, sks)=KeyGen(1λ), TW=Trapdoor(skr , W ),
we have Test(sks, pkr, PEKS(pkr, pks, W ), TW ) = 1.
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As to security, informally, we can say a SCF-PEKS scheme is secure if it can
achieve the following goals:

– The attacker without the trapdoors for given keywords cannot tell the PEKS
ciphertext is produced from which keyword, even if he knows the server’s
secret key. We call this security property ”indistinguishability against chosen
keyword attack with server’s secret key” (IND-CKA-SSK).

– The attacker without the server’s private key cannot make any decisions
about the PEKS ciphertexts even though the attacker gets all the trapdoors
for the keywords that it holds. We call this security property ”indistinguisha-
bility against chosen keyword attack with all trapdoors” (IND-CKA-AT).

Formally, we define the following two security notions.

IND-CKA-SSK game

– KeyGen: The challenger runs the KeyGen(λ) algorithm twice to generate
the server’s key pair (pks, sks) and the receiver’s key pair (pkr, skr). It gives
pks, pkr, sks to the attacker.

– Phase 1, Challenge, Phase 2, Guess: The attacker A does these steps
almost the same as that in IND-CKA game, except that the challenge ci-
phertext is C = PEKS(pkr, pks, Wb), where b ∈R {0, 1}, W0, W1 are the
two words to be challenged.

The adversary A is called an IND-CKA-SSK adversary. A’s advantage is de-
fined as:

AdvIND−CKA−SSK
E,A (λ) = |Pr[b = b′] − 1/2|.

The probability is over the random bits used by the challenger and the adversary.

Definition 4. A SCF-PEKS scheme E is IND-CKA-SSK secure if for any poly-
nomially time adversary A, AdvIND−CKA−SSK

E,A (λ) is negligible.

IND-CKA-AT game

– KeyGen: The challenger runs the KeyGen(λ) algorithm twice to generate
the server’s key pair (pks, sks) and the receiver’s key pair (pkr, skr). It gives
pks, pkr to the attacker.

– Phase 1: The attacker can adaptively ask the challenger for the trapdoor
TW for any keyword W ∈ {0, 1}∗ of his choice.

– Challenge: At some point, the attacker A sends the challenger two words
W0, W1 on which it wishes to be challenged. The challenger picks a random
b ∈ {0, 1} and gives the attacker C = PEKS(pkr, pks, Wb) as the challenge
PEKS.

– Phase 2: The attacker can continue to ask for trapdoors TW for any keyword
W of his choice.

– Guess: Eventually, the attacker A outputs b′ ∈ {0, 1} and wins the game if
b = b′.
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The adversary A is called an IND-CKA-AT adversary. A’s advantage is de-
fined as:

AdvIND−CKA−AT
E,A (λ) = |Pr[b = b′] − 1/2|.

The probability is over the random bits used by the challenger and the adversary.

Definition 5. A SCF-PEKS scheme E is IND-CKA-AT secure if for any poly-
nomially time adversary A, AdvIND−CKA−AT

E,A (λ) is negligible.

4.2 A New SCF-PEKS Scheme from Pairings

Let (G1, +) and (G2, ·) be two cyclic groups of prime order q, ê : G1 × G1 → G2

be an admissible bilinear pairing, H1 : {0, 1}∗ → Z∗
q and H2 : G2 → {0, 1}log q be

two hash functions. P is a generator of G1, μ = ê(P, P ). The scheme is described
as following:

– KeyGen : Pick a random x ∈ Z∗
q , compute X = xP , and output pk = X ,

and sk = x.
– Trapdoor : Take as input secret key x and keyword W , output TW =

(H1(W ) + x)−1P .
– PEKS : Take as input a receiver’s public key X , a server’s public key Y and

a keyword W , select randomly r1, r2 ∈ Z∗
q , compute U = r1H1(W )P + r1X ,

V = r2P , c = H2(ê(r1P + r2U, Y )) and output (U, V, c).
– Test : Take as input the receiver’s public key X , the server’s private key

y ∈ Z∗
q , a searchable encryption cipher-text (U, V, c) and trapdoor TW , test

if H2(ê(yU, TW + V )) = c. If so, output ”yes”; otherwise, output ”no”.

4.3 Consistency and Efficiency

Consistency of the scheme is easily proved as follows:

H2(ê(yU, TW + V )) = H2(ê(U, (H1(W ) + x)−1P + r2P )y)
= H2(ê(r1(H1(W ) + x)P, (H1(W ) + x)−1P )y · ê(U, r2P )y)
= H2(ê(r1P, yP ) · ê(r2U, yP ))
= H2(ê(r1P + r2U, Y )) = c.

Denote by M an ordinary scalar multiplication in (G1, +), by E an Exp.
operation in (G2, .), by ê a computation of the pairing and by P a Maptopoint
operation [5]. Do not take other operations into account. We compare our scheme
to the scheme in [4] in the following table.

schemes KeyGen Trapdoor PEKS Test
scheme in [4] 1M 1M + 1P 1M + 1P + 1E + 2ê 2M + 1ê

proposed 1M 1M 5M + 1ê 1M + 1ê
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4.4 Security Proof

Theorem 2. Let F0 be an IND-CKA-SSK adversary that has advantage ε(λ)
within a time bound T (λ). Suppose F0 makes at most qT > 0 Trapdoor queries,
q1 > 0 hash function queries to H1 and q2 > 0 hash function queries to H2.
Let n = max{q1, 2qT }. Then there is an algorithm F1 that solves the n-BDHI
problem with advantage at least ε(λ)/(nq2) with a running time O(T (λ)).

Proof: F1 is given input parameters of pairing (q, G1, G2, ê) and a random
instance (P, aP, a2P, ..., anP ) of the n-BDHI problem, where P is random in G∗

1

and a is a random in Z∗
q . F1 simulates the challenger and interacts with F0 as

follows:

– KeyGen: Randomly choose different h0, h1, ...hn−1 ∈ Z∗
q , and compute

f(x), Q, aQ, Q′, (a + hi)−1Q for 1 ≤ i ≤ n the same as that in the proof
of Theorem 1. In the (unlikely) situation where Q = 1G1 , there exists an
hi = −a, hence, F1 can solve the q1-BDHI problem directly and abort.

2. Randomly choose an index t with 1 ≤ t ≤ n, sets v = 0. Select a ran-
dom y ∈ Z∗

q and start by giving F0 the reciver’s public key X = aQ − h0Q
and the server’s key pair (y, yQ).

– Phase 1: H1-queries, H2-queries, Trapdoor queries. F1 responds to
these queries the same way as that in the proof of Lemma 1.

– Challenge: Once F0 decides that Phase 1 is over it outputs two keywords
W ′

0, W
′
1 on which it wishes to be challenged. F1 responds as follows:

1. F1 runs the above algorithm for responding to H1-queries twice to obtain
(W ′

0, g
′
0, D

′
0) and (W ′

1, g
′
1, D

′
1). If both D′

0 �= ⊥ and D′
1 �= ⊥ then F1 aborts.

Otherwise, F1 responds to the challenge with cipher-text (γ1Q, γ2Q, ξ) for ran-
domly selected γ1, γ2 ∈ Z∗

q and ξ ∈ {0, 1}log q. (Observe that if (γ1Q, γ2Q, ξ) is
a cipher-text corresponding to W ′

ι with ι ∈ {0, 1} satisfying D′
ι = ⊥, by defini-

tion, the decryption of C is ξ = H2(ê(γ1Q, TW ′
ι
+γ2Q)y) = H2(ê(γ1Q, a−1Q+

γ2Q)y) = H2(ê(Q, Q)γ1(a
−1+γ2)y).)

– Phase 2: H1-queries, H2-queries, Trapdoor queries. F1 responds to
these queries in the same way as it does in Phase 1 with the only restriction
that Wi �= W ′

0, W
′
1 for Trapdoor queries.

– Guess: Eventually F0 produces its guess ι′ ∈ {0, 1} for ι.

F1 keeps interacting with F0 until F0 halts or aborts. If F0 produces a guess ι′,
F1 picks a random tuple (ei, hi) from the H2 list and computes δ = ê(Q, γ2Q),
α = e

(γ1y)−1

i /δ, β = ê(Q′, Q + c0P ) and outputs (α/β)c−2
0 as the solution to the

given instance of n-BDHI problem. (Note that if ei = ê(Q, Q)γ1(a
−1+γ2)y, then

α = ê(Q, Q)a−1
, hence, (α/β)c−2

0 = ê(P, P )a−1
.)

This completes the description ofF1. Just as discussed in the proof ofTheorem1,
F1’s success probability overall is at least ε(λ)/(nq2).

Theorem 3. Let F0 be an IND-CKA-AT adversary that has advantage ε(λ)
within a time bound T (λ). Suppose F0 makes at most qT > 0 Trapdoor queries,
q1 > 0 hash function queries to H1 and q2 > 0 hash function queries to H2.
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Then there is an algorithm F1 that solves the BDH problem with advantage at
least 2ε(λ)/q2 with a running time O(T (λ)).

Proof: F1 is given input parameters of pairing (q, G1, G2, ê) and a random
instance (P, aP, bP, cP ) of the BDH problem, where P is random in G∗

1 and
a, b, c are random elements in Z∗

q . F1 simulates the challenger and interacts with
F0 as follows:

– KeyGen: Select randomly x ∈ Z∗
q and start by giving F0 the reciver’s public

key X = xP and the server’s public key aP .
– Phase 1: H1-queries. F1 maintains a H1 list, initially empty. For a query

Wi, if Wi already appears on the H1 list in a tuple (Wi, gi), F1 responds
with gi. Otherwise, F1 selects a random gi ∈ Z∗

q , adds the tuple (Wi, gi) to
the H1 list and responds with gi.

– Phase 1: H2-queries. F1 maintains a H2 list, initially empty. For a query
ei, F1 checks if ei appears on the H2 list in a tuple (ei, hi). If not, F1 picks a
random hi ∈ {0, 1}log q, and adds the tuple (ei, hi)to the H2 list. F1 returns
hi to F0.

– Phase 1: Trapdoor queries: For input Wi, without any loss of generality,
we can assume that Wi has already been asked to oracle H1. F1 searches in
H1 list for (Wi, gi) and F1 responds with Di = (gi + x)−1P .

– Challenge: Once F0 decides that Phase 1 is over it outputs two keywords
W ′

0, W
′
1 on which it wishes to be challenged. F1 runs the above algorithm

for responding to H1-queries twice to obtain (W ′
0, g

′
0) and (W ′

1, g
′
1). Selects

ι ∈ {0, 1} and responds with the challenge ciphertext (g′ιbP + xbP, cP, ξ)
for random selected ξ ∈ {0, 1}log q. (Observe that if (g′ιbP + xbP, cP, ξ) is a
cipher-text corresponding to W ′

ι , by definition, the test procedure of C is to
test ξ = H2(ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a).)

– Phase 2: H1-queries, H2-queries, Trapdoor queries. F1 responds to
these queries in the same way it does in Phase 1.

– Guess: Eventually F0 produces its guess ι′ ∈ {0, 1} for ι.

F1 keeps interacting with F0 until F0 halts or aborts. If F0 produces a
guess ι′, F1 picks a random tuple (ei, hi) from the H2 list. F1 computes and
outputs α = (ei/ê(aP, bP ))(g

′
ι+x)−1

as the solution to the given instance of
BDH problem. (Note that if ei = ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a, then
ei = ê(bP, P )aê(P, P )bca(g′

ι+x), hence α = (ei/ê(aP, bP ))(g
′
ι+x)−1

= ê(P, P )abc.)
This completes the description of F1.
We know that in the real attack game F0 issues an H2 query for H2(ê(g′0bP +

xbP, (g′0 +x)−1P +cP )a) H2(ê(g′1bP +xbP, (g′1 +x)−1P +cP )a) with probability
at least 2ε(λ). F1simulates a real attack game perfectly up to the moment when
F0 issues a query for H2(ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a) with ι ∈ {0, 1}.
Therefore, the value ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a will appear in the H2-list
with probability at least 2ε(λ). F1 will choose the correct pair with probability
at least 1/q2. Therefore, F1’s success probability overall is at least 2ε(λ)/q2.
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5 Conclusion

In this paper, first, we propose a new efficient PEKS scheme based on pairings
and prove its security in the random oracle model under the hardness assumption
of n-BDHI problem. Then, we provide further discussions on the notion of SCF-
PEKS scheme, give a formal security model and present an efficient SCF-PEKS
scheme. The security of the new SCF-PEKS scheme can be reduced to the n-
BDHI problem and the BDH problem, in the random oracle model.
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Abstract. Multi-Identity Single-Key Decryption (MISKD) is an
Identity-Based Encryption (IBE) system where a private decryption key
can map multiple public keys (identities). More exactly, in MISKD, a
single private key can be used to decrypt multiple ciphertexts encrypted
with different public keys associated to the private key. MISKD is a
variant of IBE and offers convenience to users who have to manage
many private keys in a standard IBE. The notion of MISKD was re-
cently introduced by Guo, Mu and Chen in Pairing 2007. They proposed
a concrete MISKD scheme and proved its security based on the Bilinear
Strong Diffie-Hellman problem (q-BSDH) in random oracle model. In
this paper, we present a novel MISKD scheme that is provably secure in
the selective-ID model based on the Decisional Bilinear Diffie-Hellman
(DBDH) assumption. Our scheme is more efficient in decryption.

Keywords: ID-based Systems, Encryption, Pairing.

1 Introduction

In 1984, Shamir [16] introduced the notion of identity-based (or ID-based) cryp-
tography and constructed an identity-based signature scheme. The motivation is
to simplify certificate management in email systems. In identity-based cryptog-
raphy, a public key can be an arbitrary string such as an email address, a user
name, or an IP number. The beauty of identity-based cryptography lies in the
convenience of public key handling, in the sense that a user’s identity can serve as
a public key without the need of a traditional Public Key Infrastructure (PKI).
In 2001, Boneh and Franklin [4] for the first time successfully constructed a con-
crete identity-based encryption (IBE) scheme secure in the random oracle model

� Supported by National Natural Science Foundation of China (#60502047), Science
and Technology of Fujian Province (2006F5036) and Open Funds of Key Lab of
Fujian Province University Network Security and Cryptology (07B001).

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 384–398, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Multi-Identity Single-Key Decryption without Random Oracles 385

against chosen ciphertext attack (IND-ID-CCA). Several novel IBE schemes have
been proposed in various security models (e.g., [8,2,18,11]).

The notion of Multi-Identity Single Key Decryption (MISKD) was recently
introduced in Pairing 2007 by Guo, Mu, and Chen [12]. We refer it to as GMC
scheme. They considered a situation that a user works as a consultant for multi-
ple (n) companies, assuming that an IBE scheme is adopted by these companies.
Each company could provide him with an email address (or identity); therefore,
in a traditional IBE system, he has to maintain n private keys that correspond to
his n identities (apparently, no company will send an email to A’s email address
but using B’s email address as the public key). This obviously is problematic
to him when n is large. It would be nice, if he can use a single private key only
and this magic private key can decrypt all ciphertexts encrypted with any of
his public keys (identities). Fortunately, this has been proved feasible by Guo,
Mu, and Chen [12] who proposed a MISKD scheme showing how to accumu-
late all private keys into a single one that can decrypt a ciphertext encrypted
with any of associated public keys. Their scheme is based on the Bilinear Strong
Diffie-Hellman assumption (q-BSDH for short), which is a variant of the q-SDH
assumption, where q is the maximal number of public keys that a private key
can map.

Although the GMC scheme is sound, there are two open problems to be solved.
First, how to construct a MISKD scheme without random oracles? As we know,
random oracle models are not desirable in secure proofs [7]. Second, the q-BSDH
assumption is stronger than Decisional Bilinear Diffie-Hellman assumption and
Cheon [6] has pointed out that q-SDH and other similar assumptions have weak-
ness when q is the maximum number of private key owners that an adversary may
corrupt in an active attack. Thus, how to construct a MISKD with a weaker as-
sumption remains open. Moreover, the computation in their scheme is not efficient.

We should differentiate MISKD from Hierarchical Identity-Based Encryption
(HIBE) and Fuzzy Identity-Based Encryption (FIBE).

The notion of hierarchical identities was introduced by Horwitz and Lynn [14].
The notion of Hierarchical Identity-Based Encryption (HIBE) was introduced by
Gentry and Silverberg [13] in the random oracle model in 2002 and has been fur-
ther developed in [3,10]. HIBE is an extension of IBE and achieves private key
generation hierarchy. In general, HIBE can handle a similar problem as MISKD
does, but they are different. In HIBE, it is required that all public keys be asso-
ciated with a single identity, while in MISKD there is no such requirement. To
further clarify this, let us take a look at the following example. Assume that “Al-
ice” is an identity for Alice and she has two email addresses: alice@gmail.com and
alice@hotmail.com. The public keys of Alice are then “Alice‖alice@gmail.com”
and “Alice‖alice@hotmail.com”, which are associated with “Alice” as an identity.
This implies that Alice’s private key is also associated with “Alice” as an identity.
If Alice has another email address: me@gmail.com, which is used as her public key,
then HIBE is not applicable (while this case can still be handled with MISKD).

Fuzzy IBE was introduced by Sahai and Waters [17]. A FIBE scheme allows
a private key for an identity ID to decrypt a ciphertext encrypted with another
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Table 1. Further comparison with the GMC’s scheme. In order to present the com-
parison clearly, we use the same parameter n, which denotes the maximum number of
private keys that can be accumulated into a single one in both the GMC scheme and
ours. u is a common parameter in ciphertext in both schemes.

Scheme Security Model Assumption Time cost on u

[12] Random Oracles n-BSDH liner (n − 1)

Our scheme selective-ID DBDH n − 1

identity ID′ if and only if the identities ID and ID′ are close to each other as
measured by some metric. A FIBE scheme allows an encryption with a biometric
input as the public key so that the ciphertext can still be decrypted even if the
public key is partially changed. Like MISKD, FIBE is an encryption scheme
where a private key can map multiple public keys, but all the public keys should
satisfy some metric. E.g., when we view the identity as an n-bit vector, the
difference between all public keys should not be more than d bits. However,
the goal of FIBE is different from that of MISKD and it does not possess the
properties of MISKD.

In this paper, we present a novel MISKD scheme that solves the open problems
mentioned earlier in this section. We prove its security in the selective-ID model
based on the Decisional Bilinear Diffie-Hellman assumption. Our scheme is more
efficient than the scheme proposed in [12].

Road Map: In Section 2, we will provide the definitions of our scheme, including
security requirements and some preliminaries. In Sections 3 and 4, we propose
our MISKD schemes and its security proofs against IND-ID-CPA and IND-ID-
CCA attacks. In Section 5, we give a note to our MISKD scheme. We conclude
our paper in Section 6.

2 Definitions

In this section, we define our MISKD system and its security requirements.

Definition 1. A MISKD scheme can be described as the four PPT algorithms:
Setup, KeyGen, Encrypt and Decrypt.

– Setup: takes as input a security parameter 1k, and outputs a master secret
key α and the corresponding master public parameters params.

– KeyGen: takes as input the multiple public keys IDs = 〈ID1, ID2, · · · , IDl〉
(1 ≤ l ≤ n) of a party, the params and the master secret key α, and outputs
a single private key dIDs for the party.

– Encrypt: takes as input a message M , the params and an IDi ∈ IDs, and
outputs ciphertext C.

– Decrypt: takes as input the ciphertext 〈IDi, C〉, the private key dIDs and
other ID’s {ID1, · · · , IDi−1, IDi+1, · · · IDl}, and outputs the message M .
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2.1 Security Model

Boneh and Boyen defined the model of selective-ID secure against the chosen
ciphertext attack in [2], denoted by IND-sID-CCA. Our MISKD scheme has
IND-sID-CCA security, defined as follows:

Init: The adversary outputs an identity ID∗, where it wishes to be challenged.

Setup: The challenger takes as input a security parameter 1k, and then runs the
algorithm Setup. It gives the adversary the resulting master public parameters
denoted by params and keeps the master secret key to itself.

Phase 1: The adversary makes queries q1, q2, · · · , qm. When the queries are for
key generation, the adversary can make at most n queries at one time:

– Key generation queries IDs = 〈IDi+1, IDi+2, · · · , IDi+l〉 (1 ≤ l ≤ n). The
challenger responds by running algorithm KeyGen to generate the private
key dIDs corresponding to the multiple public keys IDs. It sends dIDs to
the adversary.

– Decryption query 〈IDi, Ci : IDs〉. The challenger responds by running al-
gorithm KeyGen to generate the private key dIDs corresponding to IDs. It
then runs algorithm Decrypt to decrypt the ciphertext 〈IDi, Ci〉 using the
private key dIDs and IDs (IDi ∈ IDs) and sends the resulting plaintext to
the adversary.

These queries may be asked adaptively according to the replies of queries.

Remarks: We enhance the power of adversary in the decryption query; namely,
which private key to decrypt the ciphertext can be decided by the adversary.
Compared to GMC’s definition [12] where the decryption query is the same
as that of a general IBE system, we have weakened our security model. Our
definition is more realistic in terms of the property of MISKD, where any party
suffering from attack may hold a single private key for multiple public keys.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts M0, M1 on which it wishes to be challenged. The chal-
lenger picks a random bit br ∈ {0, 1} and sets Cch = Encrypt(params, ID∗, Mbr).
It sends Cch as the challenge to the adversary.

Phase 2: It is the same as Phase 1. The constraint is that the adversary cannot
make a key generation query on ID∗ (any key generation queries on IDs should
not include ID∗, i.e. ID∗ /∈ IDs) or decryption query on (ID∗, Cch).

Guess: The adversary outputs a guess bg ∈ {0, 1} and wins the game if bg = br.

We refer to such an adversary A as an IND-sID-CCA adversary. We define the
advantage of adversary A in attacking the scheme E as

AdvE,A =
∣∣∣∣Pr[bg = br] − 1

2

∣∣∣∣ .

The probability is over the random bits used by the challenger and the
adversary.



388 F. Guo et al.

Definition 1. We say that a MISKD system E is (t, qID, qC , ε)-adaptively cho-
sen ciphertext secure if for any t-time IND-sID-CCA adversary A that makes at
most qID chosen private key queries and at most qC chosen decryption queries
we have that AdvEA < ε. As shorthand, we say that E is (t, qID, qC , ε) IND-sID-
CCA secure.

Definition 2. We say that a MISKD system E is (t, qID, ε)-adaptively chosen
plaintext secure if E is (t, qID, 0, ε) chosen ciphertext secure. As shorthand, we
say that E is (t, qID, ε) IND-sID-CPA secure.

2.2 Bilinear Pairing

Let G and GT be two cyclic groups of prime order p. Let g be a generator of G.
A map e : G × G → GT is called a bilinear pairing (map) if this map satisfies
the following properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
– Non-degeneracy: e(g, g) �= 1. In other words, if g be a generator of G, then

e(g, g) generates GT .
– Computability: There is an efficient algorithm to compute e(u, v) for all

u, v ∈ G.

2.3 Complexity Assumption

The Bilinear Diffie-Hellman (BDH) problem in G is as follows: given a tuple
g, ga, gb, gc ∈ G as input, output e(g, g)abc. An algorithm A has advantage ε in
solving BDH in G, if

Pr[A(g, ga, gb, gc) = e(g, g)abc] ≥ ε,

where the probability is over the random choice of generator g in G
∗, the random

choice of a, b, c in Zp, and random bits used by A. Similarly, we say that an
algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the Decisional
Bilinear Diffie-Hellman (DBDH) problem in G if

∣∣Pr[B(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[B(g, ga, gb, gc, Z) = 0]
∣∣ ≥ ε,

where the probability is over the random choice of generator g in G
∗, the random

choice of a, b, c in Zp, the random choice of Z ∈ GT , and the random bits
consumed by B.

Definition 3. We say that the (t, ε)-DBDH assumption holds in G if no t-time
algorithm has advantage at least ε in solving the DBDH problem in G.

2.4 Identity Division

In our MISKD scheme, our identity space is Z
∗
p. We can divide the identity

space Z
∗
p into n parts by mod n. n is the number value that we can set a single
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private key dIDs for n public keys at most. We denote by Bi the sub-space of
{x : x ∈ Z

∗
p ∧ x = i − 1(mod n)} for i = 1, 2, · · · , n. The identities for private

keys should be read as follows:

– Since n � p and ID is constructed with an identity if ID ∈ Bi, we can
reconstruct it such that ID′ ∈ Bj easily. For private key revocation in an
email system, the Private Key Generator (PKG) actually sets the public-key
with the email address and a valid time. Then, it’s easy to set a string of
public key such that it lies in a right sub-space.

– A private key dIDs for ID1, ID2, · · · , IDl (1 ≤ l ≤ n) can only be computed if
and only if ID1, ID2, · · · , IDl belong to different sub-spaces B1, B2, · · · , Bl.
We denote by IDs = 〈ID1, ID2, · · · , IDl : IDi ∈ Bi〉 all public keys that
satisfy the condition.

– For each sub-space Bi, we randomly choose a secret βi ∈ Z
∗
p, which will be

used in both algorithm KeyGen and algorithm Encrypt for any ID ∈ Bi.

3 Construction I: Chosen-Plaintext Security

We construct an efficient MISKD scheme that is IND-sID-CPA secure without
random oracles. The MISKD scheme will be convenient for us to present our
final scheme.

3.1 Construction

Let e : G × G → GT be the bilinear map, G, GT be two cyclic groups of order p
and g be the corresponding generator in G. The MISKD scheme can be described
as follows:

Setup: The system parameters are generated as follow. Choose at random a secret
value α ∈ Zp, choose g, g2, h randomly from G, and set the value g1 = gα. In
addition, compute k1, k2, · · · , kn from β1, · · · , βn ∈ Zp (defined in section 2) such
that ki = gβi . The master public params and master secret key are

params = (g, g1, g2, h, k1, k2, · · · , kn), master secret key = α.

Remarks: The PKG and the sender should judge which sub-space B the public
key belongs to in both algorithm KeyGen and algorithm Encrypt. According to
the definition in Section 2 and the parameters k1, k2, · · · , kn, ki will be chosen
as the parameter in key generation and encryption when ID ∈ Bi.

KeyGen:

– To generate a private key for IDi ∈ Bi, pick a random r ∈ Zp and output:

dIDi = (d1, d2) =
(
gα
2 (hkIDi

i )r, gr
)
.

Note that this single ID case is a special case of multiple identities given
below. The reason we present this simple case prior to the general case is
that it will help the reader to understand the security proof given in the next
section.
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– To generate a private key for IDs = 〈ID1, ID2, · · · , IDl : IDi ∈ Bi〉 (1 ≤
l ≤ n), pick a random r ∈ Zp and output:

dIDs = (d1, d2) =
(
gα
2 (hkID1

1 kID2
2 · · · kIDl

l )r , gr
)
.

Encrypt: To encrypt a message M ∈ GT under the public key IDi ∈ Bi, pick a
random s ∈ Zp and outputs:

C = ((hkIDi

i )s, ks
1, · · · , ks

i−1, k
s
i+1, · · · , ks

n, gs, e(g1, g2)s · M).

Decrypt: Let C = (uIDi , u1, · · · , ui−1, ui+1, · · · , un, v, w) be a valid encryption for
IDi ∈ Bi.

– To decrypt C with dIDi , compute:

w · e(d2, uIDi)
e(d1, v)

= (e(g1, g2)sM) · e(gr, (hkIDi

i )s)
e(gα

2 (hkIDi

i )r, gs)
.

= (e(g1, g2)sM) · e(gr, (hkIDi

i )s)
e(g1, g2)se((hkIDi

i )r, gs)
= M.

– To decrypt C with dIDs, where IDs = 〈ID1, ID2, · · · , IDl : IDi′ ∈ Bi′ 〉 and
IDi ∈ IDs,

• Compute u = uIDiu
ID1
1 · · · uIDi−1

i−1 u
IDi+1
i+1 · · ·uIDl

l = (hkID1
1 · · · kIDl

l )s;
• Decrypt the ciphertext with u, v, w and dIDs:

w· e(d2, u)
e(d1, v)

= (e(g1, g2)sM)· e(gr, (hkID1
1 · · · kIDl

l )s)
e(gα

2 (hkID1
1 · · ·kIDl

l )r, gs)

= (e(g1, g2)sM) · e(gr, (hkID1
1 · · ·kIDl

l )s)
e(g1, g2)se((hkID1

1 · · · kIDl

l )r, gs)
= M.

3.2 Security

We now prove the security of our MISKD scheme.

Theorem 1. Our MISKD scheme is (t, qID, ε) secure assuming the (t′, ε)-DBDH
assumption holds, where t′ < t − Θ(τqID) and τ is the maximum time for an
exponentiation in G.

Proof. Suppose there exists a (t, qID, ε)-adversary A against our scheme, we
construct an algorithm B that solves the DBDH problem. Algorithm B is given
as input a random tuple (g, ga, gb, gc, Z) that Z is either e(g, g, )abc or just a
random value in GT . Set g′1 = ga, g′2 = gb, g′3 = gc. B’s goal is to output 1 if
Z = e(g, g)abc and 0 otherwise. B works by interacting with A as follows:

Initialization. The adversary outputs an identity ID∗ ∈ Bj , where it wishes
to be challenged.
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Setup: To generate the master public params, B picks β1, β2, · · · , βn, γ ran-
domly from Zp, define g1 = g′1, g2 = g′2, kj = g

βj

1 , ki = gβi(i �= j) and h =
g

p−βjID∗

1 gγ . B sends the master public params to A, where

params = (g, g1, g2, h, k1, k2, · · · , kn).

Phase 1: A makes the private key queries. To respond a private key query on
ID ∈ Zp, B does:

– If ID ∈ Bj , B picks a random r ∈ Zp and constructs the private key dID as

dID = (d1, d2) = (g
−γ

p−βjID∗+βjID

2 (gp−βjID∗+βjID
1 gγ)r , grg

− 1
p−βjID∗+βjID

2 ).

Let r̃ = r − b
p−βjID∗+βjID . Then, we have

d1 = g
−γ

p−βjID∗+βjID

2 · (gp−βjID∗+βjID
1 gγ)r

= ga
2 (gp−βjID∗+βjID

1 gγ)
− b

p−βjID∗+βjID · (gp−βjID∗+βjID
1 gγ)r

= ga
2(gp−βjID∗+βjID

1 gγ)
r− b

p−βjID∗+βjID

= ga
2 (hkID

j )�r.

d2 = grg
− 1

p−βjID∗+βjID

2 = g
r− b

p−βjID∗+βjID = g�r.

So, dID = (d1, d2) = (ga
2 (hkID

j )�r, g�r) is a valid private key, B gives it to A.

– Else (ID ∈ Bi, i �= j), B picks a random r ∈ Zp and constructs dID, as

dID = (d1, d2) = (g
−(γ+βiID)
p−βjID∗

2 (gp−βjID∗

1 gγ+βiID)r, grg
− 1

p−βjID∗

2 ).

Let r̃ = r − b
p−βjID∗ . Then, we have

d1 = g
−(γ+βiID)
p−βjID∗

2 · (gp−βjID∗

1 gγ+βiID)r

= ga
2 (gp−βjID∗

1 gγ+βiID)
− b

p−βjID∗ · (gp−βjID∗

1 gγ+βiID)r

= ga
2(gp−βjID∗

1 gγ+βiID)
r− b

p−βjID∗

= ga
2 (hkID

i )�r.

d2 = grg
− 1

p−βiID∗

2 = g
r− b

p−βjID∗ = g�r.

So, dID = (d1, d2) = (ga
2 (hkID

i )�r, g�r) is a valid private key, B gives it to A.
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To generate a private key query on IDs = 〈ID1, ID2, · · · , IDl : IDi ∈ Bi〉
(1 ≤ l ≤ n), B does the following.

– If an ID lies in IDs such that ID ∈ Bj , letting IDs′ = 〈ID1′ , ID2′ , · · · ,
ID(l−1)′ : IDi′ ∈ Bi′〉 = {IDs}\{ID}, B constructs the single private key
dIDs = (dIDs,1, dIDs,2) as follows:

• Compute the private key dID = (d1, d2) (ID ∈ Bj), the same as the
above (with a new random r ∈ Zp).

• Compute dIDs = (dIDs,1, dIDs,2) as

dIDs = (dIDs,1, dIDs,2) = (d1(d2)ID1′ β1′+···+ID(l−1)′ β(l−1)′ , d2).

Let d1 = ga
2 (hkID

j )�r, d2 = g�r. Then, we have

dIDs,1 = d1(d2)ID1′ β1′+···+ID(l−1)′ β(l−1)′

= ga
2 (hkID

j )�r(g�r)ID1′ β1′+···+ID(l−1)′ β(l−1)′

= ga
2 (hkID

j )�r(gID1′ β1′+···+ID(l−1)′ β(l−1)′ )�r

= ga
2 (hkID

j k
ID1′
1′ · · · kID(l−1)′

(l−1)′ )�r

= ga
2 (hkID1

1 · · · kIDl

l )�r.

So, dIDs = (dIDs,1, dIDs,2) = (ga
2 (hkID1

1 · · · kIDl

l )�r, g�r) is a valid private
key, B gives it to A.

– Else, (each ID ∈ Bi, i �= j), let βIDs = ID1β1+β2ID2+· · ·+βlIDl. B picks
a random r and constructs the single private key dIDs = (dIDs,1, dIDs,2) as

dIDs = (dIDs,1, dIDs,2) = (g
−(γ+βIDs)
p−βjID∗

2 (gp−βjID∗

1 gγ+βIDs)r, grg
− 1

p−βjID∗

2 ).

Let r̃ = r − b
p−βjID∗ . Then, we have

dIDs,1 = g
−(γ+βIDs)
p−βjID∗

2 · (gp−βjID∗

1 gγ+βIDs)r

= ga
2(gp−βjID∗

1 gγ+βIDs)
− b

p−βjID∗ · (gp−βjID∗

1 gγ+βIDs)r

= ga
2(gp−βjID∗

1 gγ+βIDs)
r− b

p−βjID∗

= ga
2 (hgβIDs)�r

= ga
2 (hkID1

1 kID2
2 · · · kIDl

l )�r.

dIDs,2 = grg
− 1

p−βiID∗

2 = g
r− b

p−βjID∗ = g�r.

So, dIDs = (dIDs,1, dIDs,2) = (ga
2 (hkID1

1 kID2
2 · · · kIDl

l )�r, g�r) is a valid private
key. B gives it to A.
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Challenge: When A decides that phase 1 is over, it outputs two messages
M0, M1 ∈ GT on which it wishes to be challenged. B picks a random br ∈ {0, 1}
and constructs the ciphertext as

C = (uID∗ , u1, · · · , uj−1, uj+1, · · · , un, v, w)

= ((g′3)
γ , (g′3)

β1 · · · , (g′3)βj−1 , (g′3)
βj+1 , · · · , (g′3)βn , g′3, Z · Mbr).

Suppose that Z = e(g, g)abc, we have

(g′3)
γ = (gp−βjID∗

1 g
βjID∗

1 gγ)c = (hkID∗

j )c.

(g′3)
βi = (ki)c, g′3 = gc, Z · Mbr = e(g1, g2)c · Mbr .

Then, the ciphertext C = ((hkID∗

j )c, kc
1, · · · , kc

j−1, k
c
j+1, · · · , kc

n, gc, e(g1, g2)c ·
Mbr) is valid.

Phase 2: It is the same as Phase 1. B repeats the process as in phase 1.

Guess: Finally, A outputs bg and B outputs 1 if bg = br ; otherwise, it outputs 0.

When the input of Z = e(g, g)abc, A’s view is identical to its view in a real attack
game; therefore A must satisfy |Pr[bg = br]− 1/2| ≥ ε. On the other hand, when
Z is random then Pr[bg = br] = 1/2. Therefore, with g uniform in G, a, b, c
uniform in Zp, and Z uniform in GT , we have that

∣∣Pr[B(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[B(g, ga, gb, gc, Z) = 0]
∣∣ ≥

∣∣∣∣
1
2

+ ε − 1
2

∣∣∣∣ = ε

as required. This concludes the proof of Theorem 1. �

4 Construction II: Chosen-Ciphertext Security

Canetti et al. [8] provides an efficient way to construct a chosen ciphertext IBE
(IND-sID-CCA) from a chosen plaintext 2-level HIBE. This work was further
improved by Boneh and Katz [5]. Based on our MISKD scheme with IND-sID-
CPA security presented in section 3 and the approach due to Canetti et al. [8],
we are able to construct a MISKD scheme with chosen ciphertext security.

4.1 Construction

Let e : G×G → GT be the same bilinear map as in our first scheme. Construction
II of our MISKD scheme is described as follows:

Setup: The system parameters are generated as follow. Choose at random a
secret α ∈ Zp. Choose at random g, g2, h1, h2 from G, and set g1 = gα. Compute
k1, k2, · · · , kn and a one-time unforgeable signature scheme Sig = (G; Sign; Vrfy)
in which the verification key (in Zp) is generated by G(1k). The master public
params and the master secret key are

params = (g, g1, g2, h1, h2, k1, k2, · · · , kn, Sig), master secret key = α.
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KeyGen: As in the first scheme.

Encrypt: To encrypt a message M ∈ GT under the public key IDi ∈ Bi, do the
following:

– Input the security parameter 1k to Sig and output a pair (vk, sk), where vk
is a verification key and sk is a signing key.

– Pick a random s ∈ Zp and output

Cm = ((h1k
IDi

i )s, (h2g
vk
1 )s, ks

1, · · · , ks
i−1, k

s
i+1, · · · , ks

n, gs, e(g1, g2)s · M).

– Set the signature σ = Signsk(Cm) with sk and output the ciphertext

C = (vk, σ, Cm)

= (vk, σ, (h1k
IDi

i )s, (h2g
vk
1 )s, ks

1, · · · , ks
i−1, k

s
i+1, · · · , ks

n, gs, e(g1, g2)s · M).

Decrypt: Let C = (vk, σ, uIDi , uvk, u1, · · · , ui−1, ui+1, · · · , un, v, w) be a valid en-
cryption for IDi, where IDi ∈ Bi.

– To decrypt C with dIDi , conduct the following tasks.
• Check whether Vrfyvk(Cm, σ) = 1, if not, reject. Otherwise, continue;
• Pick a random r′ ∈ Zp and compute the 2-level private key dIDi|vk with

dIDi and vk as

dID|vk = (d1, d2, d3)vk =
(
gα
2 (h1k

ID
i )r(h2g

vk
1 )r′

, gr, gr′)
.

• Decrypt the ciphertext with uIDi , uvk, v, w and dID|vk:

w·e(d2, uIDi)e(d3, uvk)
e(d1, v)

=(e(g1, g2)sM)·e(g
r, (h1k

IDi

i )s) · e(gr′
, (h2g

vk
1 )s)

e(gα
2 (h1k

IDi

i )r(h2gvk
1 )r′ , gs)

= (e(g1, g2)sM) · e(gr, (h1k
IDi

i )s) · e(gr′
, (h2g

vk
1 )s)

e(g1, g2)s · e((h1k
IDi

i )r, gs) · e((h2gvk
1 )r′ , gs)

= M.

– To decrypt C with dIDs, where IDs = 〈ID1, ID2, · · · , IDl : IDi′ ∈ Bi′ 〉 and
IDi ∈ IDs, the decryption is as follow:

• Check whether Vrfyvk(Cm, σ) = 1, if not, reject. Else, continue;
• Pick a random r′ ∈ Zp and compute the 2-level private key dIDs|vk with

dIDs and vk as

dIDs|vk = (d1, d2, d3)vk =
(
gα
2 (h1k

ID1
1 kID2

2 · · · kIDl

l )r(h2g
vk
1 )r′

, gr, gr′)
.

• Compute u = uIDiu
ID1
1 · · · uIDi−1

i−1 u
IDi+1
i+1 · · ·uIDl

l = (h1k
ID1
1 · · ·kIDl

l )s;
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• Decrypt the ciphertext with u, uvk, v, w and dIDs|vk:

w · e(d2, u)e(d3, uvk)
e(d1, v)

= (e(g1, g2)sM)·e(g
r, (h1k

ID1
1 · · ·kIDl

l )s) · e(gr′
, (h2g

vk
1 )s)

e(gα
2 (h1k

ID1
1 · · · kIDl

l )r(h2gvk
1 )r′ , gs)

= (e(g1, g2)sM) · e(gr, (h1k
ID1
1 · · · kIDl

l )s) · e(gr′
, (h2g

vk
1 )s)

e(g1, g2)s · e((h1k
ID1
1 · · ·kIDl

l )r, gs) · e((h2gvk
1 )r′ , gs)

= M.

4.2 Security

We now prove the security of our MISKD scheme.

Theorem 2. Our MISKD scheme is (t, qID, qC , ε) secure assuming the (t′, ε)-
DBDH assumption holds, where t′ < t − Θ(τqID + τqC) and τ is the maximum
time for an exponentiation in G.

Proof. Suppose there exists a (t, qID, qC , ε)-adversary A against our scheme,
we construct an algorithm B that solves the DBDH problem. Algorithm B is
given the same tuple of (g, ga, gb, gc, Z) as in the proof of the first scheme. Set
g′1 = ga, g′2 = gb, g′3 = gc. The interaction between B and A is as follows:

Initialization. The adversary outputs an identity ID∗ ∈ Bj , where it wishes
to be challenged.

Setup: To generate the master public params, B generates the one-time un-
forgeable signature (vk∗, sk∗) from algorithm Sign, picks β1, β2, · · · , βn, γ1, γ2

randomly from Zp, and defines g1 = g′1, g2 = g′2, kj = g
βj

1 , ki = gβi(i �= j), and
h1 = g

p−βjID∗

1 gγ1 and h2 = gp−vk∗

1 gγ2 . B sends the master public params to A,
where

params = (g, g1, g2, h1, h2, k1, k2, · · · , kn, Sign).

Phase 1:
A makes the private key queries and B constructs the private key as in the
proof of the first scheme. A makes the decryption queries 〈ID, C : IDs〉 for
C = (vk, σ, Cm) where ID ∈ IDs, B does the following:

– If Vefyvk(Cm, σ) �= 1, reject. Else, continue;
– If ID = ID∗ and vk = vk∗, abort;
– If vk �= vk∗, perform the algorithm Decrypt by the following way:

• Pick random r, r′ ∈ Zp and compute the 2-level private key to IDs|vk

directly: Let kIDs = kID1
1 kID2

2 · · · kIDl

l .

dIDs|vk = (d1, d2, d3)vk
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= (g
−γ2

p−vk∗+vk

2 (h1k
IDs)r(gp−vk∗+vk

1 gγ2)r′
, gr, gr′

g
− 1

p−vk∗+vk

2 ).

Let r̃ = r′ − b
p−vk∗+vk , we have

d1 = g
−γ2

p−vk∗+vk

2 (h1k
IDs)r(gp−vk∗+vk

1 gγ2)r′

= g
−γ2

p−vk∗+vk

2 (gp−vk∗+vk
1 gγ2)r′

· (h1k
IDs)r

= ga
2(gp−vk∗+vk

1 gγ2)−
b

p−vk∗+vk · (gp−vk∗+vk
1 gγ2)r′

· (h1k
IDs)r

= ga
2 (gp−vk∗+vk

1 gγ2)�r · (h1k
IDs)r

= ga
2 (h1k

IDs)r(h2g
vk
1 )�r .

d3 = gr′
g
− 1

p−vk∗+vk

2 = gr′− b
p−vk∗+vk = g�r.

Then, dIDs|vk = (ga
2 (h1k

IDs)r(h2g
vk
1 )�r, gr, g�r) is a valid private key.

• Decryption with dIDs|vk and IDs and algorithm Decrypt. (omitted)

Challenge: When A decides that phase 1 is over, it outputs two messages
M0, M1 ∈ GT on which it wishes to be challenged. B picks a random br ∈ {0, 1}
and constructs the ciphertext as

C = (vk∗, σ∗, C∗
m) = (vk∗, σ∗, uvk∗ , Cm) = (vk∗, σ∗, (g′3)

γ2 , Cm).

where Cm is constructed same as before and σ∗ = Signsk∗(Cm).
Since (g′3)

γ2 =(gγ2)c =(gp−vk∗

1 gvk∗

1 gγ2)c = (h2g
vk∗

1 )c, then, C = (vk∗, σ∗, C∗
m)

is a valid ciphertext for ID∗ if Z = e(g, g)abc.

Phase 2: It is the same as Phase 1. B repeats the process as in phase 1.

Guess: Same as in the first scheme.

When the signature scheme Sig = (G, Sign, Vrfy) is secure in the sense of strong
unforgeability such that an adversary is unable to forge a new signature on a
previously-signed message, any ciphertext for ID with vk∗ will be rejected. The
probability that adversary makes a decryption query on ID∗ with vk∗ in Phase 1
is negligible for p is a large prime. So, for any decryption query made by A will
be rejected or decrypted correctly by B except a negligible probability.

When the input of Z = e(g, g)abc, A’s view is identical to its view in a real
attack game and therefore A must satisfy |Pr[bg = br] − 1/2| ≥ ε. On the other
hand, when Z is random, then Pr[bg = br] = 1/2. Therefore, with g uniform in
G, a, b, c uniform in Zp, and Z uniform in GT , we have that

∣∣Pr[B(g, ga, gb, gc, e(g, g)abc) = 0] − Pr[B(g, ga, gb, gc, Z) = 0]
∣∣ ≥

∣∣∣∣
1
2

+ ε − 1
2

∣∣∣∣ = ε

as required. This concludes the proof of Theorem 2. �
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5 A Note to Arbitrary Identities

With a universal one-way hash function H : {0, 1}∗ → Zp, we can extend our
MISKD scheme to handle any ID such that ID ∈ {0, 1}∗. The extension of
MISKD is still provably secure in the selective-ID model against the chosen
ciphertext attack. In our proofs, if the adversary cannot find any ID ∈ {0, 1}∗
such that H(ID∗) = H(ID), the simulation on a private key generation will still
work, because the simulation only fails if and only if the query value is equal
to H(ID∗) ∈ Zp according to our setting. The simulation on the decryption
phase holds even if the identity space changes, because any decryption query
can always be simulated except that the verification key vk is equal to vk∗.
There, the extension of MISKD maintains the same level of security.

6 Conclusion

We presented the first Multi-Identity Single-Key Decryption (MISKD) with-
out random oracles. Compared to the GMC scheme, our MISKD scheme made
the following improvement: Our MISKD scheme is provably secure in selective-
ID model based on DBDH assumption without random oracles. Moreover, our
scheme in decryption is more efficient; that is, we only need n− 1 times of expo-
nentiation computation for the parameter u in the ciphertext compared to that
of linear n − 1 times.

Acknowledgement. The authors would like to thank the anonymous reviewers
of Inscrypt 2007 for their comments on this work.
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Abstract. In this paper, we show the claims in the original Kipnis-
Shamir attack on the HFE cryptosystems and the improved attack by
Courtois that the complexity of the attacks is polynomial in terms of the
number of variables are invalid. We present computer experiments and
a theoretical argument using basic algebraic geometry to explain why it
is so. Furthermore we show that even with the help of the powerful new
Gröbner basis algorithm like F4, the Kipnis-Shamir attack still should
be exponential but not polynomial. This again is supported by our the-
oretical argument.

Keywords: HFE, MinRank, XL algorithm, relinearization, Gröbner
basis, multivariate public key cryptosystem.

1 Introduction

The family of multivariate public key cryptosystems [19,5] is considered as one
of the main candidates that have the potential to resist the future quantum
computer attacks. One of the major research topics in this area is the HFE fam-
ily of cryptosystems. The HFE encryption systems were presented by Jacques
Patarin at Eurocrypt’96 [15], where the fundamental idea is very similar to that
of Matsumoto and Imai [14], namely one first builds some polynomial system on
a large field and then transforms it into a polynomial system over a vector space
of a much smaller field. The first attack on HFE was presented by Kipnis and
Shamir [12], where they lifted the public key back to the large field and attacked
the system via a so-called MinRank problem [3]. This attack was further im-
proved by Courtois [2] using different methods to solve the associated MinRank
problem. The conclusion of these attacks is that to find the secret key and break
the HFE cryptosystem is not exponential but polynomial in terms of the number
of variables n once one fixes the key parameter D of HFE (or more precisely,
log(D)). Later it was shown that if one uses new Gröbner basis methods to at-
tack the HFE directly, it should be again not exponential but polynomial [9,11],
in particular, Faugère broke one of the challenges set by Patarin. The overall
conclusion seems to be that the HFE family itself is over.
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However, there are still HFE variants, which we consider viable for practical
applications [16,6], and resistant to the Gröbner basis attacks. The possibility
of extension of Kipnis-Shamir attack seems to be quite appealing as in the case
of the attack on HFEv in [6]. Therefore it seems to be a good idea to do a com-
plete study of the original Kipnis, Shamir, and Courtois work including complete
computer experiments to verify the claims and to derive a good estimate on the
complexity in terms of practical attacks. To our surprise, our experiments show
that the claims made by Kipnis, Shamir, and Courtois are actually invalid in
the sense that the timing is far beyond what is expected. This made us to think
what happened and we presented a theoretical explanation why this happens
using some basic theoretical tools in algebraic geometry. Furthermore, we apply
the new Gröbner basis method of Faugère by using the Magma implementations
to this problem. Though the performance is clearly much better than the pre-
vious methods, it still confirms that the original Kipnis-Shamir attack is not
polynomial rather it should be exponential.

The paper is arranged as follows. First we will briefly describe the original
Kipnis-Shamir attack and the improvement of Courtois. Then in the next section,
we will show that through experiments, the complexity of the attacks of Kipnis-
Shamir are not as claimed. We present a theoretical argument why the claims
of Kipnis, Shamir, and Courtois are not valid. In the next section, we will show
via computer experiments using the Magma implementation of the new Gröbner
basis F4 that if we use the new Gröbner basis algorithm to improve the attack,
the timing should be exponential and not polynomial. Then we will present our
conclusion.

2 Kipnis-Shamir Attack on the HFE Scheme

2.1 The HFE Scheme

The HFE encryption scheme uses two finite fields. We denote the small field with
q elements as F, and K as its extension field of degree n over F. A recommended
choice for HFE is q = 2 and n = 128. Given a basis of K over F, we can identity
K with an n-dimensional vector space over F by ϕ : K → Fn and its inverse
ϕ−1. The design of HFE is based on a univariate polynomial P (x) over K of the
form

P (x) =
r−1∑
i=0

r−1∑
j=0

pijx
qi+qj

, (1)

where the coefficients pij are randomly chosen from K and r is much smaller
than n so that the degree of P (x) is less than some fixed parameter D. (Here
for simplification reason we consider only the case of P (x) being a homogeneous
polynomial.) The limitation on the degree D of P (x) is required to make it
possible to invert P (x) efficiently at decryption.

Let
G(x) = ϕ−1 ◦ T ◦ ϕ ◦ P ◦ ϕ−1 ◦ S ◦ ϕ(x), (2)
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where T and S are two randomly chosen invertible linear transformations on
Fn, and they are part of the private key of the HFE scheme together with
polynomial P (x). The public key is ϕ ◦ G ◦ ϕ−1, which are n homogeneous
quadratic polynomials in n variables on F.

2.2 Kipnis-Shamir Attack

The attack of Kipnis and Shamir on HFE scheme in [12] is done over the big
field K. They proved that the linear transformations S and T when lifted to the
big field K have the form

S(x) =
n−1∑
i=0

six
qi

, T−1(x) =
n−1∑
i=0

tix
qi

, (3)

where si, ti ∈ K. It simplifies the expression of public key polynomial G(x) to
G(x) = T (P (S(x))) using the univariate polynomial form over the big field,
which also gives the expression T−1(G(x)) = P (S(x)). They rewrote the public
key polynomial as a matrix form:

G(x) =
n−1∑
i=0

n−1∑
j=0

gijx
qi+qj

= xGxt, (4)

where G = [gij ] is a matrix over K, and x = (xq0
, xq1

, · · · , xqn−1
) is the vector

over K, and xt is its transpose, and this implies that

T−1(G(x)) =
n−1∑
k=0

tk

n−1∑
i=0

n−1∑
j=0

(gi−k,j−k)qk

xqi+qj

, (5)

and
P (S(x)) = xWPW txt, (6)

where we use the same notation P to denote a matrix [pij ], W is a specified
matrix with its (i, j)-entry Wij = sqi

j−i. (Here and henceforth the subscripts are
computed modulo n.)

Let G∗k be the matrix derived from G by raising all entries of G to the qk-th
power and cyclically rotating all rows and columns of G forwards by k steps.
Then T−1(G(x)) = xG′xt, where

G
′
=

n−1∑
k=0

tkG∗k = WPW t. (7)

It is not hard to show that both ranks of matrices P and WPW t do not exceed
r, where r � n and are roughly log(D). Kipnis and Shamir found that if one
made a correct choice for the values of t0, t1, · · · , tn−1, then the rank of G

′
would

not be more than r; otherwise for a random choice of values the expected rank
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would be close to n. The difference between the correct and random choices is
clear, and below is a specific method to recovering (t0, t1, · · · , tn−1). Surely here
in terms of explicit form of the matrix, we need to use the symmetric form of
the matrix and in the case of characteristic 2, the diagonal entries shall all be 0.

The matrix G can be easily obtained from the public key of the HFE scheme,
then all G∗k can be computed. Take t0, t1, · · · , tn−1 as n variables. The matrix G

′

can be represented by G∗k and (t0, t1, · · · , tn−1). Since its rank does not exceed r,
its left kernel, defined as {x : xG′ = 0}, is an (at least) n − r dimensional vector
subspace, and there are n − r independent n-dimensional vectors x̃1, · · · , x̃n−r

such that in the kernel. Assigning random values for these vectors in their first
n−r entries and taking new variables for each of the remaining r entries, one adds
r(n − r) new variables. Each x̃iG

′
= 0 brings n scalar equations over K, a total

of (n − r)n equations can be obtained in n + r(n − r) variables (t0, t1, · · · , tn−1

and r(n − r) new variables).
These equations are quadratic and form an over-defined system of about n2

equations in about rn variables where r � n. In their attack Kipnis and Shamir
propose to solve it by relinearization technique. Surely, if they had solved this
over-defined system and derived the values of t0, t1, · · · , tn−1, it was easy to
recover T−1 and T , and there is also a specific way to recover S by solving linear
over-defined equations over F. Therefore the crucial point of the attack is to
recover the transformations T−1 and T . The later developed XL algorithm is an
improved algorithm over the relinearization method.

Later Courtois pointed out that the point of the attack of Kipnis and Shamir
can be viewed as a MinRank problem and he proposed some further improvement
on how to find T using some of known methods for the MinRank problem.

3 Can Kipnis-Shamir Attack and Courtois’ MinRank
Attack Really Work?

Now we would like to do a careful analysis in theory under what condition that
the Kipnis-Shamir attack will work.

3.1 Another Look at the Kipnis-Shamir Attack

If we look at the relinearization method, we know immediately that in order for
it to work, the equations must satisfy the condition that the solution is actually
unique because we expect to find the solution via solving a set of nondegenrate
linear equations.

Originally, the part T of the private key of HFE scheme is fixed and its
corresponding form, of which the coefficients are (t0, t1, · · · , tn−1), in the big
field is unique too. Unfortunately, we have equivalent keys.

First, the solutions to our problem is not unique, because if (a0, a1, · · · , an−1)
is a solution for (t0, t1, · · · , tn−1), then u(a0, a1, · · · , an−1) is still a solution for
any constant u. This problem can be easily solved by fixing one variable, say
t0, to be 1. Furthermore, if r is even, we need to fix two variables, because
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any symmetric matrix over characteristic 2 with 0 diagonal entries of odd size
is degenerate. This implies if r is even, if (a0, a1, · · · , an−1) is a solution, then
u(a0, a1, · · · , an−1) + v(aq

n−1, a
q
0, · · · , a

q
n−2) is also a solution.

Then we realize that this is not enough. If (a0, a1, · · · , an−1) is a solution of
(t0, t1, · · · , tn−1), it is easy to see that (aq

n−1, a
q
0, · · · , a

q
n−2) is also a solution,

and furthermore (aqi

n−i, a
qi

n−i+1, · · · , a
qi

n−i−1) is also a solution for any i from 2 to
n − 1. This is due to the fact that we only use the condition that the rank of
G

′
can not exceed r in Kipnis-Shamir attack not how it looks like, and the fact

that raising the q-th powering of the entries of a matrix and rotating its rows
and columns accordingly do not change the rank.

This can also be stated as follows.

Proposition 1. Let the notation G, T, P, S, G
′
, G∗k, and W be as defined

before; Let (a0, a1, · · · , an−1) be a solution of (t0, t1, · · · , tn−1), and the rank of

matrix G
′

=
n−1∑
k=0

akG∗k does not exceed r. Given (αl
0, α

l
1, · · · , αl

n−1) = (aql

n−l,

aql

n−l+1, · · · , a
ql

n−l−1), the rank of matrix G
′l =

n−1∑
k=0

αl
kG∗k does not exceed r as

well, and G
′l and G

′
are actually of the same rank.

Proof. From Section 2.2, we raise the both sides of equations (5) and (6) to ql-th
powering, and for each 0 ≤ l ≤ n − 1, we have

(T−1(G(x)))ql

=
n−1∑
k=0

aql

k

n−1∑
i=0

n−1∑
j=0

(gi−l−k,j−l−k)qk+l

xqi+qj

, (8)

and
(P (S(x)))ql

= xW
′
P (l)W

′txt, (9)

where P (l) is derived from P by P
(l)
ij = P ql

i−l,j−l, W
′

is generated from W with

that W
′

ij = W ql

i−l,j−l. Therefore, the rank of matrix W
′
P (l)W

′t cannot exceed
r as P (l) contains at most r nonzero rows. Equations (5) and (6) are identical,
hence (8) and (9) are identical too. Then we have

G
′l =

n−1∑
k=0

aql

k G∗(k+l) = W
′
P (l)W

′t. (10)

Substitute k by k + l, we get that

G
′l =

n−1∑
k=0

aql

k−lG
∗k =

n−1∑
k=0

αl
kG∗k. (11)

Obviously, the rank of G
′l is the same as that of P (l) and does not exceed r, and

(aql

n−l, a
ql

n−l+1, · · · , a
ql

n−l−1) is a solution. �
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The above proposition states that each solution (a0, a1, · · · , an−1) for (t0,
t1, · · · , tn−1) is accompaniedbyn−1 additional solutions (aql

n−l, a
ql

n−l+1, · · · , a
ql

n−l−1),
1 ≤ l ≤ n − 1. These solutions are usually different. More precisely, we have the
following.

Proposition 2. Let T be a randomly chosen linear transformation over Fn,
and (a0, a1, · · · , an−1) be a solution corresponding to T . Set (αl

0, α
l
1, · · · , αl

n−1) =

(aql

n−l, a
ql

n−l+1, · · · , a
ql

n−l−1), 0 ≤ l ≤ n − 1. Then

Prob(αj
i = αk

i : j �= k, 0 ≤ i, j, k ≤ n − 1) ≤ O(n2q−n).

Proof. Since T is a randomly chosen linear transformation over Fn, (a0,
a1, · · · , an−1) is a random vector with entries chosen from K = GF (qn) . By
the birthday paradox, we have

Prob(ai = aql

j : j �= i, 0 ≤ i, j, l ≤ n − 1) ≤ 1 − (1 − nq−n)n. (12)

Since
1 − (1 − nq−n)n ≤ O(n2q−n), (13)

we have
Prob(αj

i = αk
i : j �= k, 0 ≤ i, j, k ≤ n − 1)

= Prob(ai = aql

j : j �= i, 0 ≤ i, j, l ≤ n − 1)
≤ O(n2q−n)

(14)

�

This means even if we fix one variable like t0 to be 1 or two variables if r is even,
we still expect that there should be at least n different solutions. Therefore, we
can conclude that mostly each variable of the over-defined (n − r)n quadratic
equations system in n+r(n−r) variables from Kipnis-Shamir attack has at least
about n different solutions. This reminds us the case of the famous challenges of
cyclic equations [22].

It is now clear that for this kind of equation system we can not find the
solutions by relinearization technique [12]. Then one may ask how about the
XL algorithm [13], which is the improved relinearization algorithm. We will
argue that for this kind of equation system we can not find the solutions by XL
algorithm easily as well.

The key point is the observation that to any system of multivariate polynomial
equations, if one variable has d different solutions, we should not be able to
solve this system directly by the XL algorithm with the maximum degree of this
variable arisen in terms lower than d.

Proposition 3. Let P0(x0, · · · , xn−1) = 0, · · ·, Pm−1(x0, · · · , xn−1) = 0 be any
set of m multivariate polynomial equations in n variables over K; for each xi, 0 ≤
i ≤ n−1, if xi has d different solutions β0, · · · , βd−1 in K, we can not determine
the values of xi directly from the equations generated by the XL algorithm with
the maximum degree of this variable arisen in terms lower than d.
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Proof. We can prove it by contradiction. Suppose we get the exact d values of
xi by the equations generated by the XL algorithm with the maximum degree
of this variable arisen and noted as d

′
, and d

′
< d. To get the exact values of xi,

the last step of the XL algorithm is linearization to get a univariate polynomial
equation just with one variable xi. While, we all know that the degree of univari-
ate polynomial equation must be at most d

′
and lower than d. The contradiction

is that we can not get d different values β0, · · · , βd−1 of xi by solving a univariate
polynomial equation with the degree lower than d. �

The first proposition in this section shows that each variable of the quadratic
equations system generated by Kipnis-Shamir attack has at least n solutions; the
second proposition in this section supposes that for each variable, we expect to
have n different solutions in general; and this proposition shows that if we want
to get the solutions of (t0, t1, · · · , tn−1) by XL algorithm, we must raise the degree
of monomials at least to n in the solving process. This is quite different from
what Kipnis and Shamir claimed which should be log(D), which has nothing to
do with n. This means the complexity of the attack should be more than what
was claimed.

The statements above can be reexplained in terminology of algebraic geome-
try. Let V be the algebraic variety of the quadratic equations derived from the
Kipnis-Shamir attack, and σ be the action of first q-th powering every component
of an n-dimensional vector and then cyclically rotating all components right by
one. Then V is invariant under the action of the order n cyclic group generated
by σ. This variety must contain at least n distinct points (Proposition 2), and
the univariate polynomial over K representing the variety is then of degree n.

We will confirm this with our computer experiment. Furthermore, in our ex-
periment, we have given a toy example that even if we raise the degree of mono-
mials by the XL algorithm to n or even larger than n, we still can not find the
solutions.

3.2 What about Courtois’ MinRank Attack?

Courtois tried to improve the Kipnis-Shamir attack for basic HFE [2]. From
the matrix G

′
above, instead of by relinearization, he proposed to solve it by

MinRank attack directly [3]. Taken (t0, t1, · · · , tn−1) as variables, he suggested
that we could derive a set of equations from the fact that every (r + 1) × (r +
1) submatrix of G

′
has determinant 0. Therefore, there are

(
n

r+1

)2 equations
with about

(
n

r+1

)
monomials, and it is expected that there are more than

(
n

r+1

)
equations linearly independent so that this equation system can be solved by
Gaussian reduction.

However, (t0, t1, · · · , tn−1) has at least about n solutions because this Min-
Rank attack does also use the fact that the rank of G

′
can not exceed r as in

Kipnis-Shamir attack, and in the equations of MinRank attack, the degree of
monomials is not larger than r + 1. For r + 1 � n, we can not solve this system
by Gaussian reduction from Proposition 3, and we need to go up to degree n to
find the solutions.
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4 Computer Experiments

We have programmed some experiments of Kipnis-Shamir attack and MinRank
attack by Magma V2.11 on a Pentium IV 2.9GHz PC with 512M memory. Our
experiments works on the simplest case, where r is 2. From the theoretical ar-
gument above, we can fix the variable t0 = 1 ∈ K to decrease the number of
solutions, and also we can fix one new variable to 1 when we simulate Kipnis-
Shamir attack because r = 2 is even. Surely, we also have the experiments
without fixing any variable, and they behave essentially in the same way.

4.1 Experiment on Kipnis-Shamir Attack

We choose q = 2, n ∈ {5, 6, · · · , 12}, r = 2, so F = GF (2) and K = GF (2n);
choose P (x) = ax3 and two random invertible linear transformations T and S,
where a �= 0 is randomly chosen from K. Following the description in Section 2.2,
we derive the quadratic equation system and then try to solve it. In [12] Kipnis
and Shamir intended to solve this system by the relinearization technique, while
we just use the XL algorithm to simulate it. For each n, select the degree of the
parameter [20] needed for the XL algorithm to be D = 4 and record the result
of experiments in Table 1.

Table 1. Experiment of Kipnis-Shamir Attack with r = 2, D = 4, and n ∈
{5, 6, · · · , 12}

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12

equations n(n − r) 15 24 35 48 63 80 99 120
variables r(n − r) + n − 2 9 12 15 18 21 24 27 30
monomials of degree ≤ D 715 1820 3876 7315 12650 20475 31465 46376
monomials not emergence 105 280 621 1211 2150 3555 5560 8316
number of XL monomials 610 1540 3255 6104 13995 16920 25905 38060
number of XL equations 825 2184 4760 9120 10500 26000 40194 59520
rank of the matrix 556 1408 2983 5605 9658 15586 23893 35143

As the same for each n ∈ {5, 6, 7, 8}, select the parameter D = 5 and record
the experimental result in Table 2.

Table 2. Experiment of Kipnis-Shamir Attack with r = 2, D = 5, and n ∈ {5, 6, 7, 8}

n = 5 n = 6 n = 7 n = 8

equations n(n − r) 15 24 35 48
variables r(n − r) + n − 2 9 12 15 18
monomials of degree ≤ D 2002 6188 15504 33649
monomials not emergence 182 588 1539 3465
number of XL monomials 1820 5600 13965 30184
number of XL equations 3300 10920 28560 63840
rank of the matrix 1738 5363 13403 29020
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In both tables, line 4 is the number of the monomials of degree ≤ D in
r(n − r) + n − 2 variables. For not all these monomials would appear in the
equations in the XL computation, line 5 is the number of these not emerging in
the equations; line 6 is the difference of line 4 and line 5, and it is the number of
the monomials of those equations; line 7 is the number of equations. For the data
of line 7 is larger than that of line 6, we try to solve this system by Gaussian
reduction as linearization technique. However, it does not work even though the
XL equations are much more than the XL monomials. Then we get the rank of
matrix recorded in line 8, which is formed by that each equation as a row and
each monomial as a column. In both tables, each number of line 8 is smaller
than what is needed to solve the equations, and we are unable to recover the
variables t0, t1, · · · , tn−1.

4.2 Toy Example of How the XL Algorithm Terminates

In Section 4.1, we have showed that when D = 4 or 5 and n ∈ {5, 6, · · · , 12},
XL can not terminate because we can not solve the equations system directly by
Gaussian reduction. Therefore, here we fix n = 5 and keep all other parameters
as before, except that D ∈ {4, 5, 6, 7}. Well, n(n−r)=15 equations and r(n−r)+
n − 2 = 9 variables of the generated quadratic equation system are invariable as
n and r fixed. The result of experiment is recorded in Table 3.

Table 3. Experiment of Increasing D for Solving Equations by XL

D = 4 D = 5 D = 6 D = 7

monomials of degree ≤ D 715 2002 5005 11440
monomials not emergence 105 182 294 450
number of monomials 610 1820 4711 10990
number of equations 825 3300 10725 30030
rank of the matrix 556 1738 4595 10834
difference of lines 4 and 6 54 82 116 156

From this table, we find that the difference between the number of monomials
and rank of the matrix is increasing by the growth of D. We can not solve the
original equation system when increasing the parameter D of XL algorithm only
by a few degrees.

4.3 Experiment of MinRank Attack

Similarly as the previous subsection, we choose q = 2, n ∈ {5, 6, · · · , 10}; choose
two kinds of public key polynomials: r = 2 and P (x) = ax3, and r = 3 and
P (x) = ax3 + bx5 + cx6, where a, b, and c are random elements chosen from K,
respectively; choose two random invertible linear transformations T and S.

When P (x) = ax3. Here we can fix two variables. There are
(

n
r+1

)2 equations
with

(
n−1

3

)
+ (n − 2)(n − 1) + (n − 1) monomials in n − 2 variables. We try
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Table 4. Simulation of MinRank Attack of r = 2 and P (x) = ax3

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

monomials of degree ≤ r + 1 20 35 56 84 120 165
rank of the matrix 15 29 49 76 111 155
difference of above two lines 5 6 7 8 9 10

Table 5. Experiment of MinRank Attack of r = 3 and P (x) = ax3 + bx5 + cx6

n = 6 n = 7 n = 8 n = 9

monomials of degree ≤ r + 1 126 210 330 495
rank of the matrix 90 161 266 414
difference of above two lines 36 49 64 81

to solve the equation system by Gaussian reduction, and we also find that it is
impossible to be solved. Then we record the rank of the matrix, which is formed
as above, in Table 4.

When P (x) = ax3 + bx5 + cx6. Here r = 3, so we can fix one variable, and
we choose n ∈ {6, 7, 8, 9}. As the same as before, we can not solve this equation
system of

(
n

r+1

)2 equations with
(
n
4

)
+ n

(
n−1

2

)
+ n(n − 1) +

(
n
2

)
+ n monomials

in n − 1 variables. Then we record the rank of the matrix generated from the
equation system in Table 5.

We can observe from Tables 4 and 5 that the difference between the number
of monomials of degree r + 1 and the rank of the matrix is equal to or larger
than n and very regular. Therefore, we can conclude that MinRank attack is
unsuccessful to recover the secret t0, t1, · · · , tn−1.

4.4 Experiment of Solving Equations by F4

From [18], it is true that XL acts as a redundant version of the F4 algorithm.
Currently it is commonly recognized that the new Gröbner basis algorithm F4

[7] and F5 [8] are the most powerful tools to solve polynomial equations [17,21].
Because F4 is the only one which is publicly available, which is implemented
in Magma, to further understand the quadratic equation system generated by
the Kipnis-Shamir attack, we should use the Magma implementation of the new
Gröbner basis F4 to test if finding the solutions are indeed still polynomial.

Because of our degree argument, we do not expect Magma to run up to degree
n and therefore we expect the complexity to grow up very fast. This time, we
run the experiments by Magma V2.13 on a 2.6GHz AMD 64 computer in TU
Darmstadt.

In the same way as above, we choose q = 2 and r = 2. We fix two variables
to reduce the number of solutions and then we use Magma to try to find the
Gröbner basis of this system. The experiments as expected produce the full
triangular Gröbner basis is in lex order, and we get precisely n solutions from
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Table 6. Experiment of Solving Equations by F4

n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18

time (seconds) 0.1 0.16 0.3 0.51 0.9 1.5 2.5 4 6.7
memory (megabit) 8.2 9.1 10 11.4 12.6 15 17 22 32.3

n = 19 n = 20 n = 21 n = 22 n = 23 n = 24 n = 25 n = 26 n = 27

time (seconds) 10.8 16.3 32.7 50.5 63 91.7 121.5 171.4 218
memory (megabit) 36 48 58 85 75.9 122 145 136.4 203

the Gröbner basis. Meanwhile, our program also verifies that they are indeed
the solutions. Therefore, it supports our theoretical argument.

Table 6 below gives the running time and required memory of each n specif-
ically. In Figure 1, we use logarithmic coordinate and take n as X-coordinate
and running time and required memory as Y-coordinate respectively. It clearly
shows the growing tendency when increasing n. Though the timing and memory
data is smaller than what we expected, but for computing Gröbner basis when
increasing the degree n, the timing, we still conclude, should be exponential and
not polynomial. The reason that the timing and the memory is far less than
what we expect is that the degree of the final Gröbner basis is indeed n. Also
we want to emphasize that our result is just the simplest and the easiest case of
the HFE family.

Fig. 1. Running Time and Required Memory

Fig. 2. Running Time and Required Memory Between Different q and r
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We did some more experiments by increasing r to 3 or choosing different small
field F as q = 3, 5, 11, and the result is compared by Figure 2. It shows that in
this situation the equations are much more difficult to solve. This means that
this set of systems of highly over-defined equations have much more structures
that we still do not understand and much more theoretical and experimental
work are still needed to understand fully the complexity behavior.

5 Conclusion

We revisited the original Kipnis-Shamir attack on the HFE cryptosystems. We
show in theory and experiments that the original Kipnis-Shamir attack on the
HFE cryptosystems and the improved attack by Courtois can not work as effi-
ciently as claimed. Furthermore, we showed that even by the new Gröbner basis
algorithm F4, the complexity of the attack should be exponential and not poly-
nomial, though the performance of F4 is clearly far better than the XL algorithm
and more work is still needed to understand what is really going on. The key
point of our theoretical argument is based on the simple idea that when solv-
ing a polynomial equation system, the degree parameter of the XL or similar
algorithm is lower bounded by the number of solutions.
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Abstract. The Lu-Lee public key cryptosystem and Adiga-Shankar’s modifica-
tion are considered to be insecure with cryptanalysis by integer linear program-
ing, since only 2 or 3 unknown message blocks are used in the modular linear 
equation for encryption procedure. Unfortunately integer linear programming 
algorithms falls in trouble with more unknowns. In this paper we present a 
probabilistic algorithm for cryptanalysis of general Lu-Lee type systems with 
n  message blocks. The new algorithm is base on lattice reduction and succeeds 
to break Lu-Lee type systems with up to 68 message blocks. 

Keywords: Lu-Lee type systems, cryptanalysis, lattice reduction. 

1   Introduction 

The Lu-Lee public key cryptosystem [1] was firstly proposed to construct a simple and 
effective system by solving simultaneous modular linear equations, and achieves much 
faster encryption and decryption speed than systems such as RSA and ECC. 
Cryptanalytic algorithms [2-4] show that the basic Lu-Lee cryptosystem is insecure. 
Later modifications are proposed, including the Adiga-Shankar scheme [5] that extends 
the Lu-Lee system to 3 unknown message blocks from 2, and the Duan-Nian scheme 
[6] that employs an exponential factor in the encryption procedure. The Duan-Nian 
scheme can be broken with a probabilistic algorithm in [7]. For the Adiga-Shankar’s 
modification (and also the basic Lu-Lee system), Brickell and Odlyzko have 
summarized cryptanalysis based on integer linear programming algorithms [8]. 

Kannan’s integer linear programming algorithm [9] runs in 9( log )nO n r  in worst case 

on problems with n  variables and integer coefficients bounded by r . Since 4n ≤  in 
both of the above two systems, Kannan’s algorithm is a viable threat to them. 

Kannan’s integer linear programming algorithm falls in trouble when the number 
of variables increases. Actually the worst computational complexity grows larger than 

1002  when 5n ≥ . On the other hand, we will show in this paper that extending Lu-
Lee systems to n  message blocks is straight forward from Adiga-Shankar’s scheme, 
which we call general Lu-Lee type systems. 
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To perform cryptanalysis of such systems, we turn to helps from lattice reduction 
algorithms. The most famous lattice reduction algorithm is the so-called LLL or L3 

algorithm proposed by Lenstra, Lenstra and Lovász [10]. With the development of 
fast L3 algorithms [11-13], lattice reduction has been applied to many fields, 
especially in cryptology, as summarized in [14].  

By applying L3 to a 2d n= +  dimensional lattice constructed from the modular 
linear equation in Lu-Lee type systems with n  message blocks, we show that 
cryptanalysis is possible to these systems. Actually, in the proposed probabilistic 
algorithm, the probability for uncovering the unknown message blocks is 
approximating 1 when 68n ≤ . 

The remainder of the paper is organized as following. We first introduce the Lu-
Lee type systems in Section 2. Section 3 is the preliminaries for cryptanalysis by 
lattice reduction. In Section 4 we give the probabilistic algorithm based on lattice 
reduction for breaking general Lu-Lee type systems, and a detailed description of 
probability analysis is in Section 5. Section 6 gives the experimental results. We 
conclude in Section 7. 

2   The Lu-Lee Type Systems 

We first introduce the basic Lu-Lee cryptosystem and Adiga-Shankar’s modification, 
and then present a general Lu-Lee type system that extends Adiga-Shankar’s scheme 
to n  message blocks. 

2.1   The Basic Lu-Lee Cryptosystem and Adiga-Shankar’s Modification 

Let 1 2,p p  be large primes (e.g. 256 bits) and 1 2r p p=  a large composite integer. 

1 2,k k  are integers of the same order of magnitude as r  and modj ij ik a p=  for 

, 1, 2i j = . Here ija  are moderate-sized numbers (e.g. 32 bits) satisfying 

 11 22 12 21 0a a a a− ≠ .  

1 2,M M  are the upper limits on the message blocks 1 2,m m , satisfying 

 
1 2

1
min , ,  1, 2

2
i

i i

q q
M i

a a
≤ =
⎢ ⎧ ⎫⎥

⎨ ⎬⎢ ⎥
⎣ ⎩ ⎭⎦

,  

where { }1 2min ,q p p=  and y⎢ ⎥⎣ ⎦  denotes the integer part of a real number y .  

With the denotations above, the public encryption key is 1 2 1 2( , , , , )r k k M M  and 

the private decryption key 1 2 11 12 21 22( , , , , , )p p a a a a . The encryption procedure is 

simply 
 

 1 1 2 2( ) modc k m k m r= + . (1)
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For decryption, first compute mod ,  1, 2i ic c p i= = , and the following simultaneous 

equations hold: 

 1 1 2 2 ,  1, 2i i ic a m a m i= + = .  

Then by solving the equations we can recover the original message blocks 1 2,m m . 

In Adiga-Shankar’s modification, three message blocks are used: 

 1 1 2 2( ) modc k m k m m r= + + . (2) 

The readers may find more details in [5]. 
For both of the basic Lu-Lee cryptosystem and Adiga-Shankar’s modification, 

Kannan’s integer linear programming algorithm is a viable threat to them since 
4n ≤ . 

2.2   Extend Lu-Lee System to n  Variables 

Extending the Lu-Lee system to n  variables is straight forward from Adiga-
Shankar’s scheme, as shown below. 

Let 1 2, , , np p p  be large primes (e.g. 256 bits) and 1 2 nr p p p=  a large 

composite integer. 1 2, , , nk k k  are integers of the same order of magnitude as r  and 

 mod ,  , 1, 2, ,j ij ik a p i j n= = .  

Here ija  are moderate-sized integers (e.g. 128 bits). 
11 2, , , ,n nM M M M +  are the 

upper limits on the message blocks 1 2 1, , , ,n nm m m m + , also moderate-sized (e.g. 

120 bits). The public encryption key is 1 1 1( , , , , , , , )n n nr k k M M M + , and the 

private decryption key 1( , , , ),  , 1, 2, ,n ijp p a i j n= . The encryption procedure is 

simply 

 1 1 2 2 1( ) modn n nc k m k m k m m r+= + + + + . (3)

On decryption, first calculate the residues modi ic c p= , which leads to the 

simultaneous equations 

 1 1 2 2 ,  1, 2, ,i i in n ia t a t a t c i n+ + + = = .  

By solving the equations we get [ ]i im t= , 1, 2, ,i n= , where [ ]y  denotes the 

integer closest to the real number y . The last message block 
1nm +  can be easily 

recovered by solving the equation 

 11 1 12 2 1 1 1n n na m a m a m m c++ + + + = .  
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The proof of the correctness of this modified scheme is similar as that in Adiga-
Shankar’s paper [5]. 

For all the previous mentioned Lu-Lee type systems, the encryption functions (1), 
(2) and (3) can be uniformly denoted by 

 1
mod

n

i ii
c k m r==∑ . (4)

We call this a general Lu-Lee type system; construction of such systems is not limited 
to the method above.  

For systems with more than 4n ≥  message blocks, Kannan’s integer linear 
programming algorithm falls in trouble that the computational complexity exceeds 

1002  in worst case. To break such systems, we will turn to helps from lattice reduction. 

3   Cryptanalysis Based on Lattice Reduction 

3.1   Introduction to L3 Lattice Reduction 

We only present the basic concepts of lattice and lattice reduction here. The readers 

may find detailed descriptions in [10]. Let 1 2, , , db b b  be linear independent vectors 

in n  with n d≥ . We denote by 

 { }1 2 1
( , , , ) |

d

d i i ii
L b b b z b z== ∈∑ .  

the set of all integer linear combinations of the ib ’s. This set is called a lattice and 

1 2( , , , )db b b  a basis of that lattice. Usually n d= , and we define the determinant 

of the lattice L  as 

 1 2det( ) | det( , , , ) |nL b b b= ,  

i.e., the absolute value of the matrix formed by 1 2, , , nb b b . 

There are infinitely many basis for a lattice if 2d ≥ . People are often interested in 
basis called reduced, which is made of reasonably short vectors which are almost 
orthogonal. The L3 lattice reduction algorithm outputs such a good reduced basis, with 
which we have the following important Theorem [10]: 

Theorem 1. Let 1 2, , , db b b  be an LLL-reduced basis of the lattice L , then the first 

vector 1b  satisfies 

1

( 1) / 4 1/|| || 2 det( )d db L−≤ . (5) 

To enhance the efficiency of L3 lattice reduction, floating-point (fp) algorithms are 
developed [11-13], and on the theoretic side, the fastest provable fp-variants of L3 is  
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Nguyen-Stehlé’s L2 given in [12]. For L3 and L2 algorithms, the output quality is much 
better than the worst case in Theorem 1. We have the following heuristic from [13]. 

Heuristic 1. Let δ  be close to 1 and η  close to 1/2. Given as input a random basis of 

almost any lattice L  of sufficiently high dimension, L3 and L2 with parameters δ  and 

η  outputs a basis whose first vector 1b  satisfies 

1

1/|| || 1.02 det( )d db L≈ . (6) 

3.2   Cryptanalysis of General Lu-Lee Type Systems 

For the modular linear equation (4) in the general Lu-Lee type system, finding a short 
solution is an interesting problem. Nguyen and Stern’s summarizing paper [14] 
includes an algorithm based on CVP (closest vector problem [15-16]) to find a short 
solution to multivariate modular linear equations. For the following multivariate 
modular linear equations 

1
mod ,  1

n

j ji ii
c k m r j l== ≤ ≤∑ , (7)

the algorithm outputs a solution 
1 2( , , , )nm m m m=  approximately satisfying 

/ 2 /|| || 2 n l nm r−< , (8)

where || ||m  denotes the norm of vector m . To break general Lu-Lee type systems, 

we are more interested in the case that 1l = , i.e., a single equation is used, for which 
we have 

1

/ 2 1/ / 2|| || 2 2n n nm r p− −< ≈ , (9) 

and the message blocks 1 2, , , nm m m  also satisfy this bound. Here we assume that 

all the primes 1 2, , , np p p  are of the same order of magnitude and hence 1

1/ np r≈ . 

Look back to the choice of parameters in Section 2, 1 2, , , np p p  are 256 bits and 

1 2 1, , , ,n nm m m m +  are 120 bits integers, so the solution in (9) is approximately 

256 / 2n−  bits long. This is a relative short solution, but not satisfying the need that 

im  are 120 bits integers when 256n < .  

We only present an example here that the CVP algorithm above fails to break a 
general Lu-Lee type system, since the short solution it outputs usually (in most case) 
is not the one we are interested in. More precisely, given a multivariate modular linear 

equation as in (4), there is only a unique solution * * *

1 2* ( , , , )nm m m m=  with the 

unknown message blocks bounded by selected ranges, i.e., 0 i im M≤ ≤ , 
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1, 2, ,i n= , and we are to find out this unique solution. To do so we will introduce 
the following probabilistic algorithm based on lattice reduction. 

4   Probabilistic Algorithm Based on Lattice Reduction 

4.1   Terminology for the New Algorithm 

Consider the multivariate modular linear equation derived from the general Lu-Lee 
type systems 

1
( ) mod

n

i ii
f m k m r c== =∑  (10) 

with the unknowns im  bounded by 

0 ,  1, 2, ...,i im M i n≤ ≤ = , (11)

where iM  are big integers satisfying iM r< . In this bounded range, there is a unique 

solution * * *

1 2* ( , , , )nm m m m= . In order to solve the equation (10) and get this unique 

solution, we write 

, 1, 2, , .i
iM r i n

γ= =  (12) 

with 0 1iγ< < . Define a 2d n= +  dimensional upper triangular matrix 

1 1

2 2

0 0 0

0 0

0n n

v k

v k

M
v k

u c

r

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (13)

where 1 2, , , nv v v  and u  are all randomized rationals, which we denote by  

/ 2 , / 2 ,  1, 2, ,i
is su r v r i n

δλ= = = . (14) 

Here the parameters iδ  and λ  satisfy 

1 ,  1 ,  1, 2, ,i i i nλ σ δ σ γ≈ − ≈ − − = , (15)

where 

1
1

n

ii
σ γ== ≤∑ . (16)
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The value s  in (14)  is relevant to the dimension of the matrix M , i.e., 

2( log ) / 2s d d≈ . (17) 

We define a lattice ( ) nL M ∈  with the rows of the matrix M . Then the determinant 

of this lattice is 

1

( 1)

(1 ) ( 1)

11

det( )

          / 2

          2

n

i
i

n

d

n
ii s

sd

L u r v

r

r σ

λ δ
=

+

− − −

=+ +

= ⋅ ⋅

=

≈ ⋅

∑

∏

 
(18)

Note that ( )L M  is a lattice with rational entries. Multiplying by least common 

denominator will produce an integer lattice on which basis reduction can be applied. 

4.2   Description of the Algorithm 

Algorithm: 
1) Generate random rationals for iv  and u  as defined in (14). 

2) Construct a lattice ( ) nL M ∈  with the rows of the matrix M  in (13). 

3) Apply LLL basis reduction algorithm to the lattice ( )L M , and we get a short 

vector 1b  of the reduced basis. We rewrite it by 1 1 2( , , , )db W w w w= = . 

4) Compute 1[ / ]dx w u−= , dc w=  and 1( , , ) n
nz z z= ∈Z  by [ / ]i i iz w v= , 

1, 2, ,i n= , where [ ]a  denotes the integer closest to a . 

5) If 0c = , 1x = −  and 0 i iz M≤ ≤  for 1, 2, ,i n= , then 1( , , )nz z z=  is the 

unique solution to the equation (10) in the given bounded range and the 
algorithm terminates. Else, repeat steps above. 

We first prove the correctness of the algorithm, and give probability analysis in the 
next section. 

Proposition 1. With the denotations above, if the algorithm outputs a short vector 

1 2
( , , , )dW w w w=  such that 0c = , 1x = −  and 0 i iz M≤ ≤  for 1, 2, ,i n= , 

then 1 2( , , , )nz z z z=  is the unique solution to the modular linear equation (10) in 

the bounded range, i.e., *z m= . 

Proof. Since 1 2( , , , )dW w w w=  is a vector that belongs to the lattice ( ) nL M ∈ , 

it can be constructed by the integer linear combination of the rows of the matrix M ; 
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In other words, there is a integer vector A  such that W AM= . Denote 

1 2( , , , , , )nA z z z x y= , then the vector W  can be rewritten by 

( )1 1 2 2, , , , ,n nW z v z v z v ux c=  (19)

where 

1

n

i ii
c k z cx yr== + +∑ . (20)

Hence we can compute  

1 1/ [ / ],  

/ [ / ],  1, 2, , ,

d d

i i i i i

x w u w u

z w v w v i n

− −= =

= = =
 

just as done in the proposed algorithm. With equation (20) and the assumptions that 

0c = , 1x = − , we have 
1

mod .
n

i ii
c k z r==∑  And when 0 i iz M≤ ≤ for 

1, 2, ,i n=  is also satisfied, 1 2( , , , )nz z z z=  is the unique solution to the 

equation (10) in the bounded range.                 □ 

5   Probability Analysis 

With the denotations above, * * * *

1 2( , , , )nm m m m=  is the unique solution to the 

equation (10) in the given bounded range 0 i im M≤ ≤  ( 1, 2, ,i n= ). Consider the 

vector ( )* * * *

1 1 2 2, , , , , 0n nW m v m v m v u= − , we have the following facts: first, *W  is 

probably outputted by the above algorithm since its norm is within the bound for that 

of W ; second, *W  is a “good” short vector such that the conditions 0c = , 1x = −  

and 0 i iz M≤ ≤  are satisfied in step 5 of the algorithm, leading to the unique solution 
* * * *

1 2( , , , )nm m m m= ; and finally, when the number of unknowns n  is not too large 

( 68n ≤ ), our algorithm will output this “good” vector *W  in polynomial time, with a 
high probability approximating 1. 

Proposition 2. The norm of the vector ( )* * * *

1 1 2 2, , , , , 0n nW m v m v m v u= −  is within 

the upper bound for W  (or 1b , namely) outputted by LLL lattice reduction on ( )L M , 

so that our algorithm will probably output it. 

Proof. According to Theorem 1, the upper bound for W  satisfies 

 ( 1) / 4 1/ ( 1) / 4 (1 ) ( 1) /|| ||  2 (det( )) 2 2d d d d dsW L r σ− − − − −≤ ⋅ = ⋅ ⋅  (21)
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On the other hand, by equations (14) and (15), we have 

* 2 2 2 * 2

2 2

1 1

11
1

1 2

|| ||  ( )

            ( / 2 ) ( / 2 )

            ( 1)( / 2 )

d n

i ii i

n

i
i i

i

s s

s

W w u m v

r r r

d r

σσ

σ

γ γ
= =

− −−
=

−

= = +

≤ +

= −

∑ ∑
∑  

which yields that 

* 1

1/ ( 1) /

|| ||  1 / 2

           1 2 2

s

s d d s d

W d r

d r

σ

σ

−

− − − −

≤ − ⋅

= − ⋅ ⋅ ⋅
 

Note that we choose 2( log ) / 2s d d≈  in (17), so 

2/ (log ) / 2
( 1) 2 ( 1) 2 ( 1) / 1d dsd d d d

−−− ⋅ ≈ − ⋅ = − <  

Now we can see by (21) that the norm of *W  is within the upper bound for W : 

* 1 ( 1) / 4 (1 )( 1) / ( 1) /|| ||  < / 2 2 2dd s d d s dW r rσ σ− − −− − −< ⋅ ⋅ . 

Hence the LLL lattice reduction procedure of the algorithm will probably output *W  

as 1b .                    □ 

Remarks. The factor ( 1) / 42 d −  above should be replaced by 1.02d  according to 
Heuristic 1, but this will not affect the result here. 

Proposition 3. With the denotations above, the outputted vector *W guarantees that 

the conditions 0c = , 1x = −  and 0 i iz M≤ ≤  ( 1, 2, ,i n= ) are satisfied, leading 

to the short solution * * * *

1 2( , , , )nm m m m= . 

Proof. We have 

( )* * * *

1 1 2 2, , , , , 0n nW m v m v m v u= − , 

and by step 4 of the algorithm we can compute 0c = , 1x = −  and  

*0 i i iz m M≤ = ≤  ( 1, 2, ,i n= ), 

producing the unique solution *z m= .              □ 

Next we are to analyze the probability with which our algorithm will output the short 

vector *W . We first introduce the following function ( , )g z x  of 1 2( , , , )nz z z z=  

and x : 
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( , ) ( ) mod
n

i ii
g z x cx k z r= +∑ . (22)

The module r  and coefficients c  and ik  are the same as in the original equation 

(10), and so the outputted result c , x  and 1( , , )nz z z=  by our algorithm satisfies 

( , )g z x c= . 

For simplicity we only consider the case that the function ( )f m  in (10) is 

uniformly distributed in [0, )r , and accordingly ( , )g z x  is also a uniformly 

distributed function mapping to [0, )r . Let ( )D g  be the domain and ( )R g  the range 

of ( , )g z x  relevant to the algorithm proposed. Note that, by the definition of ( , )g z x , 

( )D g  denotes the set of all different ( , )z x  pairs and  ( )R g  the set of all different c   

(probably) outputted by the algorithm. According to Propositions 2 and 3, *W  is a 

short vector (probably) outputted by the algorithm, so that *( , 1) 0g m − = , thus we get 
*( , 1) ( )m D g− ∈  and 0 ( )R g∈ . 

Proposition 4. If the function ( , )g z x  is uniformly distributed in [0, )r , our 

algorithm has a probability of 1/  to output the short vector *W  in one round, 

producing the unique solution * * *

1( , , )nm m m= . Here ( )1 1.02 2 /
d

d d= + ⋅ . 

Before proving proposition 4, we first give the following some Lemmas. 

Lemma 1. For vector 1 2( , , , )dW w w w=  and 2 2

1
|| ||

d

ii
W w==∑ , define 

1
| |

d

w ii
wπ == ∏ , then we have ( ) || || /

d

w W dπ ≤ . The equality holds when 

1 2| | | | | |dw w w= = = . 

Lemma 2. Let iz  ( 1, 2, ,i n= ), x  and c  be the result outputted by one round of 

the algorithm, then 

( )1
| |  1.02 /

dn d
ii

c x z r d=⋅ ⋅ ≤ ⋅∏  (23)

Lemma 3. Let ( , )g z x  be a uniformly distributed function of ( , )z x  mapping to 

[0, )r  with *( , 1) 0g m − = , and denote the sizes of the domain ( )D g  and range ( )R g  

of ( , )g z x  respectively by D  and R . Let X  be the number of variable-pairs ( , )z x  

falling in the domain ( )D g  and mapping to the range ( )R g , then the expectation of 

X is approximately 1 /EX D R r= + ⋅ . 
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The proof of these lemmas is given in the appendices. 

Proof of Proposition 4. By Lemma 3, the expectation of the number of all variable-
pairs falling in the domain ( )D g  and mapping to ( )R g  is 1 /EX D R r= + ⋅ , which 

is just the average number of all different values that the outputted results 

1 2( , , , )nz z z z= , x , c  may vary in after one round of our algorithm. To prove the 

proposition, we only need to estimate the value D R⋅ , which is the product of the 
sizes of domain ( )D g  and range ( )R g  involved in the algorithm. Note that ( )D g  is 

the set of all different ( , )z x  pairs and ( )R g  the set of all different c  (probably) 

outputted by the algorithm, so D R⋅  is the supremum of the number of all 

1 2( , , , )nz z z z= , x , c  that satisfy the bound 

( )1
| |  1.02 /

dn d
ii

c x z r d=⋅ ⋅ ≤ ⋅∏  

by Lemma 2. Thus we have 

 ( )2 1.02 /
dd dD R r d⋅ ≤ ⋅ ⋅   

Here we take into account that for the outputted result z , x  and c , the values of iz  

( 1, 2, ,i n= ), x  and c  may be either positive or negative, hence introducing a 
22 2n d+ =  factor. Then the number of different values that the outputted result may 

vary in is 

( )1 / 1 1.02 2 /
ddEX D r dR= = + ≤ + ⋅⋅  

Note that the outputted vector W  is relevant to z , x  and c  (in step 4 of the 
algorithm), so that W  may also vary in  different values in average. Finally, by 

Propositions 2 and 3, we know that *W  is one of the outputted vectors, finishing the 
proof.                  □ 

We have the following two corollaries from Proposition 4. 

Corollary 4.1. When 10 70d≤ ≤  (or 8 68n≤ ≤ , accordingly), 0.9 1/ 1< < , thus 
we have a high probability approximating 1 to obtain the unique solution 

* * *

1 2

*( , , , )nm m m m=  after one round of our algorithm. 

Corollary 4.2. For the cases 2 8n≤ < , repeating our algorithm for rounds will 

output the desired vector *W , and yield the unique solution 
* * * *

1 2( , , , )nm m m m= , with a high probability approximating 1.  

Proof. when 2 8n≤ <  (or 4 10d≤ <  accordingly), we have 2.4< , and hence 
1/ 0.4> . This is the probability for obtaining a short solution after one round of the 
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algorithm. Note that we construct the lattice ( )L M  with randomized entries u  and 

iv  in (13), which will output different vectors W with different u  and iv , so simply 

by repeating the algorithm for 5 rounds will output a short solution with a high 

probability larger than 51 (1 1/ ) 0.92− − > .            □ 

Remarks. Repeating the algorithm for rounds when 68n >  is insignificant since the 
probability 1/  decreases fast with the growth of n . For example, 1/  is smaller 
than 0.0001 when 80n = . 

Proposition 5. When the number of unknowns satisfies 2 68n≤ ≤ , the proposed 

algorithm will output the unique solution * * * *

1 2( , , , )nm m m m=  in polynomial time, 

with a high probability approximating 1. 

Proof. It is well known that the LLL lattice reduction algorithm runs in polynomial 

time (first 6 3( (log ) )O d B  in [10], and later improved by floating-point LLL 

algorithms [11-13]). For 8 68n≤ ≤ , our algorithm will output the short solution 
* * * *

1 2( , , , )nm m m m=  in one round with a high probability approximating 1; 

moreover, for 2 8n≤ < , repeating the algorithm for rounds (actually no more than 5 
rounds) will also reach this target. So for all 2 68n≤ ≤ , our algorithm will output the 

unique solution * * * *

1 2( , , , )nm m m m=  in polynomial time, with a high probability 

approximating 1.                                           □ 

6   Experimental Results 

We have performed experiments for the proposed probabilistic algorithm, using the 
NTL library [17] for lattice reduction. Experimental results are given in the following 

Table 1, where 1η  denotes the ratio to find out the solution *m  in one round, and 10η  

the ratio in no more than 10 rounds. We also record the average running time of the 
algorithm for the cases that we can find out the solution. 

The experimental results show that for 64n ≤ , we are likely to find the solution in 
one round of our algorithm, with a high probability larger than 70%. And for 70n ≤ ,  
 

Table 1. Experimental results for cryptanalysis of Lu-Lee type systems 

n  ip (bits) r (bits) 1η  10η  average running time 

8 512 4096 100% − 3 sec 
16 64 1024 100% − 450 ms 
32 64 2048 100% − 15 sec 
64 32 2048 60% 90% 6 min 
70 32 2240 10% 70% 15 min 
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in most cases (90%) the algorithm succeed in no more than 10 rounds. This is not far 
from the theoretic analysis of probability in Section 5. 

7   Conclusion 

In this paper we consider the general Lu-Lee type systems, in which n  unknown 
message blocks are used, and each of the message blocks is bounded by a selected 
range. Previous results such as cryptanalysis by integer linear programming and CVP 
(closest vector problem) are not satisfying the need for cryptanalysis of a general Lu-
Lee type system. To solve this problem we present a probabilistic algorithm based on 
lattice reduction and break general Lu-Lee type systems up to 68 message blocks in 
polynomial time, with a high probability approximating 1. 

Cryptanalysis of Lu-Lee type systems with more than 70 message blocks is not 
satisfying with the probabilistic algorithm by now. Enhancement of the algorithm is 
for advanced research. 
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Appendices 

Proof of Lemma 1. Obviously when 1| | | |dw w= = , (|| || / )d
w W dπ =  is satis-

fied. If there exists some iw  and jw  such that | | | |i jw w≠ , we are able to raise the 

value wπ , simply by replacing iw  and jw  by *

iw  and *

jw ,  where 

* * 2 2| | | | ( ) / 2i j i jw w w w= = + . 

In this case *2 * 2 2 2

i j i jw w w w+ = + , and 2| ||| W  remains the same for the new *

iw  and 

*

jw ;  while on the other hand, the new value of wπ  is raised since 

 
* * *2 *2 2 2| | ( ) / 2 ( ) / 2 | |i j i j i j i jw w w w w w w w= + = + > .  

Repeating this replacement so far as there exists | | | |i jw w≠ , we will reach the 

maximum value of ( )|| || /
d

w W dπ =  when 1 2| | | | | |dw w w= = = .          □ 

Proof of Lemma 2. According to Heuristic 1 and equation (18), the vector W  (alias 

for the first vector 1b  of the reduced basis) satisfies 

1/ (1 ) ( 1) /|| ||  1.02 (det( )) 1.02 2d d d d dsW L r σ− − −≈ ⋅ = ⋅ ⋅  (24)

Equations (19) and (14) show that 

( )
( ) ( )
( )

1 1

1 1

1

(1 ) 1 ( 1)

| |  | | | | | |

                 | | | | | |

                 | | | | | | 2

d n

i i ii i

n n

i ii i
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By Lemma 1 and equation (24) we have 
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This leads to the equation (23) together with (25).           □ 

Proof of Lemma 3. Because *( , 1) ( )m D g− ∈  and 0 ( )R g∈ , we only consider the 

number of variable-pairs differing from *( , 1)m − , denoted by Y  with 1X Y= + . 

Since ( , )g z x  is uniformly distributed in [0, )r , for a random variable-pair 

( , ) ( )z x D g∈ , ( , )g z x  will map to ( )R g  with a probability of /R r  (and not map to 

( )R g  with a probability of 1 /R r− ), then for the 1D −  variable-pairs in ( )D g  

except *( , 1)m − , the probability for i  variable-pairs ( , )z x  mapping to ( )R g  (and 

the other 1D i− −  variable-pairs not mapping to ( )R g ) is 

1(1 / ) ( / )D i iR r R r− −− ⋅ . 

The i  variable-pairs ( , )z x  are randomly chosen, so totally 1D
iC −  different choices 

are to be considered. Then for 0,1, , 1i D= − , 

1 1( ) (1 / ) ( / )D D i
i

iP Y i C R r R r− − −= = − ⋅⋅ , 

where ( )P Y i=  denotes the probability for Y i= . This is a binomial distribution of 

Y : ( ;  1,  / )B Y D R r− , so we have ( 1) / /EY D R r D R r= − ⋅ ≈ ⋅ , and 

1 1 /EX EY D R r= + ≈ + ⋅ .                  □ 



A Timing-Resistant

Elliptic Curve Backdoor in RSA

Adam L. Young1 and Moti Yung2

1 Cryptovirology Labs
aly@cryptovirology.com

2 Columbia University
moti@cs.columbia.edu

Abstract. We present a fast algorithm for finding pairs of backdoor
RSA primes (p, q) given a security parameter. Such pairs posses an asym-
metric backdoor that gives the designer the exclusive ability to factor
n = pq, even when the key generation algorithm is public. Our algo-
rithm uses a pair of twisted curves over GF(2257) and we present the
first incremental search method to generate such primes. The search
causes the 1

2 log(n)+O(log(log(n))) least significant bits of n to be modi-
fied during key generation after p is selected and before q is determined.
However, we show that this is tolerable by using point compression and
ECDH. We also present the first rigorous experimental benchmarks of
an RSA asymmetric backdoor and show that our OpenSSL-based imple-
mentation outperforms OpenSSL RSA key generation. Our application
is highly efficient key recovery. Of independent interest, we motivate the
need to find large binary twists. We present the twist we generated and
how we found it.

Keywords: Twisted elliptic curves, RSA, subliminal channel, kleptog-
raphy.

1 Introduction

The problem of devising a backdoor within RSA [27] public keys is a well-studied
area. It is an important topic since RSA key generation machinery is often im-
plemented in hardware or binary executables. Therefore, the extent to which
such implementations can/should be trusted is not always clear and consider-
able effort may be needed to access the design of the machinery that has been
deployed. Without expending such effort, a backdoor may go unnoticed for years.
This threat provides a motivation for the study of backdoors.

The approaches to designing backdoors can be divided into two categories:
symmetric backdoors and asymmetric backdoors. A symmetric backdoor is suit-
able when one may assume that the key generation device is a tamper-proof
black-box. However, a reverse-engineer that breaches the black-box learns the
secrets and is able to use the backdoor in like implementations. On the other
hand, an asymmetric backdoor only assumes that the key generator is imple-
mented in a tamper-resistant black-box. The reverse-engineer that breaches the

Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 427–441, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



428 A.L. Young and M. Yung

black-box will learn that a backdoor is present but will be unable to use it. The
asymmetric backdoor constructions to date have all utilized asymmetric cryp-
tography to construct the asymmetric backdoor (public key of the designer).

Anderson presented a symmetric backdoor [3] and it was subsequently crypt-
analyzed by Kaliski [17]. The notion of an asymmetric backdoor was presented
in [32] (see also [33]) where the backdoor was in turn an RSA public key. The
construction is called a secretly embedded trapdoor with universal protection
(SETUP) and the trapdoor is the public key of the malicious designer. A prob-
lem in the design is that the secretly embedded trapdoor has a security parameter
that is 1/2 that of the key being generated. So, when a 1024-bit RSA key is be-
ing generated the secretly embedded trapdoor must be about 512 bits which is
unacceptable today. A solution to this problem was recently presented in [34]. It
relies on the random oracle model, utilizes a twisted pair of curves over GF(2m),
and has the property that the security parameter of the backdoor is m. The
space-efficiency is achieved using point compression and the backdoor works for
1024-bit RSA. All of these works permitted the RSA public exponent e to be
small and fixed for all users.

The possibility of detecting a backdoor based on the running time of a black-
box key generator was presented in [19]. This is related to the notion of a timing
attack [18]. The issue of detection based on running time was mentioned in [7]
that presents several constructions for symmetric backdoors. However, many of
the proposed constructions do not allow e to be fixed among all users (crypto
APIs commonly take e as an input to the RSA key generation function). The goal
was to achieve a fast running time to evade detection, yet no proof of security
nor benchmarks were provided. So, it appears that to date none of the works
on constructing a backdoor in RSA key generation present a provably timing
resistant construction nor experimental benchmarks. Our contributions are:

1. We present the first timing-resistant asymmetric backdoor in RSA. The back-
door is based on [34] but is substantially redesigned.

2. We present the first benchmarks of the running time of the backdoor.
3. We present a backdoor (that we built into OpenSSL) that has a running

time that is even faster than normal OpenSSL RSA key generation and show
that the particulars of the prime incremental search method/trial-division
can have a very significant impact on timing-resistance.

Assessing timing-resistance could presumably involve accounting for a multi-
tude of different reference (i.e., honest) RSA key generators, the processors used,
and a comparison with the backdoor(s). However, this rather unwieldy challenge
is not what we consider here. Rather, we consider only one RSA key generation
algorithm, a key generator that is present in the OpenSSL library. We believe
that this case is common enough to merit study. So, our timing results are with
respect to this commonly accepted method/implementation.

We conducted a methodological investigation where we treated the OpenSSL
RSA key generator as our “engineering challenge”. Our challenge was to use an
“algorithms engineering approach” in order to arrive at a backdoored RSA key
generator that runs faster than that of the engineering challenge (OpenSSL).
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The idea is that “algorithms engineering” eventually gains from a better under-
standing of the theory, a better and more careful look at the implementation and
its improvement (e.g., implementation tricks) and also new methods of achieving
the goals and associated cryptographic issues that relate to them.

But, we believe that it would be unfair to categorize this paper as simply a
collection of “tricks” beyond [34]. Our timing results were difficult to achieve.
We succeeded only after applying several algorithmic speed-ups and in the end
finding that we had to change the incremental search/fast trial-division algorithm
to beat the OpenSSL RSA key generation running time. Some of the differences
are that [34] does not: use incremental search, use fast trial division,1 use wNAF
splitting, choose ECDH exponents to minimize computational cost.2

2 Background and Definition

We now present a working definition of a secure SETUP for RSA. It is based on
[34] but is modified to accommodate the possibility of timing analysis.

The model involves a designer, an eavesdropper, and an inquirer. The designer
builds a black-box A that contains the SETUP and a black-box B that conducts
normal (unescrowed) RSA key generation. The designer is given access to the
public keys that are generated and the goal of the designer is to obtain the RSA
private key of a user who uses A to generate a key pair. Prior to the start of the
games, the eavesdropper and inquirer are given access to the SETUP algorithm
and the normal key generation algorithm. However, once the games start they
are not given access to the internals of A nor B.

It is assumed that the eavesdropper and inquirer are probabilistic poly-time
algorithms and that the RSA key generation algorithms are deployed in tamper-
resistant black-boxes. We distinguish between delayed oracle access (e.g., once
every hour on the hour) and timely oracle access in order to account for poly-
nomial indistinguishability and timing analysis.

Game 1: Select T ∈R {A, B} and let the inquirer have delayed oracle access
to T . The inquirer wins if he correctly determines whether or not T = A with
probability significantly greater than 1/2.

Property 1: (computational indistinguishability) The inquirer fails Game 1
with overwhelming probability (w.o.p.).

Game 2: The eavesdropper may query A but is only given the public keys that
result, not the corresponding private keys. He wins if he can learn one of the
corresponding private keys.

Property 2: (confidentiality) The eavesdropper fails Game 2 (w.o.p.).

Property 3: (completeness) Let (y, x) be a public/private key generated using
A. The designer computes x on input y w.o.p.

1 In fact, it does not do trial division at all.
2 [34] requires point-halving during key generation, we show how to eliminate this.
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In a SETUP, the designer uses his or her own private key(s) in conjunction with
y to recover x. For example, y may be present in an X.509 v3 certificate.

Property 4: (uniformity) The SETUP is the same in every black-box device A
that is manufactured.

Game 3: Select T ∈R {A, B} and let the inquirer have timely oracle access
to T . The inquirer wins if he correctly determines whether or not T = A with
probability significantly greater than 1/2.

Property 5: (timing indistinguishability) The inquirer fails Game 3 w.o.p.

Property 5 clearly subsumes Property 1. The reason we allowed this is to permit
applications in which timely oracle queries may be unlikely (in which case Prop-
erty 5 may be ignored). We leave as open the issue of extending the definition
to account for power analysis and fault analysis.

Property 4 implies that there are no unique identifier strings in the SETUP
device. This permits distribution in a compiled program in which all instances
of the program are identical without diminishing security. Also, this makes it
simpler to manufacture the SETUP in hardware and software.

Definition 1. If an RSA key generation algorithm satisfies properties 1, 2, 3,
4, and 5 then it is a Timing-Resilient SETUP.

We state up-front that we have no formal proof that our proposed SETUP
algorithm achieves Definition 1. The present work is a solid step in this direction
since our algorithm runs faster than normal OpenSSL RSA key generation.

The probabilistic bias removal method (PBRM) was put forth in [33]. The
PBRM produces asymmetric ciphertexts that are computationally indistinguish-
able from random bit strings. PBRM was employed in [1] to devise a public key
stegosystem (PKS). It was shown how to use twists [14,15,16] to devise a PKS
[23].

For typical elliptic curves used in cryptography, only about half of IFq corre-
sponds to the x-coordinates on the given curve. By using two curves where one
is the twist of the other, it is possible to implement a trapdoor one-way permu-
tation from IFq onto itself. The notion of a twist has been used to implement
trapdoor one-way permutations [16].

3 System Setup

The key recovery algorithm utilizes two binary curves. Each curve Ea,b is defined
by the Weierstrass equation y2 + xy = x3 + ax2 + b. The coefficients a and b
are in IF2m and b �= 0. We employ the standard group operations for binary EC
cryptosystems. By making m an odd prime we avoid the Gaudry-Hess-Smart
attack [12]. It is required that these curves provide a suitable setting for the
elliptic curve decision Diffie-Hellman problem (ECDDH). It is well-known that
for certain elliptic curves, DDH is tractable [13].
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The value for m is the prime 257. The irreducible trinomial is f(z) = z257 +
z12 + 1. The implementation uses p = 2257 + 212 + 1 to express this trinomial.
The number of points on E0,b is 4q0. The number of points on E1,b is 2q1. The
values for b, q0, and q1 that we used are as follows, expressed in hexadecimal.

b = 197D4C3C909B4C8EAC18BB296C11BFB18C80B37C0C62AFD8E5F00104C46EEAF0B

q0 = 800000000000000000000000000000005EB3E3179500E2B5D2F8EA6DCC363C1F

q1 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF429839D0D5FE3A945A0E2B24679387C3

We will now review the basics of twisted binary curves. Hasse’s inequality
implies that |#Ea,b(IF2m)−2m −1| < 2 ∗ 2m/2. Also, if the trace TrIF2m /IF2(a) �=
TrIF2m/IF2(a

′) then Ea,b and Ea′,b are referred to as twists of one another. For
two such twists, for every x ∈ IF2m there exists a y ∈ IF2m such that (x, y) is on
Ea,b or Ea′,b. Furthermore, there are two possibilities. Either (x, x+y) and (x, y)
are points on the same curve or (x, y) = (0,

√
b) is on both of the curves. The

total number of points on both curves is #Ea,b(IF2m) + #Ea′,b(IF2m) which is
2m+1+2. Therefore, from Hasse’s inequality, #Ea,b(IF2m) ≈ #Ea′,b(IF2m) ≈ 2m.

Since m is an odd integer, TrIF2m /IF2(0) = 0 and TrIF2m/IF2(1) = 1. So, E0,b

and E1,b are a pair of twisted curves. It is important to choose curves that resist
known cryptanalytic attacks (e.g., that satisfy the MOV condition). Using point-
counting techniques it is known how to efficiently generate E0,b and E1,b with
orders 4q0 and 2q1, respectively, where the values q0 and q1 are prime. The curve
E0,b will have a cofactor of 4 and E1,b will have a cofactor of 2.

4 Fast SETUP Algorithm

For ease of exposition we will describe the algorithm such that it requires that
|n| mod 8 = 0. Here |n| denotes the length in bits of n represented as a binary
integer. So, we assume that n fills an integral number of bytes completely. The
actual implementation relaxes this to require that n be even. Naturally there are
other elements of the implementation that we do not reflect here. For example,
in many places sensitive values are zeroized in memory.

Once the twist is found, a base point G0 having order 4q0 that is on E0,b(IF2m)
is generated and a base point G1 having order 2q1 that is on E1,b(IF2m) is
generated. The designer generates the private key x0 ∈R {1, 2, ..., q0−1} and the
public key Y0 = x04G0. The designer also generates the value x1 ∈R {1, 2, .., q1−
1} and the public key Y1 = x12G1. The precomputed wNAF splitting values [22]
for (G0, Y0, G1, Y1) are stored in the RSA key generation device.

4.1 Building Blocks for RSA SETUP

Following [34] the SETUP algorithm utilizes point compression. The compressed
public point in an EC Diffie-Hellman key exchange is embedded in the upper
order bits of the RSA modulus using a well-known channel in composites (see
[32]). A point (x, y) on the curve over IF2m can be uniquely expressed by using
m+1 bits [30]. We denote the compressed point by (x, ybit) where ybit ∈ {0, 1}.
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NewCurve takes as input the EC parameters p, a, and b and returns group,
a data structure that is used in basic elliptic curve operations. Such operations
include point compression, fast scalar point multiplication, and so on. The data
structure can also be loaded with wNAF splitting precomputations.

PointCompress(group,P ) compresses the point P = (U, V ) on the curve defined
by the group data structure. The algorithm outputs (x || ybit) which is the
compressed representation of (U, V ). PointDecompress(a, x || ybit) decompresses
(x || ybit) that is on twist a ∈ {0, 1} and outputs ((U, V ), w). If w = 1 then
(U, V ) is the decompressed point on curve a. If w = 0 then an error occurred
since (x, ybit) is not on curve a. In this case (U, V ) is undefined.

The algorithm GenDHExchangeValues generates the public Diffie-Hellman
key exchange parameter and the Diffie-Hellman shared secret. It effectively con-
ducts an ECDH key exchange between the key generation device and it’s de-
signer. In short, the shared secret is employed to generate one of the RSA primes
and the public Diffie-Hellman value is displayed in the bit representation of n.
The designer need only obtain n (e.g., from a Certification Authority) to recover
the DH exchange value and factor n.

Both groupValsGi and groupValsYi specify such things as blocksize, num-
blocks, and w for wNAF splitting. Both groupPointsGi and groupPointsYi point
to 2 dimensional byte arrays that store the precomputed points for wNAF
splitting. groupValsGi and groupPointsG1 store the precomputations for Gi.
groupValsYi and groupPointsYi store the precomputations for Yi. LoadwNAF-
split loads a group data structure with the precomputed values for Gi (or Yi).

The SetGenerator algorithm takes as input a group data structure, a generator
G, the order of G, and the cofactor cof. The algorithm configures the group data
structure to use G as the base point in calls to FastPointMul.

PointMul takes as input a group structure and K and performs wNAF point
multiplication. It returns P = KG where G is configured using SetGenerator.
FastPointMul is the same except that it performs point multiplication using
wNAF splitting [22]. FastKmodr uses the precomputations (2q0, 3q0, 4q0, 2q1) to
compute k = K mod r quickly. It uses a binary search that costs at most 2
multiprecision comparisons and 1 subtraction.

GenDHExchangeValues():
Input: none
Output: spub, spriv ∈ {0, 1}m+1

1. with probability 4q0−1
2m+1 set a = 0 and with probability 2q1−1

2m+1 set a = 1
2. if a = 0 set (r, cof) = (q0, 4) else set (r, cof) = (q1, 2)
3. set groupg = NewCurve(p, a, b) and set groupy = NewCurve(p, a, b)
4. if a = 1 then
5. LoadwNAFsplit(groupg, groupValsG1, groupPointsG1)
6. LoadwNAFsplit(groupy, groupValsY1, groupPointsY1)
7. else
8. LoadwNAFsplit(groupg, groupValsG0, groupPointsG0)
9. LoadwNAFsplit(groupy, groupValsY0, groupPointsY0)
10. SetGenerator(groupg, Ga, 2(2-a)r, cof)
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11. SetGenerator(groupy, Ya, r, cof)
12. choose K uniformly at random such that 0 < K < 2(2 − a)r
13. set k = K
14. if (K ≥ r) then set k = FastKmodr(K, r)
15. P = FastPointMul(groupg, K) /* compute P = KGa */
16. spub = PointCompress(groupg, P )
17. P = FastPointMul(groupy, k) /* compute P = kYa */
18. spriv = PointCompress(groupg, P )
19. return (spub, spriv)

The “public” DH key exchange value is spub. The shared secret is spriv. As
shown in [34,23], this randomized method of selecting a curve and computing
spub causes spub to be indistinguishable from a random m + 1-bit string. This
forms the basis for Property 1.

The PointDouble algorithm takes as input a group data structure and P and
returns the point Q = P + P . RecoverDHSharedSecret recovers spriv.

RecoverDHSharedSecret(spub, x0, x1):
Input: spub ∈ {0, 1}m+1 and EC private keys x0, x1

Output: spriv ∈ {0, 1}m+1

1. set (v, r, cof) = (0, q0, 4)
2. ((U, V ), w) = PointDecompress(0, spub)
3. if (w = 0) then
4. compute ((U, V ), w) = PointDecompress(1, spub)
5. set (v, r, cof) = (1, q1, 2)
6. set a = v and set group = NewCurve(p, a, b)
7. let P1 be the point corresponding to (U, V )
8. P1 = PointDouble(group, P1)
9. if (v = 0) then set P1 = PointDouble(group, P1)
10. SetGenerator(group, P1, r, cof)
11. P2 = PointMul(group, xa) /* compute P2 = xaP1 */
12. return spriv = PointCompress(group, P2)

IsAcceptablePrimeFast decides acceptable RSA primes. PrimeChecksForSize
takes as input the bit length of a candidate prime and returns a positive in-
teger specifying the number of iterations of Miller-Rabin [20,26]. This value is
based on the average case error estimates for the strong probable prime test [9].
PrimeChecksForSize is defined by Table 4.4 in [21] and on input 1024, 2048, and
4096 it returns 3, 2, and 2, respectively. IsPrimeFastTest(p,t) returns the Boolean
result of t iterations of Miller-Rabin on p.

IsAcceptablePrimeFast(e, len, p1):
Input: RSA exponent e, required bit length len of p1, candidate prime p1

Output: true or false, false if p1 is not an acceptable prime
1. if (|p1| �= len) then halt with false
2. if the two uppermost bits of p1 are not 112 then halt with false
3. numchecks = PrimeChecksForSize(len)
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4. result = IsPrimeFastTest(p1, numchecks)
5. if (result = false) then halt with false
6. if (gcd(p1 − 1, e) �= 1) return false else return true

A random oracle [5] can be used to derive q based on the DH shared secret.
This approach leads to pairs of backdoor primes that are computationally indis-
tinguishable from normal RSA primes under ECDDH [34]. Given that we want a
fast running time, we instantiate the oracle using a fast PRNG. ANSI X9.17 [4]
was chosen for this purpose, which is clearly not a random oracle (that cannot
exist), but that seems to satisfy our needs in practice. However, we modified the
ANSI X9.17 PRNG to use AES-128 [8] instead of DES.

The algorithm DHSecretToPRNGParams takes as input the point spriv and
returns (seed,key,D). Recall that |spriv| = m + 1 bits. In our case m = 257. The
algorithm right shifts spriv by 2 bits to derive 256 bits for use in the PRNG. 128
of these bits are used for key and the remaining 128 bits are used for seed. The
date value D is a fixed 128-bit value that was chosen uniformly at random.

PseudoRndGenAES1281(seed,key,D) initializes the PRNG (D is the ‘date’
[4]). PseudoRndGenAES1280(t) returns the next t bytes from the PRNG stream.
PseudoRndGenAES1282 zeroizes values and frees memory. These calls maintain
state information across calls.

The constant NUMPRIMES is 2048 and the array primes stores the first 2048
primes, from primes[0] = 2 up to primes[NUMPRIMES− 1] = 17863, inclusive.
The array mods has the same number of elements as primes. We define MAXDELTA
to be 232 − 1 − primes[NUMPRIMES− 1]. This constant is used as an upper limit
on delta to ensure that the 32-bit word (mods[i] + delta) does not overflow.

GenPrimeWithPRNGFast(seed, key, D, len, e):
Input: seed, key, D ∈ {0, 1}128, required bit length len, RSA exponent e.
Output: An acceptable prime p1

1. PseudoRndGenAES1281(seed, key, D)
2. p1 = PseudoRndGenAES1280(len/8)
3. set the 2 most significant bits and the least significant bit of p1 to 1
4. for i = 1 to NUMPRIMES − 1 step 1 do:
5. mods[i] = p1 mod primes[i]
6. delta = 0
7. for i = 1 to NUMPRIMES − 1 step 1 do:
8. if ((mods[i] + delta) mod primes[i] ≤ 1)
9. delta = delta + 2
10. if (delta > MAXDELTA) then goto step 2
11. goto step 7
12. if (IsAcceptablePrimeFast(e, len, prime + delta) = false)
13. delta = delta + 2
14. if (delta > MAXDELTA) then goto step 2
15. goto step 7
16. PseudoRndGenAES1282()
17. set p1 = p1+ delta and return p1
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The prime generator GenPrimeWithPRNGFast uses incremental search. It also
uses a very fast trial-division algorithm that is based on [21,24]. In [21] an array-
update method is given. This method is effectively as follows. The mods array is
iteratively updated by computing mods[i] = mods[i] + 2 mod primes[i] for i = 1
to NUMPRIMES − 1. The entire mods array is continually updated until an
iteration occurs in which none of the resulting mods[i] values is 0.

The algorithm above differs from the array-update method since it does not
iteratively increment entries in the mods array. It increments delta instead. In
the event that (mods[i]+delta) mod primes[i] ≤ 1 it terminates the iteration
altogether, so it is faster than [21]. The mods array is changed only when a new
candidate prime p1 is chosen.

However, by checking that (mods[i]+delta) mod primes[i] ≤ 1 an additional
restriction is imposed on p1. It is guaranteed that the resulting integer p1 will be
such that p1 −1 is not divisible by any of the primes in the primes array (except
2).3 Observe that IsAcceptablePrimeFast does not need to do trial division since
trial division was already applied to the value passed into p1.

The final building block is the algorithm GenPrimeWithOracleIncr that takes
as input (spriv,len,e) and that returns an acceptable prime p1. This algorithm
calls DHSecretToPRNGParams(spriv) that returns the triple (seed, key, D) that
is needed for the PRNG. The algorithm then returns the acceptable RSA prime
number p1 where p1 = GenPrimeWithPRNGFast(seed, key, D, len, e).

4.2 Fast RSA SETUP Key Generation

The following is the main algorithm that produces the backdoor RSA primes.

GetPrimesFast(bits, e, spub, spriv):
Input: bits is the desired modulus length, exponent e, spub, spriv ∈ {0, 1}m+1

Output: A pair of acceptable RSA primes (p1, q1)
1. len = bits/2
2. p1 = GenPrimeWithOracleIncr(spriv, len, e)
3. μ = bits − (8 + m + 1)
4. choose r1 ∈R {0, 1}7 and r2 ∈R {0, 1}μ

5. set nc = 1 || r1 || spub || r2

6. solve for (q1, r) in nc = q1p1 + r
7. if (|q1| �= len or the 2nd most significant bit of q1 is not 1) then goto step 4
8. set the least significant bit of q1 to 1
9. for i = 1 to NUMPRIMES − 1 step 1 do:
10. mods[i] = q1 mod primes[i]
11. delta = 0
12. for i = 1 to NUMPRIMES − 1 step 1 do:
13. if ((mods[i] + delta) mod primes[i] ≤ 1)
14. delta = delta + 2

3 This algorithm is related to the way OpenSSL 0.9.8 generates RSA primes. However,
we added a crucial speed-up that we cover in Section 5 that causes the SETUP to
outperform the running time of OpenSSL RSA key generation.
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15. if (delta > MAXDELTA) then goto step 4
16. goto step 12
17. if (IsAcceptablePrimeFast(e, len, q1 + delta) = false)
18. delta = delta + 2
19. if (delta > MAXDELTA) then goto step 4
20. goto step 12
21. set q1 = q1 + delta and return (p1, q1)

When overflow occurs p1 is not fully rerandomized due to spub. We found that
by making delta a multiprecision variable (i.e., much larger) and eliminating
overflow, the running time became far too slow. So, in practice this decision
seems to be the best one.

The algorithm KleptoKeyGenFast takes as input the integer bits and the
RSA exponent e and returns the final values of p1 and q1. Let these final values
be denoted by p = p1 and q = q1. The algorithm first calls GenDHParamAnd-
DHSecret to generate the spub and spriv Diffie-Hellman key exchange values. It
then passes these to GetPrimesFast along with bits and e. It returns the pair
of primes that GetPrimesFast halts with.

The algorithm RSAGenerateKeyEx generates the backdoor RSA primes. It
takes as input (bits, e) and uses KleptoKeyGenFast to generate the primes only
when bits ≥ 1024 and 2 | bits. Otherwise it performs normal (unescrowed) RSA
key generation. The OpenSSL 0.9.8 version of RSAGenerateKeyEx generates at
most 3 primes q and if all of them equal p then it reports an error. This is
designed to gracefully handle small (p, q). Since p = q occurs with negligible
probability for our backdoor keys we omit this restriction.

RSAGenerateKeyEx returns (e, d, p, q, dP, dQ, qInv). These values can be
found in the PKCS #1 standard [25] and they enable a fast version of the
Chinese Remainder Theorem to be used for RSA inversion.

ed ≡ 1 mod λ(n), q ∗ qInv ≡ 1 mod p, e ∗ dP ≡ 1 mod p − 1, e ∗ dQ ≡ 1 mod q − 1

4.3 RSA SETUP Key Recovery

The designer obtains the RSA modulus n and RSA exponent e of the user. The
following algorithm permits n to be factored.

KleptoRecoveryKeyFast(n, e, x0, x1):
Input: RSA modulus n, RSA exponent e, and EC private keys (x0, x1)
Output: (p1,v) where v ∈ {true, false}. v is true ⇔ p1 | n
1. bits = |n|
2. μ = bits − (8 + m + 1)
3. let t0 be n right shifted μ bits /* throws away the μ rightmost bits */
4. set spub = t0 mod 2m+1

5. spriv = RecoverDHSecret(spub, x0, x1)
6. p1 = GenPrimeWithOracleIncr(spriv, bits/2, e)
7. if (n mod p1 = 0) then halt with (p1, true) else halt with (p1, false)

A result of v = false implies that some form of unexpected error occurred.
It is possible yet overwhelmingly unlikely that key recovery will fail due to a
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borrow bit being taken. To see this, note the following. The candidate composite
is nc = q1p1 + r for some remainder r. When q1 is incremented by 2, nc +
2p1 = (q1 + 2)p1 + r. Due to the Prime Number Theorem, about O(log(p1))
increments will be performed until an acceptable prime (q1 + delta) is found.
The subtraction of 2p1 from both sides may result in a borrow bit that threatens
the representation of spub in the upper order bits of nc. The chances that this
representation is altered is negligible for the backdoor keys that are generated.
Security is addressed in Appendix A.

The following is a variant that uses Coppersmith’s factoring algorithm. Cop-
persmith showed that if the |n|/4 most significant bits of p1 are known then n =
p1q1 can be efficiently factored [6]. Following [7,34], this cryptanalytic method
can be exploited to lower the number of pseudorandom bits that are used to
construct p1. The oracle (that we instantiate using a PRNG) can be used to
generate the |p1|/2 most significant bits of p1 (except the 2 most significant bits
that are 1). The remaining lower order bits are selected randomly. The value p1

is subjected to trial-division and is tested for being an acceptable RSA prime.
The next |p1|/2 bits are taken from the PRNG stream as needed, and so on.
This repeats until an acceptable prime p1 is found. To factor a backdoored n,
Coppersmith’s algorithm C is used. The PRNG bit stream is regenerated |p1|/2
bits at a time. Each of these strings is given to C along with n and one will lead
to the factorization of n.

5 Performance

We first searched for a twisted pair and then benchmarked key generation and
recovery. The test machine was a Dell Intel Pentium 4 running at 2.79 GHz
with 512 MB RAM. The underlying OS was Ubuntu Linux 5.04.4 The value
e = 65, 537 was used in all of our experiments. Also, all implementations use [9]
to determine the number of iterations of Miller-Rabin. The implementations are
based entirely on OpenSSL 0.9.8 that contains an EC library.

Table 1 gives the performance of the fast SETUP algorithm (ALG3) from Sec-
tion 4. Key generation involves the computation of the public DH key exchange
parameter and the shared secret. There are 2 wNAF splitting scalar multiplica-
tions per RSA key pair that is generated. So, the average number of inversions,
additions, and doublings needs to be halved to evaluate wNAF splitting.

For the purposes of comparison, we also considered a modified version (called
ALG 1) of [34] that has the following improvements (see row 1 of Table 2).

1. wNAF splitting is used to speed up the EC operations.
2. The scalar K is chosen and used and k is chosen based on K (same as in the

fast SETUP algorithm). This means that point halving is avoided.
3. Once p is found, the speed-up in [2] is used to avoid divisions while searching

for q (1/p is precomputed, then we multiply and shift to compute q).

4 For optimal results, the key generation/recovery program was run with root privi-
leges using the nice − 10 command.



438 A.L. Young and M. Yung

Table 1. Performance averages for Fast SETUP Algorithm

Performance Measure |n| = 1024 |n| = 2048 |n| = 4096

10,000 trials 10,000 trials 10,000 trials

block size for wNAF 8 8 8

value for w for wNAF 4 4 4

ave. # inversions/RSA key 43.00 43.10 43.13

ave. # additions/RSA key 84.33 84.28 84.29

ave. # doublings/RSA key 14.42 14.41 14.41

ave. RSA key gen. time (sec) 0.111 0.768 8.723

ave. RSA key rec. time (sec) 0.048 0.374 4.308

Table 2. Average RSA key generation/recovery time in seconds

RSA Key Generation Method |n| = 1024 |n| = 2048 |n| = 4096

10,000 trials 10,000 trials 10,000 trials

1 Modified SAC ’05 Gen (see [34]) 0.233 1.164 10.171

2 Modified SAC ’05 Rec 0.116 0.740 7.390

3 Fast SETUP Algorithm Gen 0.111 0.768 8.723

4 Fast SETUP Algorithm Rec 0.048 0.374 4.308

5 Normal OpenSSL Gen 0.131 0.937 9.294

6 OpenSSL with ext. incr. srch. Gen 0.082 0.733 8.632

The random permutation π that is used to transform the ECDH key exchange
value is as follows. F is SHA-224 [10] modified to append a fixed, randomly
selected prefix to the value that is hashed. H is the same except that it has
a different randomly selected prefix. The input to π is x = xu || x� where
|xu| = |x�|. Finally, π(x) = (xu

⊕
F (x�

⊕
H(xu))) || (x�

⊕
H(xu)).

From Table 2, it is clear that despite these improvements to [34], the fast
SETUP is still better. The hindrance to the running time is due to: (1) incre-
mental search is not used to find p nor q, and (2) in each iteration in which q is
tested, π is called and a Karatsuba multiplication is computed.

Consider the normal OpenSSL RSA key generation algorithm (ALG5) [24].
The performance of ALG5 is given in row 5 of Table 2. Like GenPrimeWith-
PRNGFast, it uses incremental search and trial-division to find primes. However,
a critical difference is as follows. Suppose that overflow due to delta does not
occur, a number that withstands trial-division is found, and Miller-Rabin is per-
formed. If Miller-Rabin reports that p1 is composite, then p1 is selected over
again randomly. In other words, OpenSSL gives up on p1 if p1 + delta is found
before overflow and p1 + delta is composite. ALG3 doesn’t give up like this (see
row 2 of Table 2). It will continue to increment delta by 2. It reselects p1 only



A Timing-Resistant Elliptic Curve Backdoor in RSA 439

if delta exceeds MAXDELTA. See Appendix A for the security implications of this
extended incremental search.

The gain from performing this extended incremental search more than com-
pensates for the 2 wNAF splitting multiplications and the PRNG that generates
p in n = pq (the entries in row 3 are lower than those of row 5). We have therefore
shown an asymmetric backdoor in key generation that is faster than OpenSSL
RSA key generation. This implies that it may be worth researching an approach
which provides provable resistance to timing analysis.

We benchmarked ALG5 when modified to perform this extended incremental
search (ALG6). The results are given in row 6 of Table 2. This shows a way
to speed up OpenSSL RSA key generation (the entries in row 6 are lower than
those of row 5).

We also adapted ALG3 to use the OpenSSL incremental search method. The
running time was slower than ALG5 so we omit the data. This, combined with
the benchmark of ALG1 suggests that the approach of [34] will not achieve
Property 5. No SETUP attacks have been designed against timing attacks, so
there’s no reason to believe that Property 5 will hold for previous solutions.

6 Conclusion

We presented a fast EC backdoor for RSA that uses incremental search. We
showed that it runs faster than OpenSSL key generation. This shows that asym-
metric backdoors in RSA can resist timing analysis.
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A Security

The fast SETUP does not produce prime pairs where each prime is uniformly
distributed among the set of acceptable RSA primes. Consider the twin primes
pa, pb = pa+2. pa may have numerous composites immediately before it, whereas
pb has only 1 chance at being selected during incremental search (lsb of pa + 1
is set to 1). The experiments lead to the following apparent dichotomy:

1. By using the OpenSSL prime search method the SETUP will likely be slower
to due the overhead of the EC and Feistel operations. This leads to polynomi-
ally indistinguishable distributions but distinguishability via timing analysis.

2. By using the extended incremental prime search method, the SETUP will
be faster than OpenSSL RSA key generation and this leaves some leeway to
refine that algorithm so that the running times match. This may lead timing
indistinguishability but runs the risk of poly-time distinguishability.

We do not have a concrete resolution for this dichotomy. In some sense the
problem is to achieve the impossible: have matching running times while per-
forming extra work (EC/Feistel operations). We state up-front Assumption 1
below that is needed for provable indistinguishability of the backdoor key gener-
ator vs. normal OpenSSL key generation. As assumptions go it could be a single
point of failure in the backdoor algorithm. But, as explained below such a failure
may have important implications in practice.

Assumption 1: The distribution over pairs of primes that result from the
extended incremental search (used in the fast SETUP) is computationally in-
distinguishable from the distribution over pairs of primes that result from the
incremental search algorithm of OpenSSL.

We leave the validation/invalidation of Assumption 1 open.
The designer may deploy a key generator with a secret design. ALG3 might

be fast enough to avoid suspicion, so “indistinguishability” may not be a critical
issue. Smart card manufacturers and software companies often keep the key gen-
eration algorithm secret on the basis that it is proprietary. From this perspective
our results serve a different purpose: if Assumption 1 is wrong then this may
provide a method for detecting backdoor attacks in black-box products based
on, e.g., the efficiently detectable suspicious distribution over prime pairs that
results from the particulars of the prime incremental search algorithm.

Put another way, our results indicate that particular attention should be paid
to the incremental search algorithm used in selecting primes in a secret key gen-
eration algorithm. One may be able to create an independent implementation
using the same hardware and exact same incremental search algorithm. By com-
paring the running time with the black-box version, a backdoor could possibly be
detected based on speed. Our experiments lead us to the following observation.

Claim 1: When one can choose a faster incremental search method for primes
and by using a ECDH backdoor with precomputations it is possible to construct
an asymmetric backdoor in RSA key generation that runs faster than native RSA
key generation.
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Abstract. In most watermarking schemes for copyright protection, a seller 
always knows the embedded watermark identifying a buyer. However, it incurs 
both repudiation issue and framing issue. To solve these problems, many 
watermarking protocols have been proposed based on watermarking schemes in 
the encrypted domain. In this paper, we enhance an existing watermarking 
scheme and discuss public key cryptosystems used in watermarking protocols. 
Then, a new watermarking scheme in the encrypted domain with flexible 
watermarking capacity is proposed for watermarking protocol. It improves the 
robustness of watermarked image against JPEG compression after decryption 
and enables image tampering detection. The blind watermark extracting employs 
the same threshold criterion and secret keys as watermark embedding. 
Experimental results demonstrate that the enhanced scheme reduces computing 
overload and increases effective watermarking capacity, and that the proposed 
watermarking scheme in the encrypted domain outperforms a previous scheme. 

1   Introduction 

In order to deal with many important issues of multimedia security, such as 
distribution, authentication, and copyright protection, watermarking has increasingly 
become a surge of research activity. It enables a seller to hide additional bits into 
multimedia content while preserving content’s quality. In the past decade, a large 
number of excellent watermarking schemes have been presented. In most 
watermarking schemes, embedding watermark into host content is executed by the 
seller in behalf of intellectual property. However, since the seller always knows the 
embedded watermark identifying a buyer, it causes both repudiation issue (a guilty 
buyer producing unauthorized copies could be able to repudiate the fact and claim that 
the copies were possibly made by the seller) and framing issue (an honest buyer could 
be falsely accused for reparation by a malicious seller who can reuse the embedded 
watermark to frame). Hence it is significant in the sense that the watermarking 
framework needs protocols to solve both the resolution of the rightful ownership 
problem and the protection of the buyer’s right problem, which is first introduced by L. 
Qiao and K. Nahrstedt [1]. 
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For this reason, many watermarking protocols have been proposed based on 
watermarking scheme in the encrypted domain. In such a condition, the seller can not 
produce copies containing the watermark identifying the buyer, because he does not 
know the exact watermark from the ciphertext in the embedding procedure. When an 
illegal copy is found, the seller can prove to a third party that the buyer is certainly 
guilty without repudiation and framing. N. Memon and P. W. Wong [2] presented a 
buyer-seller watermarking protocol to resolve both the pirate tracing problem and the 
buyer’s right problem. Successively, Chin-Laung Lei et al. [3] pointed out the 
unbinding problem and proposed an efficient and anonymous buyer-seller 
watermarking protocol. Recently, J. Zhang et al. [4] proposed a secure buyer-seller 
watermarking protocol based on the idea of sharing a secret. In these protocols, the 
protocol’s security depends essentially on the watermarking scheme in the encrypted 
domain. However, none of these protocols further considered how to embed encrypted 
watermark bits into host image content in detail. 

M. Kuribayashi and H. Tanaka [5] presented an anonymous fingerprinting protocol 
and a quantization-based scheme for embedding encrypted watermark bits by additive 
homomorphic property. According to the simulation results, 32-bit information can be 
embedded into the 256×256 grayscale image “Lena”. However, the information 
payload of this watermarking scheme is too deficient to employ anti-collusion codes [6] 
which are designed to immunize the analysis of colluded buyers in practical 
applications. Furthermore, it seems inefficient that 1-bit information is repeatedly 
embedded dozens of times to resist against general JPEG compression. 

In this paper, an existing watermarking scheme is enhanced, and then a 
watermarking scheme in the encrypted domain is proposed for watermarking protocol. 
It aims to embed encrypted watermark bits with flexible volume, adaptively satisfying 
different practical requirements. The new watermarking scheme in the encrypted 
domain differs from [5] in several aspects. (1) Threshold criterion is employed to 
decide where to embed watermark bits among candidate transformation coefficients. 
(2) Flexible watermarking capacity is achieved by adjusting many parameters as secret 
keys. (3) Preprocessing method is adopted to reduce computing overload and increase 
effective watermarking capacity. (4) Watermark extracting does not need the original 
image, but employs the same threshold criterion and secret keys as watermark 
embedding to extract the entire watermark bits. (5) The resistance against JPEG 
compression after decryption is improved, and the tampering on watermarked images 
can be detected. 

2   Enhanced Watermarking Scheme 

2.1   SEC Scheme 

K. Solanki et al. [7] proposed an image-adaptive watermarking technique called 
selectively embedding in coefficients (SEC) scheme. It applies local criteria to choose 
where to hide data by means of one-by-one DCT coefficients selection with the goal of 
minimal visual distortion. Here, SEC scheme is reviewed briefly. 

An image is partitioned into 8×8 nonoverlapping blocks, to which the DCT is 
applied, and then DCT coefficients ijc  of a block are divided by the quantization table 
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at designated quality factor (QF). After zig-zag scanning, the quantized coefficients lkc  

in a fixed low frequency band (1≤k≤N) are rounded to the nearest integer, and then 

taking their magnitude to obtain kr . 

l 1 N.int ( )k near kr c k≤ ≤= ，  　  (1) 

A quantized coefficient lkc  will be selected to embed a bit, if and only if it satisfies 

the threshold criterion that kr  is greater than a positive integer threshold t. Thus, the 

quantized coefficients lkc  are processed as following. 
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where int ( )bl i  denotes either int ( )odd i  (round to the nearest odd integer) or int ( )even i  

(round to the nearest even integer), which is depended on the incoming bit with prior 
knowledge, either 1 or 0 correspondingly. After inverse zig-zag scanning, 
multiplication by the quantization table at designated QF and IDCT, the watermarked 
image of that block can be reconstructed. 

 

 

 

 

 

 

 

Fig. 1.  (a) SEC scheme.  (b) Enhanced scheme.  (c) Extracting method. 

However, if the magnitude of a rounded coefficient lint ( )bl kc  equals threshold t for a 

bit bl, then the extractor will disregard this coefficient and lose the embedded bit bl, 
because its magnitude is not greater than threshold t with respect to the threshold 

criterion. It actually happens to the selected coefficients lkc  whose magnitude lies 
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between (t+1/2) and (t+1) as Fig. 1(a) illustrated. In order to maintain the 
synchronization between embedder and extractor, SEC scheme uses checking and 

re-embedding to deal with these lost bits [7]. If lint ( )bl kc  equals threshold t, the same 

bit bl will be embedded into the next qualified coefficient. Thus the computing 
overload obviously rises, because it requires always checking whether this condition 
happens. Moreover, since generally half of these coefficients whose magnitude lies 
between (t+1/2) and (t+1) are used in vain, the effective embedding capacity is 
decreased due to re-embedding. 

2.2   Enhanced Scheme 

To solve these problems, an enhanced scheme is proposed in this section. After 8×8 
block partition, DCT, division by the quantization table at designated QF and zig-zag 

scanning, in a fixed low frequency band (1≤k≤N), the quantized coefficient lkc  whose 

magnitude lies between threshold t and (t+1) are rounded to the nearest integer as a 
preprocessing, leaving a protection interval there as Fig. 1(b) shown. 
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Then, the quantized coefficients lkc  in a fixed low frequency band (1≤k≤N) are 

rounded to the nearest integer, and then taking their magnitude to obtain kr . In the 

enhanced scheme, a quantized coefficient lkc  will be selected to embed a bit by the 

same threshold criterion that kr  is greater than threshold t. 
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where int ( )bl i  also depends on the incoming bit with prior knowledge. To avoid 

ambiguity in some special cases, if lkc  is actually an even integer, lint ( )odd kc  function 

should round lkc  to the nearest odd integer either l( 1)kc +  or l( 1)kc− + ; if lkc  is 

actually an odd integer, lint ( )even kc  function should round lkc  to the nearest even 

integer either l( 1)kc +  or l( 1)kc− + , the sign of which depends on positive or negative 

value correspondingly. These uniform rounding methods are used to the quantized 

coefficients of integer value, especially l +1( )kc t= . 



446 B. Zhao et al. 

In the enhanced scheme, the preprocessing method plays the same role as 
l  and 1 Nif k kd t r t k≤ ≤= ± = ，，  in formula (2) in SEC scheme, but it avoids using 

checking and re-embedding to the selected coefficient lkc  whose magnitude lies 

between (t+1/2) and (t+1). The enhanced scheme never makes the rounded coefficient 
lint ( )bl kc  down to threshold t after embedding arbitrary bit, so the entire embedded 

watermark bits can be extracted without losing any bit. Therefore, compared with SEC 
scheme, the enhanced scheme reduces the computing overload of checking and 
re-embedding and increases the effective watermarking capacity. 

Fig. 1(c) shows that two watermarking schemes employ the same extracting method 

to obtain kr  and use the same threshold criterion to determine embedding positions. 

Then, the entire embedded watermark bits can be extracted one-by-one using the 

odd-even judgment: If kr  is an odd integer, the embedded bit is 1; else kr  is an even 

integer, the embedded bit is 0. 

3   New Watermarking Scheme in the Encrypted Domain 

In the watermarking protocols [2]-[5], for the sake of no repudiation and no framing, 
watermark should be encrypted by the buyer’s public key unexposed to the seller. As 
watermark embedder, the seller usually has the original image and the encrypted 
watermark. Following the successive processes as Fig. 2 shown, the seller can embed 
the watermark into the host image in the encrypted domain and send the encrypted 
watermarked image to the buyer. 

Image

   Image
Watermark

E ( )WatermarkE

( )ImageE( )E

 

Fig. 2. Embedding watermark in the encrypted domain 

A public key cryptosystem used in watermarking protocols should include three 
important properties as following, but are not limited to. (E(•) and D(•) denote public 
key encryption and decryption respectively, random number r1 and r2 are uniformly and 
independently selected) 
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1) Additive Homomorphic Property: Multiplying two ciphertexts E(x,r1) and E(y,r2) 
leads to addition of two plaintexts x and y. 

1 2( ( , ) ( , )) ( ( , ))     mod nD E x r E y r D E x y r x y′= + = +i  (5) 

( ( , ) ) ( ( , ))     mod nkD E x r D E kx r kx′= =  (6) 

2) Semantic Security: The encryption of a message x is computationally 
indistinguishable to a polynomial time from the encryption of a different message y. 

1 2
?( , ) ( , )E x r E y r←⎯→  (7) 

3) Self Blinding: A given ciphertext can be publicly changed into another one 
without altering the plaintext, and the relationship between two ciphertexts can be 
concealed. 

1 2( ( , ) ( )) ( ( , ))     mod nD E x r f r D E x r x′= =i  (8) 

It is known that Paillier cryptosystem [8] and Okamoto–Uchiyama cryptosystem [9] 
conform to these important properties and share a similar structure. Hence, both of 
them can be used in the proposed scheme, and the employment of which cryptosystem 
depends on practical applications. 

3.1   Overview 

The main goal of this work is embedding encrypted watermark bits with flexible 
volume, adaptively satisfying different practical requirements. The enhanced scheme is 
adopted to select qualified coefficients to embed watermark bits, and the embedding 
method proposed in [5] is employed to insert the encrypted watermark bits into the 
encrypted coefficients by additive homomorphic property. 

Since the quantization table used in JPEG compression algorithm [10] is based on 
human perceptual characteristics, it is used in SEC scheme and the enhanced scheme to 
reduce visual distortion. Note that the quantization table at designated QF is composed 
of real numbers, and they can not apply public key cryptosystem based on the algebraic 
property of integer. Therefore, the quantization table at designated QF is slightly 
modified in such a way that all the real numbers are cut off to integers QF

ijM . 

Furthermore, the seller should predefine many parameters as a set of secret keys, such 
as a positive integer threshold t for the threshold criterion, the value of designated QF, 
the number N of candidate coefficients per block in a fixed frequency band (1≤k≤N), 
and a random permutation ( )P i . 

In watermark embedding procedure, the threshold criterion that the quantized 
coefficient’s magnitude is greater than the threshold t is adopted to decide where to 
embed watermark bits. In order to employ a public key cryptosystem, special round-off 
strategies are applied to both the selected coefficients and the other coefficients. In the 
embedding positions, watermark insertion is performed in the encrypted domain by 
additive homomorphic property. The value of each encrypted selected coefficient can 
be correspondingly altered by each encrypted watermark bit whose value, whether 1 or 
0, is completely unknown in advance. 
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In watermark extracting procedure, the watermarked image is a plaintext after 
decryption and IDCT. Watermark extractor does not need the original image, but 
employs the same threshold criterion and secret keys as the watermark embedder to 
determine the embedding positions, and then extracts the watermark. 

3.2   Watermark Embedding Procedure 

The watermark embedding steps are shown in the flow chart Fig. 3. 

Selected
Coefficients

Step 1

Step 5

Step 7

Step 8

Step 9

Other
Coefficients

Decryption
and IDCT

     Other
Coefficients

E     Selected
Coefficients

E

Threshold Criterion

Step 6

Step 4
Step 2 Step 3

Step 10

P E Watermark

WatermarkE

 

Fig. 3. Watermark embedding steps 

Step 1. An image is partitioned into 8×8 nonoverlapping blocks and each block is 
transformed by DCT. 
Step 2. All the DCT coefficients ijc  of a block are divided by the customized 

quantizing step size QF
ijM  to obtain the quantized coefficients lijc . 

l , {0,1,...,7}.ij
ij QF

ij

c
c i j

M
= ∀ ∈，   (9) 

Step 3. The quantized coefficients lijc  are zig-zag scanned to obtain lkc  (0≤k≤63). 

Note that only the quantized coefficients in a fixed low frequency band (1≤k≤N) are 
considered as candidate coefficients, and the DC frequency component coefficient 

denoted by l0c  should avoid using. 
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Step 4. In the low frequency band (1≤k≤N), the quantized coefficients lkc  whose 

magnitude lkc  lies between threshold t and (t+1) are rounded to the nearest integer as a 

preprocessing. 

l

l

l

l

+  1 N

+1 + +1 1 N

1
if  ( ) and

2
1

( ) if  ( ) ( ) and 
2

otherwise.

k

k k

k

t t c t k

c t t c t k

c

< < ≤ ≤

≤ < ≤ ≤

⎧±⎪
⎪
⎪= ±⎨
⎪
⎪
⎪⎩

，

，

，         ，

，   ，

，         

 (10) 

In the other frequency band (N<k≤63), the quantized coefficients lkc  are never used 

for embedding and will be processed in the later steps. 

Step 5. In the low frequency band (1≤k≤N), the quantized coefficients lkc  whose 

magnitude lkc  is greater than threshold t as the threshold criterion are selected and 

rounded to the nearest even integer. 

l l  1 N.int ( ) for > andk even k kc c c t k≤ ≤= ，，   (11) 

Note that if lkc  is actually an odd integer, lint ( )even kc  function should round lkc  to 

the nearest even integer either l( 1)kc +  or l( 1)kc− + , the sign of which depends on 

positive or negative value correspondingly. 

The other quantized coefficients lkc  in the low frequency band (1≤k≤N) are never 

used for embedding and will be processed in the later steps. 

Step 6. All the selected coefficients kc  are inverse zig-zag scanned to obtain ijc ， and 

then every ijc  is encrypted with the buyer’s public key and a random number nb  to 

calculate the encrypted coefficient ( , )ij nE c b . Note that each embedding position is 

represented by subindex ij in that block. 
Step 7. The order of the encrypted watermark bitstream ( , )s lE w a

JJG JG
 is changed by the 

random permutation ( )P i  as one of secret keys to obtain the encrypted permuted 

watermark bitstream ( , )p mE w a
JJG JJG

. 

1 1 1 1( ( , )) ( ( , );...; ( , )) ( , );...; ( , ) ( , )N N N N
s l s l s l p m p m p mP E w a P E w a E w a E w a E w a E w a= = =
JJG JG JJG JJG

 (12) 

Step 8. In the embedding positions, the watermarked coefficients could be represented 
as following. 

l  1 N.( ) for > andQF
ij ij p ij kd c w M c t k≤ ≤′ = ± i ，，   (13) 
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Without the knowledge of the permuted watermark bit pw ’s value from the 

ciphertext ( , )p mE w a , when to adopt ij pc w+  or ij pc w−  relies on the following 

embedding method. If lij ijc c≥  (Case 1), then calculate ij pc w+ ; else lij ijc c<  (Case 2), 

then calculate ij pc w− . Since no selected coefficient lies between threshold t and (t+1) 

after the preprocessing in step 4, it never makes the value ( )ij pc w±  down to threshold t. 

Hence the encrypted watermarked coefficients ( , )ijE d r′ ′  can be calculated by 

multiplying two ciphertexts ( , )ij nE c b  and ( , )p mE w a in either Case 1 or Case 2: 

Case 1: If lij ijc c≥ , then 

( , ) ( ( , ) ( , ))

             ( ( , ))

             (( ) , ( ) )

QF
ij

QF
ij

M

ij ij n p m

M

ij p n m

QF QF
ij p ij n m ij

E d r E c b E w a

E c w b a

E c w M b a M

′ ′ =

= + +

= + +

i

i i

 (14) 

Case 2: Else lij ijc c< , then 

 

1( , ) ( ( , ) ( , ) )

             ( ( , ))

             (( ) , ( ) )

QF
ij

QF
ij

M

ij ij n p m

M

ij p n m

QF QF
ij p ij n m ij

E d r E c b E w a

E c w b a

E c w M b a M

−′ ′ =

= − −

= − −

i

i i

 (15) 

Step 9. In the other positions, the unwatermarked coefficients are rounded to the 
nearest integer by the following operations. 

l

l

l

 1 N

 1 N

0 N 63.

int ( ) for 0 and

for and

int ( ) for and

near ij k

QF
ij ij k

near ij k

c c t k

d t M c t k

c c k k

≤ < ≤ ≤

≤ ≤

< ≤

⎧
⎪
⎪= ± =⎨
⎪
⎪ ∀ =⎩ ∪

i

，

，

，   ，

，     ，

，   ，

 
(16) 

Then, every ijd  is encrypted with the same public key and a random number r  to 

calculate the encrypted unwatermarked coefficient ( , )ijE d r . 

Step 10. All the DCT coefficients ijd  of that block could be represented as following. 

l  1 N

.

for > and

otherwise

ij k

ij

ij

d c t k
d

d

≤ ≤⎧ ′⎪= ⎨
⎪⎩

，，   ，

，   

 (17) 

Hence all the encrypted DCT coefficients ( , )ijE d r  of that block are composed of 

watermarked coefficients and unwatermarked coefficient in the encrypted domain. 
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l  1 N

.

( , ) for > and
( , )

( , ) otherwise

ij k

ij

ij

E d r c t k
E d r

E d r

≤ ≤⎧
⎪= ⎨

′ ′⎪⎩

，，    ，

，   

 (18) 

With block-by-block processing, the seller obtains the entire encrypted DCT 
coefficients of the watermarked image, and then sends them to the buyer. Finally, the 
buyer obtains the watermarked image by decrypting the entire DCT coefficients and 
employing IDCT. 

3.3   Watermarking Extracting Procedure 

Some initial steps of the extracting procedure are similar to the one of embedding 
procedure, e.g. from Step 1 to Step 3. 

Step 4. In the low frequency band (1≤k≤N), the quantized coefficients lkd  are rounded 

to the nearest integer. 

l 1 N.int ( )k near kd d k≤ ≤= ，  　  (19) 

Step 5. The quantized coefficient integers kd  whose magnitude kd  is greater than 

the threshold t as the same threshold criterion are considered as embedding a permuted 
watermark bit. Hence, every permuted watermark bit pw  can be readily extracted using 

the odd-even judgment as following. 

  1 N

  1 N.

1 if  is odd and

0 if  is even and

k k

p

k k

d d t k
w

d d t k

≤ ≤

≤ ≤

⎧ >⎪= ⎨
>⎪⎩

，  ，

， ，

，     ，

，    

 (20) 

Step 6. The permuted watermark bitstream pw
JJG

 is changed to the original order by the 

same random permutation ( )P i , and finally the original watermark bitstream sw
JJG

 is 

retrieved. 

1 1( ) ( ;...; ) ;...;N N
p p p s s sP w P w w w w w= = =
JJG JJG

 (21) 

4   Experimental Results 

4.1   Results of the Enhanced Scheme and SEC Scheme 

In this section, we report some simulation results to compare the enhanced scheme with 
SEC scheme. Using the same 512×512 grayscale images, the enhanced scheme embeds 
watermark bits into the DCT coefficients selected by the same threshold criterion in the 
same low frequency band (1≤k≤14) as SEC scheme [7]. This parameter 14 can be 
further changed, and it is independent of the host image. Note that the real numbers of 
the quantization table at designated QF are cut off to integers, but we do not apply 
round-off to the entire DCT coefficients. All of the embedded watermark bits are 
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equiprobably and independently generated with p(1) = p(0) = 0.5, and each result is the 
average over a large number of repeated tests. Table 1 gives the number of embedded 
and lost watermark bits and the corresponding PSNR of two watermarking schemes in 
different images. The embedded bits varies from one to another depended on image 
inherent characteristics and threshold t. Surprisingly, we observe that both the effective 
watermarking capacity and the number of lost bits in SEC scheme undesirably shift at 
every time depended on each embedded watermark bitstream, while the enhanced 
scheme is not subject to this flaw. 

Using the same parameters, the enhanced scheme embeds the same number of 
watermark bits as SEC scheme, and the PSNR is quite near to that of SEC scheme. In 
addition, the enhanced scheme reduces the computing overload of checking and 
re-embedding. Furthermore, in the enhanced scheme, the entire embedded watermark 
bits can be extracted without any loss, and the effective watermarking capacity is 
higher than that of SEC scheme because of no re-embedding. 

Table 1. The number of watermark bits and PSNR at designated QF 25 in different images 

SEC scheme Enhanced scheme 512×512 
QF=25 

Threshold 
t 

Embed 
bits Lose 

bits 
PSNR 
(dB) 

Lose 
bits 

PSNR 
(dB) 

0 31056 5734.6 32.25 0 30.25 
1 13291 1995.9 35.66 0 35.10 
2 6637 950.7 39.33 0 38.44 

Baboon 

3 3436 481.2 42.09 0 41.24 
0 19291 4112.5 34.17 0 32.05 
1 7269 1068.6 38.03 0 37.77 
2 3782 417.2 41.68 0 41.01 

Boat 

3 2372 224.3 43.68 0 43.10 
0 13261 2764.1 35.84 0 33.91 
1 5338 670.8 39.77 0 39.65 
2 3122 305.3 42.71 0 42.10 

Peppers 

3 2048 161.6 44.25 0 43.74 

4.2   Results of New Watermarking Scheme in the Encrypted Domain 

In this section, we present many experimental results to demonstrate the performance 
of the new watermarking scheme in the encrypted domain. For less ciphertext length 
and lower transmission load, |n|=512-bit Paillier cryptosystem [8] is employed in our 
experiments. The entire tests were performed on the same 256×256 grayscale image 
“Lena”, the single test image reported in [5]. Watermark bits are embedded into the 
DCT coefficients selected by the threshold criterion in a fixed low frequency band 
(1≤k≤14). All of the embedded watermark bits are equiprobably and independently 
generated with p(1) = p(0) = 0.5, and each result is the average over a large number of 
repeated tests. 
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4.2.1   Watermarking Capacity 
The proposed watermarking scheme in the encrypted domain has a flexible 
watermarking capacity in a given host image by adjusting many parameters. Table 2 
reports the number of watermark bits and the PSNR of watermarked images after 
decryption. It indicates that using higher threshold t results in better visual quality of 
watermarked image but lower capacity to embed watermark bits. The visual quality 
measured by PSNR can be further improved by using higher threshold t. Therefore, 
there is a tradeoff between the embedding capacity and visual quality, and it adaptively 
satisfies different practical requirements. Note that the number of watermark bits 
reported here is actually uncoded bits. 

Table 2. The number of watermark bits and PSNR at different designated QF 

256×256 
Lena 

QF=25 QF=50 

Threshold 
t 

Embed 
bits 

PSNR 
(dB) 

Embed 
bits 

PSNR 
(dB) 

0 4916 32.29 7011 36.86 
1 2260 37.40 3828 40.78 
2 1341 40.27 2628 42.89 
3 890 42.50 1948 44.28 
4 626 43.89 1502 45.45 
5 456 45.21 1208 46.29 

4.2.2   JPEG Compression Resistance 
For JPEG compression, since the proposed watermarking scheme in the encrypted 
domain is tuned to JPEG quantization table at designated QF, the embedded watermark 
bits is resilient for the JPEG compression less severe than the designated QF and can be 
retrieved perfectly at the extractor. To provide an objective measure of JPEG 
compression resistance, we adopted the fair evaluation strategies proposed by M. 
Kutter and F. A. P. Petitcolas in [11]. The performance of the watermarked image 
resisting against JPEG compression can be measured by the bit-error rate (BER), which 
is defined as the ratio of the number of incorrectly extracted watermark bits to the total 
number of embedded watermark bits. 

First, we display the ability of JPEG compression resistance. Fig. 4 shows the 
resistance against JPEG compression at various cases with different parameters. In a 
given JPEG compression case, the watermarked image at low designated QF has less 
BER than the one at high designated QF, and the BER can be further decreased by 
using higher threshold t at the cost of reducing watermarking capacity. 

In addition, we illustrate the performance comparison between the proposed scheme 
and M. Kuribayashi et al. scheme, because the JPEG compression is the dominating 
attack reported in [5]. Fig. 5 shows the correct extraction rate (CER) of both schemes 
under JPEG compression. It is seen that the CER of the proposed scheme at designated 
QF 25 is superior to M. Kuribayashi et al.’s, which is represented by the curve with 
square taken from [5], and that the proposed scheme at designated QF 50 is of 
comparable performance. Note that M. Kuribayashi et al. scheme employs 75 times  
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Fig. 4. The resistance against JPEG compression 
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Fig. 5. The comparison of correct extraction rate 

repeated coding for 1-bit information, while the entire embedded watermark bits of the 
proposed scheme are uncoded and efficient enough for free bit-error recovery against 
JPEG compression. 

4.2.3   Image Tampering Detection 
For image tampering, the proposed watermarking scheme in the encrypted domain can 
detect various tampering on the watermarked image after decryption and locate the 
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tampered area in block level. If a watermarked image has undergone tampering, the 
tampered area in the watermarked image can be easily detected by comparing the 
retrieved watermark bitstream with the original watermark bitstream, and most errors 
are concentrated in the area where image tampering was done. It is a useful ability in 
commercial and forensic applications to detect whether the image has been tampered 
and disclose the tampered area as evidence. For example, two globally tampered 
watermarked image with the same parameters QF=25, t=1 are displayed in Fig. 6(a) 
(PSNR=19.62dB) and Fig. 6(c) (PSNR=17.42dB), and Fig. 6(b) and Fig. 6(d) show the 
correspondingly tampered area in block level. 

 

 

Fig. 6. Detect watermarked image with global tampering 

5   Conclusion and Future Work 

In this paper, we enhance an existing watermarking scheme in terms of reducing 
computing overload and increasing effective watermarking capacity. Based on the 
enhanced scheme, a new watermarking scheme in the encrypted domain with flexible 
watermarking capacity is proposed. It improves the robustness of watermarked image 
against JPEG compression after decryption and enables image tampering detection 
with blind watermark extracting. Experimental results demonstrate that the new 
watermarking scheme in the encrypted domain outperforms the previous scheme [5]. 
Therefore, the proposed watermarking scheme in the encrypted domain is a suitable 
solution to implementing existing watermarking protocols. Since bit errors are 
inevitable in certain scenarios, it is necessary to employ effective error correcting codes 
to solve this problem and improve robustness against other severe attacks in the future. 
We will design new secure watermarking protocol for copyright protection using the 
proposed watermarking scheme in the encrypted domain. 
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Abstract. Recently, Wang, Cao, and Zhang proposed a practical and
anonymous payment scheme. In the scheme, the authors claimed that
their scheme can identify those who spend a coin more than once. That
means the scheme can verify the payments in an offline batch process
and prevent a consumer from double spending. In this paper, we show
that Wang, Cao, and Zhang’s scheme can not identify consumers those
who spend the same coin repeatedly in two or more different shops at
the same time. So, all consumers can apply the security flaw to perform
double spending successfully. In order to overcome this security flaw, we
provide an improved version of the scheme in this paper.

1 Introduction

Digital cash can be divided into various categories, one of which is online system
[2,5]. It requires that a shop communicates with certain bank in every payment.
The shop can terminate transaction if there appears any problem. However, this
requirement increases the computation and communication loads of the bank.
Unlike online system, offline system [3,6] needs no communication between the
bank and the shop during every payment. Nevertheless, the bank can only find
out the consumer’s identity, but has no way to stop their cheating. Anonymity is
another subject of digital cash. The private information of customers is preserved
from disclosing when they use digital cash to purchase.

Recently, Wang, Cao, and Zhang [4] proposed a digital cash scheme with
flexible anonymity. For simplicity, we call their scheme the WCZ scheme here-
after. WCZ scheme allows the consumer to have an option to either pay with or
without anonymity. In order to provide flexible anonymity, the authors of WCZ
scheme proposed a new payment model, in which they take the traditional offline
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Dingyi Pei et al. (Eds.): Inscrypt 2007, LNCS 4990, pp. 457–462, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



458 C.-C. Chang, Y.-F. Cheng, and I.-C. Lin

payment model as basic foundation and meanwhile adopt the AP(Anonymity
Provider) agent. With the help of the AP agent, the consumer is able to increase
his anonymity at his/her will.

However, it can not be denied that the essential problem of an offline pay-
ment system is double spending. The authors claimed that although they can not
prevent double spending, they can detect whether there occurs double spend-
ing. Moreover, identities of those who have performed double spending will be
revealed. Unfortunately, in some circumstances, not all identities of dishonest
consumers are successfully exposed, and as a result, the bank and the shop will
not know the ones who have spent a coin more than once.

In this paper, we point out the security weakness of WCZ scheme and provide
an improved version to overcome the weakness. The rest of this paper is organized
as follows. In Section 2, we review WCZ scheme. In Section 3, we point out the
weakness of their scheme. Then, the improvement of their scheme is proposed in
Section 4. Finally, we make our conclusions in Section 5.

2 A Review of the WCZ Scheme

WCZ scheme [4], consists of four phases, withdrawal phase, anonymity scalability
phase, payment phase, and deposit phase. Here, some system initializations are
necessary to be explained before we perform the payment process. Firstly, the
bank has to choose two primes, p and q, for a specified constant δ and a specified
small integer γ, which satisfies |p−1| = δ+κ and p = γq+1, where κ is an integer.
Then a generator g of subgroup Gq with order q of the multiplicative group Zp

is defined. The bank also processes a private key xB ∈ Zq and its corresponding
public key Y , such that Y = gxB mod p. Moreover, a collision intractable hash
function H is defined. The bank then publishes p, q, g, H , and the public key
Y . On the other hand, the consumer generates a secret key xu ∈ Zq and then
the bank associates the consumer with his/her identity I, where I = gxu mod p.

2.1 Withdrawal Phase

In this phase, the consumer withdraws coins from the bank.

Step 1: Suppose that the consumer’s identity is I = gxu mod p. The consumer
can generate a coin c,

c : {a = gr, b = Y rIs},

where r is randomly chosen from Zq and s is the secret key of the coin.
Step 2: The consumer generates a signature of the message on c, together with

date, etc. by using Schnorr’s signature scheme with the consumer’s private
key xu. Then the consumer sends the signature, the date, the parameters c,
r, and I to the bank.

Step 3: After receiving these messages from the consumer, the bank verifies the
signature by using the consumer’s public key. Since only the actual consumer
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is able to generate a valid signature, the bank is convinced that the ownership
of the coin goes to the consumer. Then, the bank modified the consumer’s
account and sends back a certificate of c, called Certc, to the consumer.

Step 4: The consumer has to carefully record r, s, and Certc.

2.2 Anonymity Scalability Phase

In this phase, the consumer can achieve a higher level of anonymity with the aid
of AP agent. Certainly, if the consumer is not willing to be anonymous, he/she
could skip this phase.

Step 1: The consumer randomly chooses a number ρ and reencrypts his/her
coin into

c′ : {a′ = gρa, b′ = Y ρb}.

Step 2: The consumer also generates a signature on m (where m = hρ), to-
gether with date, etc. by using Schnorr’s signature scheme and the con-
sumer’s private key xu. Then the consumer sends the signature, the date,
the parameters c, c′, and m to the AP agent.

Step 3: The consumer also provides a designated verifier proof of the equality
of discrete logarithms, loghm = logg(a′/a) = logY (b′/b).

Step 4: The AP agent checks the certificate Certc, and also verifies the re-
ceived signature. If the verification is positive, the AP agent generates a new
certificate Certc′ on c′ and transmits it to the consumer.

Step 5: To prove the relationship between c and c′, the AP agent keeps c, c′,
m, and S in its database. As for the consumer, he/she then replaces Certc
with Certc′ .

2.3 Payment Phase

In this phase, the consumer proves his knowledge of the value xu and s. To
show his knowledge of xu and s, the consumer only has to generate a signa-
ture. Besides, if the consumer wants to pay with anonymity, he/she must use
anonymous coin c′; otherwise he/she uses coin c instead. Here we suppose that
the consumer has intention to pay with anonymity. The detailed process are
described as below.

Step 1: The consumer selects a random number k ∈ Zp, and computes

t = Y kgs mod p, and (1)
e = H(m, t), (2)

in which m is a mixed message of c′, current time.
Step 2: The consumer computes

u = k − re mod p, (3)
v = s − xue mod p, and (4)
t1 = g(s−1)xue mod p. (5)
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Step3: The consumer sends the signature S : {e, u, v, t1}, together with (m, t),
to the shop.

Step 4: After receiving signature S and (m, t) from the consumer, the shop
computes t′ = Y ugvb′e mod p and checks the validity of the payment, com-
puting whether t′ = tt1 mod p and e = H(m, t′/t1) or not. If the verification
is positive, the shop then accepts the payment.

2.4 Deposit Phase

In this phase, the shop deposits the money by sending the payment transcript to
the bank. The payment transcript consists of a coin c or c′, the signature S, and
the date/time of the transaction. After verifying the correctness of the payment
transcript, the bank credits the shop’s account.

2.5 Detecting Double Spending

If a coin is spent twice, there will be two signatures, s1 and s2, where s1 =
(e1, u1, v1, t11) and s2 = (e2, u2, v2, t12). The bank computes

xu = (v2 − v1)/(e1 − e2). (6)

Then the secret key xu and its corresponding identity I = gxu mod p of the
consumer is revealed. Thus, the bank can identify who actually spends a coin
more than once.

3 Comments on the WCZ Scheme

In [4], the authors proposed a practical and flexible digital cash scheme with
anonymity and claimed that their scheme is offline verification and can iden-
tify those who perform double spending. In their scheme, they assume that if
a dishonest consumer uses a coin c twice, then the bank will have two different
signatures. In fact, the assumption is not true. In some circumstances, the con-
sumer can still use the same coin more than once and the associated signatures
are identical. The consumer can perform double spending successfully, because
the bank can not identify the identity of the dishonest consumer. In this section,
we point out the security weakness of the WCZ scheme.

Suppose that a consumer simultaneously performs payments in two or more
different shops. In this circumstance, the consumer can use the same coin in all
payments and the identity will not be disclosed in double spending checking.

For example, we suppose that a consumer makes a purchase at shop A and
shop B at the same time. The consumer follows the steps of payment phase to
complete the transactions. First, the consumer chooses a random k and generates
a signature S : {e, u, v, t1} and (m, t) by using Equations 1, 2, 3, 4, and 5, where
m is a mixed message of c′ and the date/time of the transaction. Then the
consumer sends the signature S, together with (m, t), to shop A. And meanwhile,
the consumer also sends the signature S together with (m, t) to shop B. Both
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shops A and B will accept the payments because the payment system is offline
and the verifications of payments are positives.

After that, both shop A and shop B transmit their payment transcripts to
bank for batch processes. Having searching its database, the bank will notice that
the coin c′ is used twice. However, the bank has no way to trace the identity of
the dishonest consumer according to the used coin, because the coin is associated
with two identical signatures, S : {e, u, v, t1}. Therefore, (v −v)/(e−e) = 0, and
no information will be revealed performing this equation.

4 Improvement

In order to avoid the weakness of the WCZ scheme, we modify the WCZ scheme
to enhance the security.

In the improved version, the withdrawal phase, anonymity scalability phase,
deposit phase, and the process of detecting double spending are the same as
the WCZ scheme. Only the payment phase is modified. The improved payment
phase is described as follows.

Step 1: The consumer selects a random number k ∈ Zp, and computes

t = Y kgs mod p, and

e = H(m, t, IDs),

where IDs is the individual identity of the shop.
Step 2: The consumer computes

u = k − re mod p,

v = s − xue mod p, and

t1 = g(s−1)xue mod p.

Step3: The consumer sends the signature S : {e, u, v, t1} together with (m, t)
to the shop.

Step 4: After receiving signature S and (m, t), the shop computes t′ = Y ugvb′e

mod p, and then uses t′ and the shop’s identity IDs to check the va-
lidity of the payment through computation of t′ = tt1 mod p and e =
H(m, t′/t1, IDs). If the above equations holds, the shop then accepts the
payment.

The improvement can prevent the dishonest consumer from using the same
coin in different shops at the same time. In addition, due to the the payment
signature S includes the shop’s identity, it proves that the consumer has traded
with the shop using this coin, which, on the other hand, can also prevent the
dishonest shop from transmitting the duplicated payment transcripts to another
shop for depositing.
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5 Conclusions

In this paper, we have indicated the weakness of the WCZ scheme, and accord-
ingly, proposed an improved version to enhance the security of the WCZ scheme.
This improvement not only can avoid double spending from the dishonest con-
sumers, but also can prevent dishonest shops from depositing repeatedly. And
meanwhile, all the advantages mentioned in the WCZ scheme are kept.
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Abstract. The Grid is all about collaboration, which is supported by
dynamic, multi-institutional virtual organizations (VO). The fact that
Grid users and resource providers often suffer from attacks outside or
inside the VO make it necessary to build a trusted sub-domain. The
TCG (Trusted Computing Group) proposes Trusted Computing (TC)
to enhance users’ trust on today’s open architecture platforms by adding
a tamper-resistant hardware module called Trusted Platform Module
(TPM) to the end system. In this paper, we propose and design an open-
source security system based on Linux and TPM hardware to extend the
trust on the platform to the Grid environment, and hereby provide shar-
ing of trusted environment. Especially, we demonstrate how to build a
trusted sub-domain for the Grid with our system by using trusted attes-
tation and migration based on the TC.

Keywords: Grid Security, Trusted Sub-Domain, Trusted Computing
(TC), Trusted Attestation, Trusted Migration.

1 Introduction

The Grid is a large scale distributed computing system for collaboration among
dynamic, multi-institutional virtual organizations (VO), which may be across
numerous administrative domains and subject to their own various security,
management and usage policies [1].

Although the current Grid security solution, Grid Security Infrastructure
(GSI) [11] for Globus Toolkit (GT) [10], offers comprehensive security services
by applying public-key cryptography, cryptographic protocols methodologies and
necessary infrastructure supporting services, it still need place more strict con-
straints on VO members to protect them from threats outside or inside the VO.

Trusted computing (TC) is a new trend of information security field [4]. The
Trusted Computing Platform Alliance (TCPA, now is known as Trusted Com-
puting Group, TCG) adopts a practically available way to provide trust on
general computing platform. The TC uses a secure coprocessor called Trusted
Platform Module (TPM) [14] to measure and report the way the platform is
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operating. With the tamper-resistance property of the TPM, the VO leader can
deploy it for the Grid to attest VO members’ platform with expected policy
without worrying about interference from software.

This paper presents an open-source system, designed and developed by the
authors and teammates to provide a trusted sub-domain for the Grid using
trusted attestation and migration, which enables VO members to use resources
protected by GSI in a secure, consistent manner with Trusted Computing feature.
Section 2 describes the limitations of current Grid security practice and explains
why the development of a trusted sub-domain for the Grid is necessary. Section
3 presents key technologies from TC used in design of our work. Our system is
introduced in detail in Section 4, along with a description of how it works in
Grid environment. Section 5 gives a discussion of security considerations with
the system and related works, and section 6 comes to our conclusion and future
work.

2 Current Grid Security Practice

The Grid security practice should should facilitate cooperative problem-solving
based on VO which consists of dynamic components across multiple domains.

In the general Grid environment, the cooperation among VO members are
protected by Grid Security Infrastructure. The GSI implements many standards
and specifications to provide the fundamental security features such as integrity,
confidentiality, authorization and authentication through the Public Key In-
frastructure (PKI).

However, GSI provides no effective way to detect the misuse and compromise
of users’ data and computations by a system administrator at a his/her platform,
which brought about the need for a system with tamper-proof attestation feature
and provide a trusted sub-domain for the Grid. Trusted Computing can help
enable conformable constraints on VO members. For instance, we can define an
attestation attributes-based VO policy as the cooperation can only be available
with the conformity to our requirements.

3 Key TC Technologies for the Grid Environment

This section introduces general concept and security services based on TCG
capabilities that we implemented for requirements described in section 2, namely
trusted attestation and migration, which base on transitive trust on Trusted
Platform (TP). For a full description, see for examples in TCG specifications
[13], [14], [15], [16].

The core concept of the TC is to use the TPM to achieve the transitive trust
on TP. This is currently done through integrity measurement of the boot process
of the platform.

Each and every component during system startup has to check the next boot-
ing component’s metrics with TPM and pass on the execution. The TPM in turn
calculates each component’s hash value and stores it inside its platform configu-
ration registers (PCRs) as integrity metrics. All the values once calculated and
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stored in every PCR are stored ordinarily as PCR entries outside TPM for future
attestation of the current platform state.

3.1 Trusted Attestation

For verification purposes, a remote party can query the measurement of the TP
by means of attestation. Trusted attestation is an operation that provides proof
of a set of the platform’s integrity measurements [14], [16], which provides remote
users with the evidence of platform properties. This is done by signing one or
several PCRs using an Attestation Identity Key (AIK) in the TPM as showed
in Fig. 1.

Fig. 1. Trusted Attestation

First, Privacy CA and TPM work together to get an AIK and correspond-
ing credentials. Then the user asks TP for needed PCRs. TP sends PCR values
signed by private AIK, PCR entries of corresponding PCR and Platform Creden-
tials back to user. After verifies Platform Credentials, user can decide whether
this platform can be trusted. If nothing goes wrong, user can use public key
of AIK decrypt the current hash values stored in the PCRs. The user can now
check what software the remote system is running because each state on the
PCR entries list has a unique hash value. By comparing the decrypted PCR and
results of calculation of PCR entries list, user can find out whether requested
state of platform can be trusted: if the list is incomplete or being tampered,
the reported PCR value will not match the hash value as recalculated by user.
In this way, the TP attests that its platform environment can be trusted and
shared by other users for collaboration.

3.2 Trusted Migration

The Migration capability provided by the TCG is intended for backup, upgrade
or to clone of keys. In this paper, we carried out trusted migration as a way to
provide the Grid with a trusted sub-domain with conformed VO policy.

Fig. 2 described the migration process. In order to migrate Alice’s key to Bob’s
TPM, Alice’s the TPM needs to create a data blob, namely MigrationBlob,
containing the encrypted MigratedKey that Bob’s TPM can decrypt. This is
done like this: Alice loads in a public key of StorageKey from Bob’s platform
by her TPM to create MigrationBlob for her MigratedKey and send it to Bob;
Bob use the private key of his StorageKey to decrypt and get the MigratedKey
generated by Alice’s TPM.
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Fig. 2. Trusted Migration

4 Our Work

In this section we describe the system that we designed and developed in order to
meet the requirements as laid out in section 2. We first describe the architecture
of our work. Then we show how the system provides trusted sub-domain for the
Grid. Finally we describe our implementation status.

4.1 Architecture

Fig. 3 shows an architectural description of Trusted Computing enabled grid
security solution.

We adopt TC technology to enhance Grid security infrastructure, namely
the gray components in the diagram. And all the work is below the GSS API
provided by the Globus toolkit. It relies upon the credential and certificate utility
APIs for general certificate acquisition and inspection functionality, which means
for grid applications that needs to be transplanted from legacy applications to
TCG-enabled ones; it need not to modify the applications.

Our work can be vertically divided into two parts: Special Security Module
for Grid and TSS (Trusted Software Stack) related work. The Special Security
Module for Grid provides Trusted Computing features with extended GSS-API.
TSS related part is to interact with TPM hardware and utilize the cryptographic
function of TPM.

Original GSI get cryptographic service by calling standard Crypto API. Cryp-
tographic service providers (CSP) are implementations of crypto algorithms
which can be in either software (running in the general CPU) or hardware (run-
ning in e.g., a smartcard or a USB token). Also CSPs can be implemented by
the TPM hardware (Crypto API call the TCG Crypto Security service), which
is one work of the GSI related part.

TPM. This is the central hardware module in TCG. It provides several impor-
tant low-level functions including input/output interface, non-volatile storage,
integrity attestation, random number generator, HASH engine, key generation,
and so on.
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Fig. 3. Architecture of our system

TSS. Users require trusted hardware to offer enhanced secure solution as well
as software middleware to conceal heterogeneous applications’ requirement. We
have developed a common standard API for applications to utilize the TCG
services according to TCG specification. The three special security modules for
Grid are based on the TSS.

Trusted Measurement Module. This module gets the accurate integrity
metrics of the platform’s environment state which are kept inside the TPM’s
PCR and tests whether they match the computation results of measurement
values (called PCR events) based on the TSS.

Trusted Attestation Module. This module can provide the proof that the
VO members works basing on required attestation attributes with attestation
protocol (as elaborated in section 3.1).

The attestation attributes represent trusted environment of the platform are
collected from trusted measurement module. In our system, they include in-
tegrity metrics on local platform and Grid Job related requirements, which is
CPU and RAM performance.

Trusted Migration Module. GSI has proposed proxy to achieve an automatic
delegation of resource request. However, the proxy credential is stored in the file
space after the VO building has been done. To mitigate the potential danger
of key compromise, GSI stipulates that a proxy credential should have a short
lifetime.
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In our system, we suppose the proxies are TPM equipped platforms. The VO
leader starts the VO building and acts as a migration authority, to have the
private key of his/her cryptographic credential migrated by trusted migration
module. With TPM protection of the proxy credential, short lifetime stipulation
for the proxy credentials becomes unnecessary. As the key in the proxy credential
is often related with authorization status of Grid resources, the trusted migration
module can hereby offer strong protection on resources sharing policy.

4.2 Building Trusted Sub-domain with a Grid Security Enhanced
System

Here is our Grid Security Enhanced System providing Trusted Sub-Domain with
expected VO policy. The workflow is described in Fig. 4. It only demonstrates
the situation containing two VO members, but can be extended to multiple
members easily.

Fig. 4. Trusted Sub-Domain for Grid environment.When VO building is done, the VO
becomes a trusted sub-domain. Alice can migrate Grid job to Bob.

Alice and Bob are two VO members. Suppose Alice starts the VO and invites
Bob. Our demo system comes to two steps:

Mutual Attestation. Alice use trusted attestation module to get attributes
form trusted measurement module on Bob’s platform. The attestation attributes
are decided by the VO policy requirements. If the attributes don’t meet the
requirements, Alice wouldn’t invite Bob.
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Then Bob get attestation attributes from Alice. If they conform to the policy
requirements, Bob would accept Alice’s invitation.

Trusted Migration. After mutual attestation, Alice can migrate her proxy
credential to Bob and get offline, for Bob can migrate the proxy credential to
others now.

4.3 Implementation Status

We have planned to make our system an open-source system. The implementa-
tion has greatly benefited from the open-source Trusted Software Stack (TSS)
package TrouSerS [17], Open- SSL library [12] and the open-source grid middle-
ware package GT4.

Our system has been completed for both the TPM chip version 1.1b and
1.2 manufactured by Infineon on a number of HP laptop platforms, Ubuntu
6.06 ”Dapper Drake” with Linux kernel 2.6.15. We have already accomplished
elementary demo system [9]. At the time of writing this paper, we have been
under full implementation version.

5 Discussion and Related Works

As we discuss above, the goal of our system is to provide a trusted sub-domain
in Grid environment with the TC. Our system contains two phases to achieve
these goals.

The first phase is mutual attestation. VO members can decide whether to
invite potential candidates basing on the attestation attributes, namely desired
PCR-Setting values(e.g., measurements of BIOS, OS, applications) protected by
the TPM.

The second phase is proxy migration. As the private key of proxy credentials
from the original TPM is encrypted by keys from the other TPM during the
migration, the migration is actually under the protection of the crypto chip
TPM and can’t be tampered. In a TP, no super-privilege users of Operating
System but TPM users who hold secret shared with the TPM can access its
special resource. Our system will decrease the risk of private key disclosure.

There are already many researches based on trusted hardware such as [5],
[6], [7], [18], and secure computing environment [19]. Xen Community, Intel and
IBM have been working together to provide TPM virtualization for Xen [8], and
the work can be used for TPM-sharing for a group of users. [23] has adopted
the TC on virtual machine-based platform. All these efforts needs completely
change in current open platform architecture.

[5] has developed a Linux-based integrity measurement scheme for TCG, while
[20] implements it with Linux Security Modules (LSM) patch for newer kernel
versions 2.6.20, which can be used in our architecture to help form the intact
transitive trust with Linux kernel.

A delegation mechanism named MyProxy [2] proposed in Grid computing
environment. In [3], M. Lorch et al. have proposed an enhanced a credential
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repository for Grid PKI secured by IBM4758, which can be built based on our
proposal too, with much cheaper commercially available TPM.

Smith et al. [21] have closely examined the scenarios for which TC techniques
are necessary and useful and the scenarios for which traditional protection mech-
anisms suffice.

Most of researches related with Grid and trusted hardware focus on PKI
and TPM virtualization problem. Our work has promoted a novel solution for
providing a trusted sub-domain for the Grid.

6 Conclusion and Future Works

The TCG-compliant PCs are already available for purchase. To date, the TCG
specifications have only specified in full how to build a TCG-compliant PC and
enhance security for host platform, the TCG features of transitive trust, attes-
tation and migration can apply to other platforms and environment.

In this paper, we apply core concepts of trusted computing technology to
the Grid. Based on TC, we define attestation attributes as VO policy through
PCR values which is rather rough now. The next step would be enforcing a fine
granularity policy for the Grid.

For now, our work mainly works on the TSS and the grid middleware layer
without touching the operating system. We’d like to work on future development
in that direction too.
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Abstract. The Trusted Computing Group (TCG) defines the specifica-
tions for the Trusted Platform Module (TPM) and corresponding trust
mechanisms that allow a TPM-enabled platform to run only authen-
ticated software. For example, the operating system (OS) can use the
facilities provided by the TPM to authenticate a Digital Rights Manage-
ment (DRM) application before allowing it to run. However TCG does
not provide any clear specification on what kind of software can be re-
garded as trusted and hence be authenticated. In fact it is unlikely that
there will be a clear line between the software that should be authenti-
cated and those should not, e.g., debugger for developing binary codes
and Internet browser for running applets. This leaves a grey area where
even authenticated software may be exploited for malicious usage. This
paper investigates the security of DRM applications in a relaxed scenario
where users have larger purview. We present two attacks: abuse attack
and injection attack where some reasonably authenticated software can
be exploited for stealing protected contents. In the abuse attack, an at-
tacker uses an authenticated debugger to monitor the internal state of
a DRM application for the purpose of violating the access privilege in
the application. In the injection attack, an adversary is able to make
malicious modifications on an original DRM application at will. These
two attacks demonstrate that it is not straightforward to impose DRM
in a TPM-enabled system. To counter the attacks, we provide the OS-
encapsulation scheme which ensures that only the genuine OS can start
the DRM application. Our scheme is an enhancement of security for
TPM-enabled DRM in a loose but more practical environment, where
people are allowed to use the debugger, web browser, etc.

1 Introduction

General-purpose computer platforms provide the convenience for developing and
running software applications. However, it also allows a malicious user to tamper
with and possibly control any software component at will. Software tampering
not only affects the software industry in general, it can also impede content
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delivery services and compromise enterprise systems. Hence, many software ven-
dors employ software protection technologies to counter such threats. Unfortu-
nately, it has been generally accepted in the information security research com-
munity that software alone cannot provide an adequate foundation for building
a high-assurance trusted application [1]. Hardware-assisted protection [2] is a
promising solution for strong software security.

The Trusted Computing Group (TCG) [3] defines the specification for a se-
curity chip called the Trusted Platform Module (TPM) and its related software
interfaces. In the TCG specification, the TPM is designed to provide end-user
machines with a minimal but essential hardware base for end-user side secu-
rity. For instance, there are TPM-enabled schemes in enhancing the security of
smartcard [4], attestation [5,6], and privacy protection [7,8]. Since it is impos-
sible to modify the TPM-enabled OS without being detected, the TPM can be
employed to defeat sophisticated attacks such as the substitution attack [9,10]
which invalidates software integrity protections (e.g., [11,12]). In addition, Felten
[13] highlights the possibility that a DRM application can utilize the TPM to
protect data such that only cooperating applications are able to consume the
protected content.

Although the TPM can potentially be used in many applications, its protec-
tion mechanism is still not satisfactory [13,14,15,16]. For instance, Anderson [14]
criticized TPM-based DRM applications as treating users in an unfriendly way.
Additionally, in a DRM application, a traitor1 may misuse a genuine software
to compromise the built-in access control in the application.

This paper investigates the security of the TPM-based DRM, and proposes the
abuse attack and the injection attack. The abuse attack is initiated by a malicious
user within a trusted environment. The user makes use of a trusted application
such as a debugger to mediate the interactions between the victim program and
the OS. Given that a user is allowed to sign and certify his own program on the
TPM-enabled platform, the injection attack enables him to run any program
locally at his discretion. Both attacks allow the malicious user to violate the
content protection objective of DRM. To counter these attacks, it is necessary
to verify the owner/signer of the application, and to establish the application’s
authenticity in order to detect tampering and misuse. To achieve this, we propose
two schemes. The first scheme is to use a time-sensitive protocol to detect the
presence of the abuse attack. The second technique requires to encrypt the DRM
application and start the decrypted application by the authenticated operating
system only, thus prevents both abuse attacks and injection attacks. By the
two attacks and their countermeasures, we demonstrate that TMP/TCP does
not guarantee DRM security automatically and easily. Many issues have to be
solved before we can claim that the trusted computing based DRM has better
security. Especially, we need to consider the loose scenarios where users are given
reasonably more authority. In practice, a very restrictive confine on software
usage is hardly acceptable.

1 We define a traitor to be a user who modifies his authorizations illegally. For example,
the traitor may change his read permission into a write permission.
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This paper is organized as follows. Section 2 introduces the model of TPM-
enabled DRM. Section 3 describes a basic TPM-enabled DRM scheme, followed
by two attacks on the scheme. Section 4 proposes our techniques to the TPM-
enabled DRM scheme to counter the attacks. Section 5 concludes the paper.

2 Model of TPM-Enabled DRM

2.1 DRM Architecture

The underlying motivation for having DRM applications is that digital objects
should remain under the control of their creators, rather than the owner of the
platform containing the objects. One major threat to DRM is the tampering of
the DRM application and its platform since a traitor can modify them so as to
circumvent the DRM protection. Currently, a lot of commercial DRM systems
are available in the market, such as Microsoft Windows DRM, and Adobe Web
Buy. The architecture of these products and some standard such as [18] can
generally be described as follows.

– An author generates digital content such as a video file.
– A DRM-enabled application will create a rights-protected version of the file

and assign usage rights at the content server. A portal server provides a Web
site so that the consumer can preview, purchase and download content that
interests him.

– A license server will be responsible for the enrollment and certification of
trusted entities, and for licensing rights-protected content.

– Finally, the consumer’s DRM client software interacts with the DRM server,
and renders the content according to the consumer’s assigned privileges.

Although the general DRM architecture and workflow are applicable, the security
depends on the assumption of a trusted environment. In lieu of a fully trusted
environment, a TPM-enabled DRM application can be used to provide trust to
the content owner. The assumptions for such an application is described in the
next subsection.

2.2 Assumptions

Although TCG specifications describe the technology how to authenticate a
software, it has never been explicitly described, or even discussed, what kind of
software should be allowed to be authenticated. For the practical application of
TCP, there is a big gap on how and who will be responsible for the software
verification and validation. It is not going to be an easy issue. From the appli-
cation viewpoint, it is not practical to exclude all the common used software
tools, such as debugger and Internet browser. In this paper, we consider a not
very restrictive situation of TCP and we argue that the assumption of such a
situation is very reasonable and practical.
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Fig. 1. System diagram. P is the target DRM software, and Q wraps P. Q will be
loaded by a malicious loader such as a compromised debugger.

In the system diagram Fig. 1, TPM and OS constitute the trusted platform
which is compliant with the TCG specification, and software P is the DRM ap-
plication which must be loaded by a trusted OS or a trusted debugger. According
to the DRM requirements, we make the following assumptions:

A1: The trusted platform includes a TPM chip and a trusted OS, and supports
a trust transitive process, as mentioned in Section ??.

A2: A genuine software application P is signed by its producer (or a trusted
third party) who has a certificate issued by a CA. The CA’s public key is
trusted by the OS. To authenticate P, the OS will verify its signature before
running it. Note that the OS does not use TPM integrity measurements on
P, but the OS itself will have its integrity verified by way of TPM integrity
measurements as mentioned in Section ??.

A3: A traitor is able to load and monitor the targeted program P in the trusted
platform. For example, if an authenticated Internet browser is able to run
applet, it is possible to run some DRM application P in the browser. Simi-
larly, if a debugger such as Microsoft Visual Studio can be used in TPM
environment, the traitor gains the privilege on tampering P.

A4: A traitor is able to intercept/modify the messages between P and the OS by
using a malicious loader. For example, a TPM application developer should
be able to debug the his own software related to TPM functions. In other
words, a malicious user can always “sit” between OS and DRM application.

A5: A traitor can not reverse-engineer the target software P to gain knowledge
of critical algorithms or secrets such as a cryptographic key, otherwise, the
attacker can write his own software with the reverse-engineered code and
then render the protected content.

A6: Any user can insert his own root certificate into the OS. By doing this, a
traitor is able to develop and sign any software and run it on the platform.

Of the above assumptions, A1−A2 are consistent with the TCG specifications,
while A3−A4 are valid because the traitor owns the platform and all software
running on the platform including P. Assumption A5 is mandatory although
it is believed to be impossible in theory. Fortunately, the software designer can
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increase the reverse-engineering cost with the technologies (e.g., diversity, anti-
tracing, anti-disassembling, self-modifying code, and code-encryption) such that
the hacker gives up the attempt. To enhance the security of software, the applica-
tion code is encrypted all the time except the execution stage in TPM platform.
In addition, A6 is also reasonable since

– Although it is controversial about the function of TPM, a TPM-enabled
computer must have an open structure in terms of software and hardware,
otherwise, why not buy a cheap TV setbox for a user?

– A TPM-enabled OS prevents a user from running an “unapproved” appli-
cation, but it is unacceptable to deprive the user the right of developing his
own software. Hence, the platform should allow the user to load applications
that are approved by themselves.

– As argued in [15] in terms of protecting fair use rights, users should become
the root of their own certification trees and authorize various devices to view
purchased content.

– It is not uncommon in commodity platforms that a user is able to install
his own root certificates. For example, in browser applications such as the
Microsoft Internet Explorer, a user can import his own root certificates
into the existing set of trusted root certificates.

3 Basic TPM-Enabled DRM: Scheme and Attack

Following the model in Section 2, this section introduces a basic TPM-enabled
DRM idea derived from [13]. Then it presents two attacks on the basic scheme
such that a traitor can obtain unauthorized access.

3.1 Basic TPM-Enabled DRM Scheme

Although a TPM-enabled platform provides a trusted environment with PCR
reports to detect “unapproved” software, its application to DRM is not straight-
forward if security and inter-operability are important. For example, Felten [13]
described the TPM-enabled software interoperation principle which can be ap-
plied to design a basic TPM-enabled DRM as follows.

– The digital file is encrypted with an authorized DRM program P such that
the digital content is under the full control of P.

– If another program Q wants to consume the file, the only way is to request
P to decrypt it in a TPM-enabled environment and transfer the decrypted
content, but P maybe reject the request.

– The protected media will be decrypted on a TPM-enabled platform and used
in a controllable way.

To achieve the above, P must be tamper-proof. As stated in assumption A2,
the OS will verify P′s signature before executing P. Hence the traitor can not
violate the DRM access by tampering with the software. However, basic TPM-
based DRM is vulnerable to the following abuse attack and the injection attack.
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3.2 Abuse Attack

With the assumption of trustworthy hardware and software, the TPM-enabled
platform ensures that each application is valid when it runs. That is, no un-
trusted software can execute on the platform. However, the traitor can combine
two or more approved programs in a certain way to realize his malicious intent.
In particular, if an authorized software can load and execute some other pro-
gram, as in the case of a typical debugging tool, the traitor can use it to access
protected content. Common debugging tools include Microsoft Visual Studio
(with a built-in debugger), SoftICETM and IDAproTM. If one such software is
an approved software in the platform, the traitor can do the following:

– Starts the debugger. Since it is genuine and is signed by the producer, it can
be started successfully. This follows from assumptions A1 and A2.

– Loads application P in the debugger. Assumption A3 allows for this.
– Executes P within the debugging environment. Since the debugger has higher

execution priority than P, the traitor is able to read all the data in the
address space of P, including the decrypted content.

Therefore, the traitor has easily compromised the TPM-enabled DRM protec-
tion by executing the targeted application within a debugger. Presently, Internet
browser such as Internet Explorer or Firefox is able to run applet, it can be
misused to launch abuse attack too.

3.3 Injection Attack

According to assumption A6, any user can insert his certificate as a root certifi-
cate into the OS. This means that any software signed by the traitor can pass
the verification process described in Subsection ??. In this case, the traitor can
initiate the injection attack to compromise the content protection mechanism of
the platform. Concretely, the traitor will

(1) Install his certificate as a root certificate in the OS. Assumption A6 allows
for this.

(2) Modify program P by injecting functions into P or injecting entries in P’s
function import tables, resulting in a malicious wrapper Q. For example, the
traitor can replace or modify the action module of menu-item “save”, such
that it dumps all the decrypted content to memory.

(3) Sign Q with the private key corresponding to the newly installed certificate.
(4) Run Q as an authorized program. Since P is wrapped by Q, P is started

implicitly. Now, since P is able to decrypt the protected content, the wrapper
Q will be able to read the decrypted content.

(5) Invoke the injected function to dump the protected content to memory. The
traitor can do this by activating the tainted menu-item “save” for example.

In the above injection attack, the traitor wraps an authorized software P and
produces a new program Q. This attack does not require the traitor to know



478 Y. Wu et al.

the internal structure of P. He only needs to tamper with the code partially to
have the decrypted content dumped to memory.

Indeed, the above two attacks can be integrated so as to violate the DRM
efficiently. If a user can not install his certificate, but can initiate abuse attack,
he can create the modified software Q and then run Q in the debugger or browser
environment. Hence, the security strength of both the OS and DRM application
should be enhanced.

A straightforward enhancement is based on PKI. Specifically, for all the TPMs
produced from the same manufacturer, they have different private keys (e.g., EK)
but the same public key. All the DRM software should be encrypted with the
public key such that the protected code can be decrypted by the trusted platform
(OS+TPM) only. Its weakness is that it will incur inconvenience in case of TPM
upgrading. A second simple enhancement is to verify the authenticity of the
DRM application by its immediate loader2. Only after the loader confirms the
authenticity, can the DRM software be loaded and executed. However, its side
effect is that it prohibits the honest user from developing his own software, i.e.,
violating assumption A6.

4 OS-Oriented Encapsulation Scheme

This section elaborates an OS-oriented encapsulation scheme defines a new for-
mat of applications, and encapsulates the DRM application with the new format
so as to match the assumptions A1−A6 in Section 2 for sufficient flexibility and
security.

4.1 Proposed Scheme

In the proposed scheme, we intend to meeting three objectives: (1) DRM appli-
cation can be loaded by the trusted OS only; (2) allow the honest user to develop
his software; (3) able to defeat injection attack and abuse attack from malicious
users. Therefore, the scheme includes three modules:configuration, installation
and DRM enforcement. Concretely,

Configuration. A Certificate Authorities (CAs) issues digital certificates to
OS vendors and DRM vendors. Each vendor, for example Microsoft, has a pair
of (public key e, private key d) for each of its OS products. The OS vendor signs
the OS, and similarly, each DRM vendor also signs its own DRM application.
In addition, the DRM vendor encrypts its DRM application with the public key
of the OS in which the DRM application will run. The encrypted application is
distributed to the users.

Installation. The installation process targets for setting up a trusted OS and
DRM application in a TPM-enabled environment. Fig.2 illustrates the steps of
installation. Specifically,
2 immediate loader of P is the immediate parent process of P. For example, in

Microsoft windows, explorer is the immediate loader of many processes such as
Microsoft winword.exe.
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– when the OS is being installed, the installation software (such as BIOS hard-
code) will initiate remote attestation with the vendor server V. This means
that the installation software will use the TPM remote attestation facilities
to remotely authenticate to V. (This is similar to OS activation over the
Internet, which is currently required by Microsoft Windows XP).

– V securely sends the private key d of the OS to the TPM. This private key
d shall be protected by the TPM and stored in sealed storage.

– After obtaining the OS package, the TPM-enabled platform should verify
its authenticity with the digital certificate of the OS vendor. Only if the OS
package is authentic, OS and other OS-related modules can be installed as
usual.

– To install a DRM application P, TPM system will obtain the ciphertext
C = Ence(P) which is produced by the application provider with the OS
public key e, and then install C directly without decryption.

 
TPM  OS Vendor  

Attestation  

Sealed  key  d 

OS  

Protected  
d  

OS private 
key  d 

P Vendor  

Install OS 

P 
C=Ence(P) 

Install C 

Fig. 2. Installation process. TPM is equipped with some BIOS-like hard codes for
attestation when it is manufactured. The dash line for OS downloading means that OS
can be obtained via other channels such as CD-ROM.

DRM enforcement. When the DRM application is being executed, a specific
loader such as explorer.exe in Windows OS package will send a key request to
the TPM. TPM verifies the integrity of the OS and the loader, and then decrypts
the secret key d to explorer.exe. With d, the loader decrypts the encrypted
application C into memory so as to obtain the memory mapping of P. Then, P
will be executed normally, e.g., read the content and enforce DRM protection.

4.2 Analysis

Correctness. When all the modules are intact, the DRM application can be
loaded into process memory, hence the application can enforce the DRM on the
protected content.

Security. In the installation stage, the OS provider will testify the authentic-
ity of the TPM based on the manufacture information. As long as the TPM
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hardware is secure, the OS private key will be kept secret. Meanwhile, since
the application provider encrypts the DRM application, and only the encrypted
application is stored in the non-protected storage such as hard disk. In the en-
forcement stage, only the designed process can send the key request to decrypt
the protected application. Hence, neither can the traitor tamper/reverse-engineer
the DRM code, nor can he use a malicious debugger to load the code.

Additionally, to reduce the risk associated with d being disclosed, we can
employ a secret-sharing scheme to split d into d = d1 ⊕ d2. The share d1 is
embedded into the OS directly with some software tamper-resistance technology
[19,20,21,22,23], and the other share d2 is downloaded from the vendor during the
installation stage. When the DRM application is launched, the OS will obtain d2

from the TPM to reconstruct d. With this improvement, in the unlikely event of
a hacker breaking the TPM and retrieving d2, he is unable to recover d directly,
thus limiting the damage.

5 Conclusion

Since a TPM-enabled platform can prevent a user from running an “unapproved”
application, it is possible to develop a tamper-resistant TPM-enabled DRM ap-
plication, as suggested in [4,15]. But it is not trivial to achieve that. We have
presented two attacks on the basic TPM-enabled DRM: the abuse attack and the
injection attack. The abuse attack misuses an “approved” loader (e.g., debugger
or browser) to run the DRM application, while the injection attack tampers with
the genuine DRM application and re-signs the tampered version so that it can
run as an “approved” application on the platform. Both attacks enables a traitor
to gain unauthorized access to protected DRM content.

In order to counter these attacks, the present OS-encapsulation scheme makes
sure that an encrypted DRM application is only loaded and decrypted by an
authenticated OS, thus defeating the abuse attack, as well as the injection attack.
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Abstract. Breaking out of network worms brings a tremendous dam-
age to the Internet. Launch the worm defense and response can improve
anti-attack capability of networks. Tracing worm propagation process af-
ter its outbreak can reconstruct not only the earliest infected nodes but
also the timing order of victims been infected. Based on the improve-
ment of existing offline worm tracing algorithm, we can realize the near
real-time tracing for the propagation process of scanning worm: Network
traffic data are real-time collected by the detection points from different
LANs, then separated into continuous-time detection sliding windows;
in every time window, we repeatedly and randomly collect paths that
contain worm scanning and infected flow rate, reconstruct path of worm
propagation in the current detection window. Results accumulated in se-
quential detection sliding windows continues doing feedback amendment,
real-time reflect the process of worm propagation. we establish a virtual
experimental environment of worm propagation and tracing to evaluate
the algorithm. Tracing network worm propagation from the initial attack
can inhibit continuous spread of the worm, ensure that no more host is
infected by the worm, and provide basis for the determination of worm
attack origin.

Keywords: Worm, Propagation path, Online tracing, Detection win-
dow.

1 Introduction

Network worms’ threat to the computer system security and network security
is increasing. New intelligent worms and polymorphic worms continue to ap-
pear. Diversification of the propagation approach and complexity of the applica-
tion environment enable network worms’ outbreak to increase, latent ability to
rise, coverage to extend, and the losses to enlarge[1,2,3]. Since 2001, CodeRed[4]
and other network worms’ successive outbreak bring a serious threat and de-
struction to the Internet. Network worms’ outbreak allow attackers to control
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thousands of hosts in a short time, launch DDoS attacks, steal security informa-
tion and destroy key data. Therefore worm outbreak has terrible influence every
time[2,3,4,5,6].

Tracing worm’s evolution (that is, tracebacking worm’s attack path)[7,12,13]
can reconstruct not only the patient zero (i.e., the initial victim), but also the
infection node list in evolution process. Even if partial trails can be captured,
it has significance in restraining evolution of worm, in investigating and collect-
ing evidence. So far, however, even worm adopts a simple scanning strategy,
acquiring its evolution process is still a very difficult task.

Existing tracing algorithms for worm propagation evolution are all method
of analysis, that is, algorithm trace back and predict the results through a cer-
tain period of flow collection after the worm’s outbreak. It is quite difficult to
achieve real-time tracing (i.e., acquire evolution path nearly when the worm is
propagating). Although these offline algorithms can finally obtain worm origin
and propagation path, it can not capture propagation path when the worm is
spreading, and can not indicate the worm evolution process along with the time
changing.

Accordingly, it is necessary to research online worm tracing algorithm in com-
plex network environment, for the near real-time tracing of network worm origin,
inhibit continues spread of the worm, ensure that no more host is infected by
the network worm.

The most basic and simple propagation mode is scanning worm. Worm prop-
agates between hosts and in the network, when scanning and infected objectives
produce communication flows. Online tracing large scale scanning worm is to
obtain the timing sequence of hosts and network equipments that have been
infected. The timing sequence of worm propagation can not be found and re-
ported by host itself, only can be reconstructed by the analysis of captured
network flows.

Based on the improvement of existing offline tracing algorithm, we propose
a near real-time online algorithm to trace the evolution process of scanning
worm. Network traffic data are real-time collected by the detection points from
different LANs, then separated into continuous-time detection sliding window.
In every time window, we repeatedly and randomly collect paths that contain
worm scanning and infected flow rate, reconstruct path of worm propagation
in the current detection window. Results accumulated in sequential detection
sliding windows continue doing feedback amendment, and real-time reflect the
evolution of worm propagation process. We establish a virtual experimental en-
vironment of worm propagation and tracing, and analyze performance of the
algorithm. By using online random walk algorithm with sliding window and
causal tree merge algorithm, worm evolution process can be dynamically re-
flected in specified time interval. Properly choosing parameters, according to
the network traffic and worm outbreak characteristics, can effectively improve
tracing accuracy.
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This paper follows as: Part 2 introduce the related work of worm tracing, Part 3
shows improved random walk algorithm and online tracing algorithm, Part 4 is a
analysis of tracing algorithm using sliding window; Part 5 is conclusion.

2 Related Work

Existing IP tracebacking technology is not applicable to tracing network worm
propagation path. If worm attackers use forged addresses, IP tracebacking
strategy[8,9] can be used to identify the true host addresses. But in order to
improve the success rate of its attacks, worm usually uses real IP addresses to
send attack packets during the propagation. In distributing attack, vast majority
of packets do not have worm origin address, but only one of the many victims.
Therefore, it needs to find infected victims in the earlier stage.

Stepping stones tracing technique is also unsuitable for tracing the worm.
Now in the two ways of detecting stepping stones, content-based method needs
to spend huge workload on packet content analysis, and can not detect poly-
morphic worm or worm which uses encryption technology. Method based on
the session’s correlation between sequential packets[10,11] is also inapplicable to
network worm attack, because worm does not use interactive session.

Unfortunately, to date there have been few proposals for offline retracing the
steps of a worm infection. Xie et al. [12] offered a randomized approach that
traces the origin of a worm attack by performing a random walk over the hosts
contact graph. The graph is generated by collecting flow rates between poten-
tial victims during the worm’s propagation. Although this approach can provide
a wealth of information about the worm’s evolution, most notably, the who-
infected-whom tree and patient zero (i.e., the initial victim), it requires traffic
traces on a global scale to reconstruct the evolution of a large scale event. Rajab
et al. [7] presented a simple technique that uses the history of scans acquired by
a network telescope to infer the actual sequence of host infections. Intuitively, if
probes from one infected host arrive at the monitor before scans from another
infected host, we can infer that the former host was infected before the latter
one. However, inherent randomness in the scanning process, size of the telescope
relative to the number of vulnerable hosts, hybrid of worm propagation under
different conditions and other factors will have a direct negative impact on the
reliability of inferred results. When the interval of arriving packets reduces, it
will be more difficult to accurately detect the actual infection sequence. A dif-
ferent approach was suggested more recently by Kumar et al. [13] where the
Witty worm was reversely engineered to recover the random scanning algorithm
and its corresponding initial seeds. Given knowledge of the target selection al-
gorithm, the sequence of scans could be re-enacted to provide a detailed view
of the worm’s evolution, and also provide insights into characteristics of the in-
fected hosts. However, although the information required for this approach (i.e.,
the payload) can be recovered locally, the mechanism can not be easily applied to
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other worms, since each instance will have to undergo the same, possibly arduous,
task of reverse-engineering.

3 Online Tracing Algorithm

Online network worms tracing need to improve the real-time performance of the
algorithm. There are two ways that can implement real-time task. First, recon-
struction can be made when data are collecting, there is no need to collect all the
data before calculations. Tracing algorithm is executed in continuous observation
timing windows, gradually amends results and enhances real-time. Second, con-
trolled parameters can dynamically adjust, learn and improve the performance
of tracing algorithm based on different networks and worm outbreaks. The initial
time of worm outbreak is the best time to trace propagation process. Through
continuous data collection and the execution of tracing algorithm, the causal tree
of worm propagation can be obtained, and then worm origin can be traced.

3.1 Assumptions and Definitions

The host communications in network is defined as a directed graph G=〈V , E〉,
called host contact graph. The nodes of G is V = H × T , where H is all hosts in
the network and T is time. The edges E is a subset of V × V . So an edge in G
can be expressed as e = 〈u, v, ts, te〉, u ∈ H , v ∈ H , ts ∈ T , te ∈ T , 〈u, ts〉 ∈ V ,
〈v, te〉 ∈ V . Figure 1 shows a partial example of the host contact graph.

Each direct edge in the host contact graph represents a network flow. An
edge is defined as an attack edge if it carries attack traffic, whether or not it is
successful in infecting the destination host. An attack edge is defined as a causal
edge if it corresponds to a flow that successfully infected a normal host. Other
edges are normal edge.

Fig. 1. Example of host contact graph

3.2 Offline Tracing Algorithm

Based on the offline random walk algorithm in reference[12], a causal tree (i.e.,
infection tree) can be reconstructed according to the identified causal edges.
Algorithm’s ultimate aim is to identify the origin edges of worm propagation.
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Edges in the higher level of causal tree are more likely to be the origin edges of
worm propagation.

Algorithm works as follows: Repeatedly walk W times, each walk marks a
path in the host contact graph. For each path, we first randomly select an initial
edge, then reverse-walk along the time. After that a possible precursor of the
current edge is randomly selected in each step. Every walk begins with a random
edge. Suppose current edge e1 = 〈u1, v1, t

s
1, t

e
1〉, if edge e2 = 〈u2, v2, t

s
2, t

e
2〉 satisfy

v2 = u1 and te2 < ts1 < te2 + Δt, then e2 is a possible precursor of e1. We
randomly select an edge from e1’s precursors to continue the current walk. A
walk is stopped when e1 have no possible precursor or the step of current walk
arrives at limitation d. In the process of execution, algorithm records the walk
frequency for each selected edge. After W walks are completed, we select the
top Z edges (Top-Z ) which have the biggest walk frequency, and reconstruct a
causal tree.

3.3 Advanced Tracing Algorithm

In many cases offline random walk algorithm can not obtain a tree, only a jungle
or sometimes may be just an ordinary graph. In order to merge the causal trees
from different phases in online tracing algorithm, we improve the basic moonwalk
algorithm so that the Top-Z can reconstruct a causal tree. First we define the
following control parameters:

Table 1. Parameter defined in online tracing algorithm

W Number of walks in one tracing.

Z Maximal edges returned in one tracing.

d Maximal length of one walk path.

Δt Maximal time difference between two
adjacent edges in a walk.

λ Decide which edge to choose when
there is a conflict.

ω Walks that ignore the path length ≤ ω.

φ An edge is selected in Top-Z only if
walk frequency ≥ φ × W .

Suppose two edges e1 = 〈u1 ,v1, ts1, te1〉 and e2 = 〈u2, v2, ts2, te2〉 are selected
into Top-Z. If u1=v2 and v1=u2 there will be a circle, if v1=v2 the Top-Z can
not be reconstructed to a causal tree. Both cases e1 and e2 forms a pair of
conflict edges. Suppose walk frequency of e1 and e2 is respectively c1 and c2.
Define λc = ABS(c1 − c2) ÷ MAX(c1, c2), ABS for absolute value and MAX
for the maximum. Because e1 and e2 has been selected into Top-Z, they have
a very large possibility to be attack edges. However there is only one causal
edge in the two. λc describes degree of proximity between c1 and c2. We select
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early edge as causal edge when c1 and c2 is proximity enough (that is λc ≤
threshold λ), otherwise select the edge which has a larger walk frequency.

The advanced algorithm is running online, no matter whether there is a worm
outbreak. So an execution of the tracing algorithm may return a causal tree even
if there is no worm origin in the network. In order to reduce the occurrence of
such situation, two control parameters ω and φ are defined.

Define L (1≤ L ≤ d) as the path length of a walk, we do not update edges’
walk frequency in the path if L ≤ ω, in other words do not consider it as a
potential propagation chain if the path is very short. We consider that path
of L=1 is not a propagation chain, so there is ω ≥1 obviously. ω influences
algorithm accuracy, in the following sections we will further discuss the effect.

In a tracing, walk frequency will be obtained after W walks. An edge is rejected
when its walk frequency ≤ φ × W , even if it was selected into Top-Z.

Fig. 2. Missing edge example

Some real causal edges may be missed when merging the two causal trees from
adjacent slide windows. Figure 2 describes this situation. Di and Di+1 denotes
two windows in two sequential time intervals. Complete causal tree includes all
edges in Figure 2. There is one causal tree respectively in Di and Di+1, but edge
e is lose due to the randomness of algorithm, so a complete causal tree can not
be obtained when merging the two trees.

Edge e’s missing can not be rectified during Di, because the algorithm can
not predict that host u will infects host v in the future. So this kind of mistake
can only be revised in Di+1.

In the causal tree of Di, Hi is defined as the hosts set, Zi is defined as the
edges set. In the causal tree of Di+1, v is defined as the root of tree. For all u ∈
Hi, if edge e=〈u, v, k〉 does not appear in Zi+1, it will be added to set Xi+1. So
every tracing will return two sets of Zi, Xi. When Zi and Zi+1 can not merge to
a complete causal tree, we merge the two causal trees by selecting an edge which
has a maximal walk frequency from Xi+1.
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Advanced algorithm pseudo-code is as follows:

Algorithm 1. Advanced Tracing Algorithm

// function return two sets : topZ, restX
// W : number of walks
// d : maximum length of a path
// delta_t : maximal time difference between two adjacent edges
// Z : maximal number of edges to be returned
// omega : effective path length
// phi : minimal walk frequency rate in Top-Z
Set<Flow>[2] new_random_walk ( Set<Flow> flowSet, Set<Host> H,

int W, int d, int delta_t, int Z, int omega, int phi )
{

// Record walk frequences for every chosen Flow
Map<Flow, int> count;
for ( int i = 1 to W ) {

// Select a flow randomly from flowSet
Flow F(1) = get_random_flow ( flowSet );
int step = 1;
for ( int j = 2 to d ) {

// Get F(j-1)’s candidateSet from flowSet
Set<Flow> candidateSet =

get_candidate ( flowSet, F(j-1), delta_t );
if ( candidateSet is empty ) break;
++step;
// Select a flow randomly from candidateSet
Flow F(j) = get_random_flow ( candidateSet );

}
if ( step <= omega ) continue;
for ( int k = 1 to step ) {

++ count[ F(k) ];
}

}
Set<Flow> topZ = get_topZ ( count, Z, phi );
Set<Flow> restX = get_restX ( count, H );
return { topZ, restX };

}

3.4 Online Tracing Algorithm with Sliding Window

In order to trace online, we partition time into sliding windows, and then use
the current result to revise the previous one, thus real-time updating causal tree.

In Figure 3, we use a similar approach to sliding window, the size of window
is k × Δt (i.e. Di = [ti−k, ti]). We collect network traffic data every Δt ( Δt is
the same as maximal time difference between two adjacent edges in a walk ),
execute improved tracing algorithm in section 3.3 using the recent k traffic data.
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Fig. 3. Example of sliding window

Algorithm pseudo-code is as follows:

Algorithm 2. Online Tracing with Sliding Window

// Tree is a data-structure implementing a tree
void online_walk ( int W, int d, int delta_t, int Z,

int X, int omega, int phi )
{

Set<Flow> topZ = {};
Set<Host> H = {};
for (int i = 1; true; ++i)
{

// Get network flow of D(i)
Set<Flow> flowSet(i) = get_flow ( i );
// Run new_random_walk algorithm
Set<Flow>[2] setArray = new_random_walk (

flowSet(i), H, W, d, delta_t, Z, omega, phi );
Set<Flow> topZ(i) = setArray[0];
Set<Flow> restX = setArray[1];
// Construct causal tree
topZ = forest_to_tree( topZ, topZ(i), restX );
display_tree( topZ );
// Update Host set H
H = get_host_set ( topZ );

}
}

4 Experiments and Analysises

In the host contact graph, Tn is defined as the number of total non-causal edge,
while Tm as the number of total causal edge, and Tf as the number of causal
edge in the top level of causal tree.

In the edge set Top-Z, Zn is defined as the number of non-causal edge, while
Zm as the number of causal edge, and Zf as the number of causal edge in the
top level of causal tree.
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To evaluate the algorithm, we define three performance metrics:
Accuracy rate:

AC =
Zm

Z
% (1)

False positive rate:

FP =
Zn + Zm − Zf

Tn
% (2)

False negative rate:

FN =
Tf − Zf

Tm
% (3)

When considering given parameter’s affect to the algorithm performance, we
only allow the corresponding parameter to change. Without special note, the
initial values of the parameters in the experiment are as follows:

Table 2. Parameters’ initial value in the tracing algorithm

D: Size of slide window (second) 4000

H : Number of virtual host 200

Z: Maximal number of edge in Top-Z 25

W : Number of walks in a tracing. 5000

Δt: Maximal time difference of two adjacent edges 1200

d: Maximal length of a path. 8

ω: Effective path length 1

λ: Threshold when edges conflict. 0.1

φ: Minimal walk frequency rate in Top-Z. 0.02

4.1 Experimental Environment

In the algorithm experiment, using UML virtual machine technology[14,15], we
establish an experimental environment include 200 virtual nodes base on 7 PCs.
Virtual clients running Redhat Linux 6.1 operation system with BIND security
holes. Physical hosts running Redhat Linux 9.0 operating system. Several virtual
clients in a physical host form a virtual local network (VN), virtual clients in
different host communicate with each other using gateway in every physical host.
This environment can be independently reused. Nodes and network topology
can be flexibility configured. Experimenters enable to collect network data and
infections for analysis after the outbreak of worm.

Manually launch a worm propagation break source in one of the four LANs,
startup Lion worm attack[16], then running tracing algorithm to analyze the
final result and true infections. The continuous real time collection network flows
include not only worm flows, but also pre-installed normal background flows.

4.2 Parameter Selection

Performance vs. Δt Figure 4 shows the impact of Δt on the AC rate. When
Δt increase, AC rate climb up but finally descend. AC rate is very low when Δt
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Fig. 4. AC rate vs. Δt
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Fig. 5. FP vs. Δt
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Fig. 6. FN vs. Δt

very small, because walk is more likely to arrive at a host that has no precursor
in the time scope Δt, making walk can not go on, so walk is more likely to
terminate when the path is very short. At the same time short walk has a lower
possibility to arrive the top level of causal tree, most of the short walk stopped
in the bottom of causal tree.

Larger Δt make the walk has more chance to reach the top level of causal tree,
so AC rate will increase along with Δt. But AC is lower down when continue
increase Δt. A wider Δt mean a greater opportunity to select a normal edge, too
many normal edges ’ selected make AC rate decrease. We can also discover this
from Fig. 5 (FP rate vs. Δt). The FP rate is increasing along with Δt, because
of more normal edges are selected into Top-Z.

Furthermore when Δt is very big, walk have a larger chance to go to a normal
host after arrived the worm origin, this is one of the reasons why AC rate
decrease. Decrease of AC rate result in the increasing of the FP and FN , the
following Fig. 5 and 6 are also proved this.

We also can be seen in Fig. 5 that FP rate is extremely low while Δt is very
small. It is because walk path more likely to be a short path when Δt is small,
and the short path in the algorithm is ignored, too short path contains more
normal edges. Only few edges are selected into Top-Z, of course FP rate will be
very low. Figure 6 also prove this, only a few edges selected into Top-Z, failing
to report many causal edges, FN rate reach the highest level.

Combining Fig. 4, 5 and 6 we can see that there is a optimal Δt, makes AC
rate reach the highest level while FP and FN are the lowest. However, the
optimal value of Δt is related to the scanning rate of worm, in the experiment
use Δt=1200 seconds.

Performance vs. d. The reference[12] has indicated that the difference of prob-
ability between selecting attack edge and normal edge is pro rata with maximal
hop count d, and AC rate is climbing while d is increasing. Figure 7 proved this
issue. However, Fig. 7 shows not entirely the same, when the AC rate reached
highest level, continues increasing d will cause AC rate slowly declining (al-
though not decline too much). At the same time FP and FN rate in Fig. 8 and
9 are raising. The reason is already mentioned before, too big d make the walk
have a larger chance to go to a normal host after arrived the worm origin, so
AC rate is decreasing and FP , FN rates are rising.
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Fig. 7. AC vs. d
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Fig. 8. FP vs. d
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Fig. 9. FN vs. d
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Fig. 10. AC rate vs. ω
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Fig. 11. FP vs. ω
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Fig. 12. FN vs. ω

Performance vs. ω. Too short walk path will be ignored, an appropriate value
of ω help to achieve an acceptable FP rate and FN rate. From Fig. 10, 11 and
12 we can see that when effective path length (ω) is increasing, more short path
is eliminated. Compare to long path, normal edge has a greater proportion in
a short path. Therefore excluded of short paths makes FP rate lower, but FN
rate is increasing and AC rate is falling down because excluded short path will
also reducing opportunities for tracing some of the causal edge. Not all of the
causal chains are very long, short causal chain may be directly excluded from
the result set. So there is also a tradeoff when choosing value for ω.

Performance vs. λ. Algorithm’s ultimate goal is to reconstruct the causal tree,
and tracing the origin of worm propagation. Simple random walk algorithm only
returns a forest or ordinary graph in most cases. When solving the conflict in
reconstructing causal tree, we introduced a threshold λ.

Pm is defined as the probability that an attack edge is walked, while Pn as
the probability that a normal edge is walked. We assume ΔP=Pm-Pn. The
reference[12] has proved that ΔP >0, further indicate ΔP is pro rata with
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Fig. 13. AC rate vs. λ
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Fig. 14. False positive vs. λ
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Fig. 15. False negative vs. λ

number of outgoing flows that a host initiates in unit time, and pro rate with
valid host address rate of worm scanning. For scanning worms, due to its high
scanning rate, infected host initiates a large outgoing flows, meanwhile some
advanced scanning strategy will avoid scanning IP address that does not exist,
this will lead to the increase of ΔP . As a conclusion, ΔP �0 for most scanning
worms.

So when two edges’ walk frequencies are fairly closed, they are more likely
simultaneously to be two attack edges or two normal edges. If these two edges
were selected into Top-Z, because of their high walk frequency, they have a higher
probability to be two attack edges. But causal tree can not simultaneously include
a pair of conflict edges.

λc describes proximity degree of two edges. When λc ≤ λ, the early edge
is more likely to be causal edge. When λc > λ the edges with a larger walk
frequency is more likely to be causal edge. From Fig. 13, 14 and 15 can be seen
that λ as a threshold that impact final results, too big or too small is not a good
option, in general λ=0.1 is a better choice.

Performance vs. φ and Z. Parameter φ controls the number of edges in Top-
Z. Less edge will be selected into Top-Z while φ is increasing, the reserved edges
in Top-Z have a great walk frequency. Compare with the edges eliminate from
Top-Z because of walk frequency less than φ × W , the reserved edges are more
likely to be causal edge. Combined with Fig. 16 and 17 can be seen that, when
φ is increasing, AC rate is climbing up and FP rate are lower down. But at the
same time in Fig. 18 FN rate is climbing, due to the increased restriction of φ,
more causal edges are lose.
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Fig. 16. Accurately rate vs. φ
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Fig. 17. False positive vs. φ
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Fig. 18. False negative vs. φ

Offline random walk algorithm does not need to use φ control the size of the
Top-Z, because we can change the value of parameter Z to achieve the same
purpose.

However, in online algorithm, the worm outbreak time can not be predicted.
When there is no worm in network, too big Z will results in selecting a large
number of normal edges, but when the worm outbreaks, too small Z will cause
the increasing of FN rate.

Introduce φ help to solve this problem, if the value of φ is appropriate. When
there is no worm outbreak, walking path often very short, nearly no edge have
a walk frequency larger than φ × W , so no edge was selected into Top-Z. When
the worm outbreak, φ enable algorithm adapt to this change. Because more and
more long paths are appeared, more causal edges will be selected into Top-Z
because of its walk frequency exceeded φ × W .

Performance vs. W . For a random algorithm, a larger W means higher ac-
curacy rate, but it also implies that the execution of algorithm use more time.
Online algorithm has a high demand in real-time, need to receive rapid update.
So there is tradeoff between accuracy rate and execution time. In the experi-
ments we found that, when W and the number of flows in a slide window have
the same magnitude, can achieve a better AC rate and an acceptable execution
time.

Figure 19 and 20 show the relationship between W and accuracy or execu-
tion time when Δt=800 seconds, window size D=4000 seconds, number of flows
F=4000 in a time window. From that can be seen when W is 5000, accuracy
rate arrives 63.636% and algorithm execution time is 9.748 seconds.
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Fig. 19. Accurately rate vs. W
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Fig. 20. Execution time vs. W

5 Conclusions

Online tracing the evolution of a worm outbreak reconstructs not only patient
zero (i.e., the initial victim), but also the infection node list in evolution process.
Even if proportion trails can be captured, it has significance in restraining evolu-
tion of worm in investigating and collecting evidence. Through experiments and
analysis can be seen that, online tracing algorithm with sliding window can re-
flects worm evolution process. According to the network environment and worm
characteristics, we dynamically change the running parameters in algorithm, ad-
vance the tracing accuracy. This paper’s online tracing algorithm focuses on the
basic scanning worms, and future work will study tracing more species of worm
under complex network environment.
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Abstract. Along with the fast development of the Internet, the tra-
ditional passive defense measures have shortcomings and can not deal
with the increasingly serious network security problems better. In this
paper, a proactive network defense scheme is presented. And a new model
of DTPM (Intrusion Deception and Traceback-based Proactive Defense
Model) is established, which protects the precious network resources with
the cooperation of intrusion deception and traceback. In the traceback
module of DTPM, an improved approach APPM based on the PPM
(Probabilistic Packet Marking) is developed, which makes up for the
deficiency of the PPM in real-time capability and flexibility. By way of
analyzing and comparing with other methods, this approach can decrease
the overloads of many aspects and make traceback more efficient. The
simulation experiment indicates the high performance and efficiency of
this scheme.

Keywords: Intrusion deception; Trap environment; Honeypot; Trace-
back.

1 Introduction

Along with its fast development, the negative effect of the Internet is the serious
network security problem. According to the Computer Security Institute(CSI),
the result indicates that, the threats from computer crime including informa-
tion stealingfinance deceivingabuse of internal usersvirus breaches continues un-
abated. Only the traditional passive defense measures such as firewall and IDS
can not solve the network security problem better [1].What we need is to change
from passivity to initiative and set up a dynamic proactive defense system to
protect network resources efficiently.

As to the proactive defense, a representative technique is Honeypot. It is also
called the network security trap which disguises as the real system with vulnera-
bilities, imitates vulnerable hosts, and attracts the hackers to enter and records
their activities. By analyzing the data recorded by honeypot, we can understand
the hacker’s next action and the new attack methods they use [2]. Some product
models of honeypot system appeared such as: the Deception Toolkit, CyberCop
Sting, Spector, LaBrea Tarpit, Honeyd and ManTrap [3].

In the field of traceback, how to solve the problem of traceback and locate the
attack source is becoming more and more desired. We can cut off the attack at
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the source using traceback and overawe the attackers to give up further attacks.
In this way, we could launch the reverse attack toward the attacker, so that we
can take the active role in attacking and defending. Some achievements have been
made in traceback such as ICMP messages locating approach [4], Probabilistic
Packet Marking (PPM) approach [5].

Currently, the researches on intrusion deception technique (Honeypot) and
traceback technique are still independent. How to combine the intrusion decep-
tion and traceback together organically and to make them cooperate with each
other better is the focus of this paper. Aiming that, a new scheme DTPM (In-
trusion Deception and Traceback-based Proactive Defense Model) is presented.
Based our model, when facing attack, we can respond to attack positively rather
than passive and negative defense.

This paper is organized as follows: Section 2 introduces our new approach and
DTPM model design in detail. In section 3, we analyze our new approach and
give the simulation results. Finally, section 4 concludes the paper.

2 DTPM Model Design

2.1 DTPM Overview

Based on the thought of proactive defense and attack, we design the DTPM
model utilizing the proactive entrapment and adopting the strategy of decep-
tionmonitorprotection and counterattack. Fig.1 shows the theory frame structure
diagram of DTPM.

Fig. 1. DTPM theory frame structure diagram

DTPM model consists of Intrusion deception moduleTraceback module and
Management and control module. Functions of each module are listed as follows:
1) Intrusion deception module. Implement deception to invader and guide the
invader into the trap environment proactively. 2) Traceback module. Trace the
attack back and locate the source of the attack. 3) Management and control
module. It is responsible for controlling and cooperating with each module.

Even if the attacker intrudes into the real system that we protect, we can
also transfer him from the real system to the trap environment via attack redi-
recting[6]. Meanwhile, we trap the attacker in the trap environment in order to
strive for enough time to trace back and locate the attack source.
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Fig. 2. DTPM system architecture graph

Above all, we can get the system architecture graph shown as Fig.2.
In DTPM, there are four types of data stream: network attack data stream

management and control data streamcaptured data stream and traceback data
stream. The control and flow of these four types data stream is shown as Fig.3:

Fig. 3. Data stream in DTPM

2.2 Design of the Intrusion Deception Module

Spitzner thinks: honeypot is an information system resource whose value lies in
unauthorized or illicit use[7]. Because honeypot does not expect real valuable
services, any traffic to or from it is the most likely unauthorized and suspected
activity. We make use of honeypots as the trap hosts, which imitate the real
services of various internal servers and forge the IP address of the real system.
The intrusion deception module is made up of firewallIDS and trap environment.
There are more than one honeypot in the trap environment, each honeypot takes
terms of the virtual honeypot(Honeyd). The whole trap environment adopts the
architecture like Honeynets Gen1[8].

Firewall and IDS play the part of guiding the external invader into the trap
environment and logging. Every action of the hacker is under controlled by inter-
action of firewall and trap environment. Firewall maintains a dynamic blacklist
during the process. IDS renews the blacklist in time. For every connection from
outside, if its source IP is in the blacklist, then it is led into trap environment; if
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it is a new IP, IDS judges whether the action from this source IP is an intruding
behavior or not at first. If it is intrusion, IDS issues an order to the firewall.
The firewall can stop the connection from this source IP or lead it to the trap
environment, and adds its record to the blacklist. When it logs in again, it is led
to the trap environment directly.

Placing router between firewall and trap environment for concealing firewall, it
makes the attacker in the trap environment feel the network more real. The ACL
(Access Control List) can be established on the router to filter the packet whose
source IP address is not the address of the honeypots in the trap environment.
It prevents the hacker from attacking other hosts by forging IP address after
compromising the honeypot system.

Each honeypot host communicates with each other to work cooperatively.
Local control centre manages the whole trap environment, and changes the con-
figuration information in time. The teleconsole records the data information of
the hacker under monitoring and the system log, cooperates with IDS to detect
attack and triggers the traceback module when there is invader in the trap en-
vironment. All of the data streams take the terms of encrypting mode between
each module. And the data transferring between them need to be authenticated.
Fig.4 depicts the principle diagram of Intrusion deception module.

Fig. 4. Principle diagram of Intrusion deception module

2.3 Design of the Traceback Module

Current Internet infrastructure is exposed to many serious threats that can af-
fect the availability of network services. Most attackers usually use incorrect or
spoofed IP address in the attack packets to conceal their real location. When
IP protocol was built up originally, there was limitation. The architecture of the
Internet does not provide intrinsic support for identifying the real sources of IP
packets. So it is very difficult to trace back and to locate the source. Therefore,
the traceback system plays the vital role in the proactive security defense system.

Savage etc proposed PPM(Probabilistic Packet Marking)approach [5]. The
core is to let routers add part of path information to the forward packets with cer-
tain probability. This information reaches the destination host with IP packets.
After receiving large numbers of packets, the destination host can reconstruct
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the entire path with the partial path information included in the received IP
packets, and then determines the attack source. This approach helps the victim
distinguish the path of the attack traffic without the cooperation of ISPs(Internet
Service Provider). However, the victim only starts traceback and receives large
numbers of packets passively to compute the attacking path. The speed and
effect of tracback are impacted by the uniform determined marking probability.
Also the routers and networks don’t cooperate with each other. Routers mark all
the forward packets without selectivity, which increases themselves overloads.

Based on the PPM approach, we propose the APPM(Advanced Probabilis-
tic Packet Marking) approach, which enables the attack source locating more
exactfast and efficient. There are two key parts in APPM: the packets marking
module and path reconstructing module. Two essential methods are compressed
node sample marking method and compressed edge sample marking method[5],
both of which operate on IP packet header. We adopt the combination of the
two methods.

This paper makes use of the routing area dividing to partition the routers on
the attack path into several AA (Autonomous Area) [9]. With the cooperation of
the traceback system of DTPM and the backbone routers CR (Central Router)
of each AA, it is to mark the packets only within the needed time and direction,
which can decrease the overload of the midway routers greatly.

We make the following definitions for conveniently.

[Def.0] R1: denotes the compressed node sample marking method; R2: denotes
the compressed edge sample marking method.C1,C2 denotes the path recon-
structing method of R1,R2 respectively.
[Def.1] Ti: stands for marking the packets at Ti time. This time is computed by
the traceback system and transfered to each marking router in terms of time-
stamp.
[Def.2] S: a kind of control switch. On the choice of marking method, S taking
value 0 means choosing R1, and S taking value 1 means choosing R2.
[Def.3] CU: denotes the communicating information among traceback system-
backbone router CR and marking routers. CU =< S, P, T i >,P represents the
marking probability.
[Def.4] D: stands for direction symbol. It means the direction of attack traffic
which is contrary to the traceback request direction. D taking value 0 means
following the downstream direction, and taking value 1 means following the
upstream direction.

The traceback system consists of traceback server(TS)data analyzing server
(AS) and path reconstructing server(CS). The functions of each component are
described as follows.

(1)TS establishes communication with the backbone routers CR of respec-
tive upstream AA by means of IP tunneling technique. Among each CR and
between CR and other marking routers of its own AA, the communication is
also established by means of IP tunneling technique. The time stamp Ti used
for communicating is added to the header’s Optional field of IP packets. In Ti
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period the system performs traceback strategy and carries out marking. Accord-
ing to the traceback request received by CR, the attack traffic’s direction D
can be figured out. The CR of each AA on the attack path sends the received
traceback information CU to other marking routers of its own AA through IP
tunnel. CR does not participate in packets marking. Then the marking routers
begin marking the forwarded packets within Ti period according to CU and D.
When the time of Ti ends, the marking routers will finish the marking process.

(2)AS analyzes the data stream captured by trap environment and figures
out which marking method to choose R1 or R2. According to the theoretical
number of the marking packets needed to reconstruct the path, it computes the
demanded P of this traceback process.

(3)CS carries on the following path reconstructing work using the received
marked packets after the marking process is complete. CS chooses the different
path reconstruction method C1 or C2 to locate the source.

After reconstructing the whole attack path, the source information is sent to
TS. The TS submits this information to teleconsole which carries out log audit
and forms the rule. The rule is submitted to firewall and IDS of the intrusion
deception module in order to identify and defend the attack originated from
this source. Towards the attack information, the teleconsole devises this kind of
attack should be stopped or deceived. So the attack from this source would be
resisted and defended efficiently.

The APPM approach can be described with flow chart as Fig.5 shows.

Fig. 5. APPM approach flow chart

3 Performance Evaluation

3.1 Analysis

As the core of DTPM, the performance of APPM approach greatly influences
the effect of whole DTPM. As the choice of marking field, the Identification field
is used for fragmentation in IP header. The compressed partial path information
could be encoded to this field by means of Hash value. There are three bits
in the fragmentation flags field where there is 1 bit untapped. We could select
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that bit as the marking strategy choice switch S. The distance of almost all the
Internet paths does not exceed 30 hops [10]. We set the first 5 bits of the 16-bit
Identification field as the distance field.

In the existing approaches such as PPM[5]AMS[11], in order to avoid extra
overload of the marking routers, the probability that the routers on the path
mark forwarded packets is fixed, which generally is settled to 1/25. When a
packet is marked by one router on the path, it may also be marked by the
downstream routers, and the former marking information will be overloaded.
We assume the distance of one marking router to the victim as d hops, and
the probability that one packet is marked by one router and left unmolested by
the downstream routers is (1 − p)d−1 .For the packets reached the victim, the
probability that it is marked by this router and isn’t marked by the downstream
routers, is p(1 − p)d−1 . Distance d is larger, this probability is smaller, i.e. the
victim need receive quite more packets in order to receive the marked packets
from the farthest router away from the victim. So the victim needs large numbers
of packets to reconstruct the attack path. In R1, the inequation Np(1 − p)d−1≥1
should be satisfied, for instance, if p=0.5 and d=15, the victim must receive at
least 32768 packets on average to reconstruct the path, among which there is
only single sample packet marked by the furthest router. In R2, the number
of attack packets needed to reconstruct the path decreases obviously, and the
performance is optimized. The expected number of packets used for traceback
is (ln(d) + O(1))/p(1 − p)d−1 , if p=0.1 and d=16, the victim only need receive
at 134 packets on average to reconstruct the path.

According to the number of packets captured by DTPM system, it selects
relevant method and figures out one approximate marking probability so as to
implements dynamic marking based on every different attack.

3.2 Simulation

In order to evaluate the performance of defense ability of our system, we car-
ried out the simulation. We deployed the SUN’s Solaris ftp server and the Fang
Zheng’s Yuanming web server on the local network in the lab, both of the oper-
ation systems took the default installation. Several deception hosts running the
virtual honeypot software-Honeyd were deployed on the network, which imitate
several virtual honeypot systems in one host. All of the above hosts compose
the trap environment.The honeypots imitate the corresponding services of real
servers respectively by the way of reflecting network ports and allocating ports
and IP dynamically. The well-known Snort is selected as the IDS of the decep-
tion module. We configure the rules of firewall to control the data stream flowing
in and out of it, and make sure the compromised honeypots can not be used to
attack other external systems.

Boson NetSim software runs in one host to imitate Cisco routers. By configur-
ing this software, the imitating routers achieve the marking function. The Tracer-
out software records the routing path passing through different roads from at-
tacker to victim. One host running the CGI procedure established by Java plays
the role of the teleconsole and logging server, which receives the data and logging
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records from the trap environment. The communication of each host adopts the
MD5 to encrypt. One host as the traceback system launches the traceback and
locates the attack source. The test environment is deployed in two different local
area networks. They are 10.187.82.0∼254 and 10.187.84.0∼254, where we deploy
the attack and defense parts respectively.

We use Honeyd as Honeypot system and Linux Red Hat 9.0 as OS. One
configuration for the virtual honeypot of our system is as follows:

create windows
set windows personality "Microsoft Windows XP SP2"
set windows default tcp action reset
set windows default udp action reset
add windows tcp port 445 open
add windows tcp port 139 open
add windows tcp port 80 open
add windows tcp port 21 open
bind 10.187.82.200 windows
bind 10.187.82.170 windows
bind 10.187.82.177 windows

This instance creates a windows system template and imitates the Windows XP
SP2 operation system. It binds 3 IP to the VMware and opens the above ports
so as to deceive the attacker to intrude in. The other virtual honeypots are also
configured following this instance.

The experiment used one host with real IP 10.187.84.122 as the attack part
forging the IP source as 202.219.168.1. It started attack to the deployed de-
fense system through the buffer overflowing vulnerability using TCP 139 and
445 ports, and it intruded into one honeypot of the trap environment success-
fully.This honeypot discovered the attack, recorded the logging of this attack,
gave the alarm, and in the meantime sent attack logging records to the telecon-
sole with IP address 10.187.82.172. The teleconsole started the traceback system
which began the marking function of imitating routers by means of interacting
with the host running Boson software. Meanwhile, the whole attack path was
reconstructed and the attack source was located according to the marked IP
packets. Through the monitor of Tracerout, we find the location of our system
is precise. And the whole process lasts 3 minutes and 36 seconds, which is in the
reasonable scope.

We used the NS [12] to test the availability of the APPM. We establish the
NS2 network topology by the Internet Mapping traceroute database obtained
from Lucent Bell Lab [13]. We randomly selected 500 destination nodes as the
attack nodes topology prototype. In the test we used the single source of the
traceroute as the victim and the whole traceroute database as the upstream
routers from the victim. In NS2, we configured the imitating routers to mark
the packets and simulated the victim to carry on reconstructing the attack path.
We launched 20 DoS attacks to the defense system including TCP SYN Flood
and IP Spoofing attacks which went through different numbers of intermediate
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nodes. We take the average values of 500 independent results as the experiment
result and figure out the average number of packets needed to reconstruct the
attack path. The result is depicted as Fig.6.

Fig. 6. The relationship of the path distance and the number of marked packets needed

As shown in Fig.6, when the data traffic per unit time is under 1000 and the
path distance within 30, it can reconstruct the attack path only with low marking
probability and fewer marked packets. When the path distance is within 25 and
the attack data traffic per unit time is high, it needs more marked packets and
high marking probability to reconstruct attack path.

Fig. 7. Comparison with PPM and AMS approaches

In the simulation condition, the comparison of our approach with PPM and
AMS approaches is shown as Fig.7. In the condition that marking probability is
same such as p=0.1, the proposed APPM approach needs much fewer marked
packets to reconstruct attack path than PPM and AMS.

The simulation result indicates that our approach needs fewer packets to re-
construct the attack path. It has good flexibility of selecting and adjusting trace-
back strategy dynamically according to the data traffic.The simulation experiment
proves that our DTPM system can perform proactive defense efficiently.
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4 Conclusion

This paper proposes the DTPM model which provides a viable solution for the
network security problem. It combines the intrusion deception and traceback
techniques together to construct the proactive network security defense system.
The simulation result indicates the model has high quality of real-time and
cooperation. It can resist attack effectively and make the real systems under
protection. Locating the source and finding out the real attacker also can play
a well role in early warning.
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Abstract. This paper analyzes the impact of encryption over the UMTS
air interface. Using a finite state Markov characterization of the UMTS
decryption process, a stochastic model has been developed that quantifies
the impact of bit errors in the ciphertext and cipher synchronization
counter. The effects of residual bit errors, UMTS air interface power
budget, interleaving span and channel coding rate on the decryption
process are analyzed.

Keywords: 3G Security, Wireless Confidentiality, Markov Modeling,
Error probability, UMTS Encryption.

1 Introduction

Communications channels are prone to errors due to various physical impair-
ments. Although application of error correcting codes overcomes or reduces the
impact of these errors, residual errors can pass through undetected in some cases.
These residual errors can in turn have significant impact on the transmitted data
if it is block encrypted prior to transmission. Characterization of the effect of
encrypting data before transmission over error prone channel and quantifying
the impact of residual errors on decryption process is one of the key technical
problems.

In [1], the authors have shown through empirical simulations that the use
of data encryption over an error prone channel significantly increases the post
decryption bit error rate (BER) at the receiver.

In [2], the author has developed stochastic models to describe the error struc-
tures of secret key ciphers. By deriving the first order statistics of these models
such as the mean lengths of the error events and mean lengths of time between
error events, the author has shown that the end-to-end confidentiality can in-
crease the average post decryption BER by more than an order of magnitude.

With the proliferation of high speed wireless networking and on going deploy-
ments of third generationmobile communication systems, the demand for efficient,
robust and secure encryption modes is ever increasing. One of the popular third
generation mobile communication systems is Universal Mobile Telecommunica-
tion System (UMTS) which is a aimed at providing global mobility and wide range
of services like broadband data, video streaming, multimedia applications etc. The
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confidentiality scheme adopted in UMTS is based on f8 algorithm [3]. While most
research efforts on f8 focus on investigating its security properties and efficient
implementations, the characterization of effect of residual errors on this algorithm
and analysis of its performance in error prone channels still remains an open re-
search subject. The results presented in this paper are a contribution towards ad-
dressing this problem.

The paper has following organization: Section 2 briefly describes the UMTS
system architecture, the radio interface protocol structure and the underlying ra-
dio access encryption algorithms. In Section 3, an analytical model of the UMTS
air interface is discussed. This model quantifies the residual bit error process on
the physical channel taking into account various air interface parameters such as
modulation, channel coding and interleaving. The impact of residual bit errors
is then subsequently analyzed using a stochastic model of f8 decryption process
based on a finite state Markov chain. Section 4 discusses the analytical results
and finally in section 5, conclusions are given.

2 UMTS System Overview

2.1 UMTS System Architecture

A typical UMTS system architecture consists of user equipment (UE), UMTS
terrestrial radio access network (UTRAN) and a core network. The interfaces
between UTRAN and the core network and UTRAN and the UE are referred to
as Iu and Uu interfaces respectively.

The Uu interface is layered into three protocol layers: the physical layer, the
data link layer and the network layer. The physical layer is based on Wide-
band Code Division Multiple Access (WCDMA) radio technology. The data
link layer is divided into two main sub-layers, namely Medium Access Control
(MAC) [5] and Radio Link Control (RLC) [6]. RLC operates in three different
modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowl-
edged Mode (AM). UMTS defines two types of dedicated physical channels:
dedicated physical data channel (DPDCH) and dedicated physical control chan-
nel (DPCCH). Information is transmitted over the physical interface in 10ms
duration radio frames. Each frame is divided into 16 slots of length 0.625 ms.
To mitigate the effect of burst errors, a two-stage (inter-frame and intra-frame)
interleaving is applied on the scale of a transmission time interval (TTI), which
is equal to 1,2,4 or 8 radio frames (10-80ms).

2.2 UMTS Radio Access Confidetiality

UMTS radio access confidentiality is based on f8 encryption algorithm. f8 is
built around KASUMI block cipher [4] using combination of OFB and CTR
modes and pre-whitening of feedback data. Figure 1 depicts the ciphering al-
gorithm. The f8 algorithm takes a 128-bit key CK, a 32-bit counter COUNT ,
a 5-bit radio identifier BEARER, a 1-bit direction identifier DIRECTION ,
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KASUMI

AA

KASUMI KASUMI KASUMI KASUMI

0 1 2 m-1

CK CK CK CK

COUNT || BEARER || DIRECTION || 0 ...0

Y[1] Y[2] Y[3] Y[m]

CK     KM

Fig. 1. f8 Ciphering Algorithm

and a message M{0, 1} to generate a keystream KS (the leftmost |M | bits of
Y [1]||...||Y [m] ) which is exclusive-ORed with M to return ciphertext C of same
length as M . Decryption operation is identical to the encryption.

In practical implementations, ciphering is performed either in RLC sub-layer
or in the Medium Access Control (MAC) sub-layer.

3 Error Model of Decryption Process

The channel seen by decryptor is the physical channel as modified by the error
correcting mechanisms used at the physical level. In most of the cases, the error
correcting mechanisms provide less than perfect protection and some amount of
residual errors pass through undetected resulting in a residual bit error proba-
bility Pres.Our goal is to determine the impact of residual bit errors seen on the
physical channel on the decryption process. To this end, we first discuss a concise
mathematical model of the UMTS Uu interface that quantifies the residual bit
error process on the physical channel.

3.1 UMTS Uu Interface Residual Bit Error Model

In [10], the authors have developed an analytical expression to model Pres on
the DPDCH uplink as:

Pres ≈ 1
2

∞∑
d=dfree

cd erfc

(√
d Rc

(
Eb

No

)

e

)
(1)

where Rc is the coding rate of the convolution code and dfree is the minimum
free Hamming distance of the convolutional code. If the decoder makes an error
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in the pairwise comparison of two paths through its state space, cd denotes the
total number of information bit errors produced by the wrong paths of Hamming
weight d ≥ dfree that diverge from the correct path and remerge to it at some
stage later.

The term
(
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)
e

denotes the effective SNR per bit and is defined as the value

of Eb
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in an equivalent constant signal-to-noise ratio additive white Gaussian

noise (AWGN) channel which would yield the same Pres as the fading channel
with prior bit level interleaving. For soft-decision Viterbi decoding of the de-
interleaved bit stream of length N ,
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Here D denotes the ratio of constraint length and coding rate of the convolutional
coder and

(
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)
S(x)

stands for the Eb

No
in time slot S(x).

S(x) models the interleaving scheme adopted in the UMTS. It denotes the
number of the time slot relative to the beginning of the TTI in which bit x of
the bit stream ∀ x = 0 · · ·N − 1 is transmitted. For an interleaving scheme
working with TTIs of NI radio frames, with each radio frame containing BR

bits and NS time slots, S(x) can be described by the following expression:

S(x) = NS
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⎣NI

⌊
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⌋
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⌋
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⎤
⎦
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⌋ ⎢⎢⎢⎣
⌊

x
NI

− BR

⌊
x
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⌋⌋

2i

⎥⎥⎥⎦
mod 2

⎞
⎠

⎥⎥⎥⎦
(3)

3.2 Post Decryption Bit Error Probability

Analogous to encryption, decryption is performed by the exclusive-OR of the
ciphertext with the generated keystream. Observation of figure 1 shows that
this process involves using block cipher KASUMI in output feedback mode. The
feedback path is however modified by block counter and static data held in
register AA. Clearly, if bit errors occur in the ciphertext, then the recovered
plaintext will have the same number of bit errors in the same bit positions as
in the ciphertext. In this condition, the decryptor is said to be propagating
bit errors. Furthermore, if there is a bit error in the cipher synchronization
counter COUNT , then a bit error may occur independently, in any bit position
of the decryption of the corresponding ciphertext, with an expected error rate
of fifty percent [7]. In this state, decryptor is said to be expanding errors. Bit
error expansion is because of the fact that the underlying block cipher KASUMI
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adheres to strict avalanche criterion (SAC) [8] implying that each bit of its
output function changes with probability one half, whenever an input bit is
complemented.

If Nc denotes the length of physical layer counter block and L is the length of
corresponding ciphertext block, then we can associate four possible events with
the reception of these blocks as follows:

Suppose D is the event when both counter block and ciphertext block are
in error. C is the event when ciphertext block is correct while counter block is
in error. B is the event when counter block is correct while ciphertext block
is in error. A is the event when both counter block and ciphertext block are
correct. When event D or C happens, the decryptor is in the state of error
expansion. When event B takes place, propagation of bit errors occurs. When
event A happens, the decryptor is free of errror expansion and propagation.
Hence depending on the state of the received ciphertext and counter blocks at
each decryption cycle, the decryptor is in one of the three states namely “error
free”, “error propagation” and “error expansion”. If we refer to these states as
0, 1 and 2 respectively, then the state diagram of the stochastic error model for
the decryption process can be expressed as illustrated in figure 2.

0Pr(A) 1

2

Pr(B)

Pr(A)

Pr(B)Pr(A)

Pr(C U D)

Pr(C
U

 D
)

Pr(B)

Fig. 2. State diagram of the decryption process

The stochastic process updates its state every decryption cycle with the tran-
sition probabilities indicated in figure 2 whereby Pr(X) denotes the probabil-
ity of occurrence of event X . Since the transition probability of the next state
only depends on the value of the current state, the stochastic error model is a
Markov chain. The state transition matrix of the model can be determined from
Pr(A), P r(B), P r(C) and Pr(D). We can also express Pr(A), Pr(B), Pr(C)
and Pr(D) in terms of Pres as follows:

Let Ci denote the i-th bit of the counter block ∀ i = 1..Nc. Let C1C2C3...CNc

and C
′

1C
′

2C
′

3...C
′

Nc
be the transmitted and received counter blocks respectively.

Let P (C
′

i |Ci) denote the probability of receiving C
′

i when Ci is transmitted and
P (C

′

1C
′

2C
′

3...C
′

Nc
|C1C2C3...CNc) denote the probability that that the received



512 F. Sattar and M. Mufti

counter block is C
′

1C
′

2C
′

3...C
′

Nc
when the transmitted block is C1C2C3...CNc .

Assuming reception of each bit is independent of all the remaining bits then:

P (C
′

1C
′

2C
′

3...C
′

Nc
|C1C2C3...CNc) = P (C

′

1|C1)·P (C
′

2|C′
2)·P (C

′

3|C′
3)...P (C

′

Nc
|C ′

Nc
)

(4)
If in a certain received block, j bits are in error, then Nc − j bits are correct.

Then the probability of receiving this block is P j
res · (1 − Pres)Nc−j . There are(

Nc

j

)
different ways in which j errors can occur in Nc bits. Hence:

P (receiving j out of Nc bits in error) =
(

Nc

j

)
P j

res · (1 − Pres)Nc−j (5)

and the probability Pc of receiving correct counter block is:

Pc = (1 − Pres)Nc (6)

The probability Pct of receiving correct ciphertext block can similarly be given
as:

Pct = (1 − Pres)L (7)

Since Pr(A) denotes the probability of event when both counter block and
ciphertext block are correct, therefore:

Pr(A) = Pc · Pct = (1 − Pres)Nc · (1 − Pres)L (8)

Similarly:
Pr(B) = (1 − (1 − Pres)L) · (1 − Pres)Nc (9)

Pr(C) = (1 − Pres)L · (1 − (1 − Pres)Nc) (10)

Pr(D) = (1 − (1 − Pres)L) · (1 − (1 − Pres)Nc) (11)

Also, events C and D are mutually exclusive, therefore we can write:

P (C ∪ D) = P (C) + Pr(D) = 1 − (1 − Pres)Nc (12)

Hence the transition probability matrix can be written as follows:

P =

⎡
⎣

(1 − Pres)Nc(1 − Pres)L (1 − (1 − Pres)L)(1 − Pres)Nc 1 − (1 − Pres)Nc

(1 − Pres)Nc(1 − Pres)L (1 − (1 − Pres)L)(1 − Pres)Nc 1 − (1 − Pres)Nc

(1 − Pres)Nc(1 − Pres)L (1 − (1 − Pres)L)(1 − Pres)Nc 1 − (1 − Pres)Nc

⎤
⎦

(13)
In the above equation the element pij of the transition probability matrix denotes
the probability of moving from state i to j ∀ i, j = 0, 1, 2.

If π0 , π1 and π2 are the steady-state probabilities of being in states 0, 1 and
2 respectively and e0, e1 and e2 are the respective bit error rates associated with
these states then the mean probability of error can be calculated as:

Pe = π0 · e0 + π1 · e1 + π2 · e2 (14)
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As block cipher KASUMI adheres to SAC, the bit error rate in state 2 is 1
2 .

Also, the bit error rates in states 0 and 1 are 0 and Pres respectively. Furthermore
π0 , π1 and π2 can be determined using the Markov chain steady state properties
[9]. Using these results, the post decryption error probability can be written as:

Pe = Pres(1 − (1 − Pres)L)(1 − Pres)Nc +
1
2
(1 − (1 − Pres)Nc) (15)

4 Numerical Results

Figure 3 shows the analytical post decryption error probability plotted against
the channel bit error probability for RLC AM, RLC UM and MAC layer cipher-
ing modes. The dotted line represents the situation when plaintext stream is
passed unencrypted through the channel i.e. Pe = Pres. As evident from (15),
the post decryption error probability is proportional to the size of the counter
and is therefore maximum for RLC AM and minimal for MAC layer ciphering.

4.1 Bit Error Expansion

The post decryption effect of inherent bit expansion property of the KASUMI is
clearly visible. For a given Pres, it can be measured by the vertical distance be-
tween the curves representing encrypted and unencrypted cases in Figure 3. For
a fixed Nc, the error expansion is approximately constant for Pres less than 10−1.
Furthermore, Pe saturates at 1

2 when Pres = 0.5. At this saturation point, event
D occurs predominantly i.e. received counter block is always in error causing
decryptor to garble output with an error rate of fifty percent.

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

P
res

P
e

Post Decryption Error Probability vs Channel Residual Bit Error Probability

RLC Acknowledged Mode
RLC Unacknowledged Mode
MAC Layer Ciphering
No encryption

Fig. 3. Analytical post decryption error probability for various encryption modes
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4.2 Effects of UMTS Uu Interface Parameters on Decryption

We next determine the effects of UMTS Uu interface parameters ( interleaving
span and coding rate) on the post decryption performance. The pre and post
decryption bit error probabilities are determined under following assumptions:

1. The mobile call is conducted from a vehicle driving at a speed of 50 km/hr
i.e. the Doppler frequency is 100 Hz and the fades frequently span more than
a full radio frame (10 ms).This implies that interleaving mitigates the effect
of correlated burst errors thereby resulting in independent bit errors

2. The payload size is 512 bits and it is encrypted in RLC AM.
3. Radio frame duration is 10ms with 16 slots per frame.
4. Rate 1

3 and 1
2 convolutional codes of constraint length 9 are considered.

5. Interleaving spans over 1,2,4 and 8 TTIs (10,20,40 and 80ms respectively).

With effective Eb

No
as the parameter, the pre and post decryption probabilities

are plotted based on the above stated assumptions. Figure 5 shows the results
for coding rate 1

3 and different interleaving spans whereas Figure 6 shows the
results for coding rate 1

2 . From these results we note that:

1. For a fixed coding rate and interleaving span, applying encryption while
maintaining the same bit error rate as without encryption induces an Eb

No

penalty. The additional Eb

No
can be determined from the horizontal distance

between pre and post decryption curves.



On Modeling Post Decryption Error Processes in UMTS Air Interface 515

6 7 8 9 10 11 12 13 14 15 16
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Eb/No (dB)

P
e

Post Decryption Error Probability for 1/2 Coding Rate

N
I
=1

N
I
=2

N
I
=4

N
I
=8

No encryption
AM Encryption
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2. Decreasing the rate of the convolutional code mitigates the post decryption
error effect to some extent. This however comes at the expense of decrease
in the bandwidth efficiency. For 1

2 channel coding, the bandwidth efficiency
is approximately 50%, whereas it reduces to approximately 25% with rate 1

3
code.

3. Increasing the interleaving span also mitigates the post decryption error
effect. This however brings on the processing and consequently packet delay.

5 Conclusions

In this paper, UMTS decryption process is modeled as a finite-state Markov
chain and post decryption probability of error is investigated. The error prob-
ability is found to be proportional to the size of the synchronization counter
transmitted in the cleartext headers of UMTS payloads. Impact of Uu parame-
ters such as coding rate, interleaving span and Eb

No on the post decryption errors
has been analyzed. Results can be used to determine an optimum combination
of transmission SNR, coding rate and interleaving span, to achieve target bit
error rate while applying enryption.
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Abstract. Several efficient tools have emerged to aim at auditing and
measuring the security of a computer system or an internal network.
Along with the increasing complexity of network attacks, these tools be-
come more and more complicated. Even so, most of them can only do
simple snapshot analysis of the current system and are incapable of iden-
tifying possible attacks whose preconditions are not fulfilled at the be-
ginning but may be possible during the further attack progression. This
paper proposes a new framework for the security measurement that com-
mits complex attack sequences and does stateful inspection of the target
environment. The framework consists of five core components: Informa-
tion Gatherer, Knowledge Base, Interaction Agent, Evaluation Engine
and User Interface. An easy-to-use tool, called SNAPP, is realized based
on the proposed framework. The dependencies among each attack step
in an attack sequence revealed by SNAPP can be easily expressed using
Attack Graphs which assist to make security evaluations of the testing
environment. Several experiments that actually simulate and perform
some well known penetration attacks using SNAPP are presented and
analyzed for comparison and measurement of current security methods,
such as the conventional filtering-based firewalls and our patented Lock-
Keeper technology, which is an implementation of the high-level security
concept ”Physical Separation”.

1 Introduction

Modern business models depend on providing applications to external customers
and business partners while these applications, varying from the simple e-mail
services to collaborative business processes, are commonly required to be ex-
posed to untrusted networks, e.g. the Internet. As a result, malicious attackers
may also gain the possibilities to intrude the network by misusing the provid-
ing service. In general, the more services an internal network exposes, the more
attack opportunities, and the more likely it will be a target of attacks [1], [2].

The industry has responded to this problem by increasing efforts on deploying
more powerful security methods. However, how can they determine if such efforts
are paying off, and how can consumers perceive if such efforts have made a
difference? Performing a throughout security audit has been recognized as an
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efficient solution for this demand [2]. Several open source software as well as
some commercial products, such as Nessus [3], Core Impact [4], Metasploit [5],
and SAINT [6], etc., have been developed for auditing the security of systems
and networks. Most of them rely on huge vulnerability databases in which all the
registered vulnerabilities are treated and inspected individually. Regarding the
complex nature of some sophisticated network attack sequences, the limitation
of these available tools to identify attacks that are based on a combination of
known vulnerabilities has been a main challenge.

On the other hand, to match the need of testing some newly appeared and
more sophisticated network attacks, the security auditing tools have to be de-
signed and realized in more complex and intricate ways. It made using (installing,
configuring, executing and extending) such tools more and more difficult. To this
effect, the security auditing tools normally can only be operated by security do-
main experts. For general requirements, e.g., to assist a customer to test and
choose a personal firewall, these tools would be relatively hard to use. The tech-
nical analysis and evaluation results provided by most of these tools are overly
complex and hard to be understood by nonprofessionals. In addition, regular
usage of target systems or networks may be disturbed due to some fatal con-
figuration changes done by the security auditing tools or the simulated attacks
itself.

In our own case, we need an efficient and specific tool to measure the security
of our proposed high-level security solution, Lock-Keeper [7], [8], which is realized
based on the simple security concept ”Physical Separation” (PS). Theoretically,
it’s clear and easy to understand the security benefits of the PS idea because
it can completely prevent any kinds of direct connections between the remote
hackers with their vulnerable targets, e.g. a high-level secure internal network
or a sensitive host. This connection-based communication is the basic model for
most network attacks. However, to practically evaluate the Lock-Keeper solution,
especially to measure and compare it with conventional filtering-based firewalls,
we intend to simulate and perform some popular network penetration attacks in
an easy and controllable way.

This paper addresses the above mentioned questions by proposing a frame-
work that can automatically identify and commit complex network attack se-
quences. Based on the proposed framework and its concepts on ”information
gathering”, ”attack method selection” and ”attack progression”[2], an simple
and easy-to-use tool, called SNAPP, i.e., Smart Network Attack and Penetra-
tion Platform, is implemented. In comparison to some other available security
auditing tools, SNAPP has a more flexible architecture and a simpler user inter-
face that can even be managed by non-security experts. In particular, the simple
Knowledge Base data structure in SNAPP makes it easier to construct Attack
Graphs ([9], [10]) accordingly, which helps to make final security evaluations.

The rest of this paper is organized as follows. Popular security auditing tools
are introduced as related works in the next section. Then Section 3 proposes the
new framework of network security measurement. The SNAPP implementation
is described in brief as well in this section. Several experiments are shown in
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Section 4 to demonstrate applicability of the proposed SNAPP tool. A short
conclusion and some possible future works are given in the last section.

2 Related Works

In order to evaluate the security of their systems or networks, security experts
prefer to use the same tools which hackers would use on attacking. These tools
can not only simplify the detection of security holes but also educate the user
on different security topics. Some integrated and menu-driven auditing tools,
including high-quality commercial products, have been proposed in this area.
This section briefly describes two of the well-known tools: Nessus and Core
Impact.

Nessus is a free program designed to automate the testing and discovery of
known security vulnerabilities [3]. The first alpha release was published on April
4th, 1998. The extendability through the plugin mechanism is one of the key
features of Nessus. Plugins are written in the scripting language NASL (Nessus
Attack Scripting Language) [11]. Nessus comes with a huge community that
regularly provides new security testing plugins. In practice, Nessus has been a
popular and state-of-the-art tool widely used in the area of security consulting.
It analyzes every host in a network for exploitable services, misconfiguration, or
information leakage.

Nessus supports lots of simple attacks, but is not able to express dependencies
between each attack step or construct more complex attacks by evaluating the
situation after an attack takes place. The new attacks that were impossible at the
beginning are ignored completely. The overall analysis is always related to a static
snapshot of the environment. Figure 1 shows a typical Nessus testing process.
Nessus works with the initial information about the target host, including the
installed services or the patch level, which will be matched against a database
of known vulnerabilities. No repetitive scanning is performed by Nessus. All
generated information is based only on a certain snapshot taken at a certain
moment. In spite of resulting in a lot of security related information, Nessus
does not perform further evaluation of these information.

Core Impact [4] is a commercial product for security auditing. It can construct
complex attack sequences by interacting with its environment at runtime. This
is indicated by a loop shown in Figure 2. The strength of Core Impact lies in
the ability to commit the evaluation not only for the original attacked host, but
to transplant agents to the penetrated host and start further evaluation. This is
achieved via Syscall Proxying [12].

Fig. 1. Testing Process - Nessus
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Fig. 2. Testing Process - CORE IMPACT

One of the biggest drawbacks of Core Impact is its incapability to monitor the
environment changes during runtime. Similar to Nessus, Core Impact starts from
an initial snapshot of the target environment, but may create complex attack
sequences than Nessus does. Unfortunately, it does not consider the normal
network traffic as an information source during the attack process. Thus, if no
service is detected at the beginning, Core Impact will consider the network as
safe and stop testing. In this case, network monitoring is completely missing.

In addition, such available tools as Nessus and Core Impact are mostly de-
signed to expectedly be used by professionals. It is hard for regular users without
strong security knowledge and enough IT-related skills to install, perform and
maintain them.

3 A New Framework for Network Security Measurement

Unlike other security auditing tools mentioned previously, our proposed frame-
work is capable of generating and evaluating complex attack sequences which
consist of small interaction steps. The dependencies between them can also be
stored accordingly. Our work is initially motivated by the intention on finding an
easy way to practically demonstrate the security benefits of our patented ”Phys-
ical Separation” based Lock-Keeper technology. For this reason, the architecture
of the framework is designed as simple as possible. To be capable of easily adding
new attacks or vulnerabilities, the architecture should be extensible.

3.1 Framework Overview

As shown in Figure 3, the new security measurement framework consists of five
main parts: Information Gatherer, Knowledge Base, Interaction Agent, Evalua-
tion Engine, and User Interface.

The Information Gatherer is responsible for network monitoring. It runs dur-
ing the whole testing process and aims at collecting information about network
topology, hosts, dataflow, and available services. Every piece of information gath-
ered will be saved in Knowledge Base. The Knowledge Base is a data structure
containing all information related to the target networks or hosts. The Eval-
uation Engine is informed whenever a change to the Knowledge Base occurs
and tests if one or more Interaction Agent can perform an activity by using
the currently available information. If an Interaction Agent confirms that all his
prerequisites are satisfied, it propagates its capabilities to the Knowledge Base.
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Fig. 3. New Framework

Each successful agent interaction would possibly enlarge the Knowledge Base.
The User Interface allows to visualize the whole process and makes the usability
of the framework easier.

3.2 Information Gatherer

Every discovered information, such as available services, opened ports, and user
passwords, etc., will be gathered by this Information Gatherer module and then
stored in a global Knowledge Base. As shown in Figure 4, Information Gath-
erer consists of a number of small collectors connected to the target network.
Each collector is specialized on revealing a certain kind of information, such as a
service detection or a password sniffing. All collectors are controlled by a coor-
dinator. To avoid spamming the same information multiple times, each collector
owns a local Knowledge Base (Local KB). No local information will be reported
more than twice to the coordinator process. A collector interface that contains a
method to start and stop the collector process has to be implemented each sin-
gle collector. The coordinator calls these methods and manages a process list to
guarantee complete control over the collector processes. In addition, the interface
defines a report method that allows information exchange between the collectors
and the coordinator. The coordinator assigns a special communication channel
to each created collector. This channel is used to report newly discovered infor-
mation. Because the collectors and the coordinator have to know which kinds
of information have been known and what can be reported, both need to access
a collection of information type descriptors. A descriptor defines how a certain
information type has to be computed and reported. Every collector comes with
a configuration file that allows fine grained setup of the collector’s behavior.

3.3 Knowledge Base

The Knowledge Base contains all available information about the target network.
The structure of the Knowledge Base can be illustrated by the entity relationship
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Fig. 4. Information Gatherer

Fig. 5. Knowledge Base: Entity Relation

diagram shown in Figure 5. Every possible transit into a new state needs to be
evaluated according to the information stored in the Knowledge Base.

The Knowledge Base is a structured storage that again consists of 0..n in-
formation containers, because these containers store information per host. They
are called host containers. Each host container is assigned to a single Knowledge
Base and holds 0..n detailed information units, which may consist of general
information about network addresses, user accounts, and available services on
that host. Additionally, every host container could have 0..n registered attack
agents, such as as File Access Agent, or an Escalation Agent, which might be
possibly executed based on the currently discovered host information stored in-
formation units. Figure 6 shows a simple example of the Knowledge Base. The
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Fig. 6. Knowledge Base - An Example

clear structure of Knowledge Base makes it easier to construct an Attack Graph
accordingly.

3.4 Interaction Agent

As mentioned above, an attack sequence consists of one or more interactions.
Each agent proposes a set of preconditions that have to be fulfilled to execute
the interaction. Additionally, an agent stores the outcome as its postconditions
in Knowledge Base, so that it can be used as input for other agents. Agents can
be classified and assigned to a special interaction domain by their postcondi-
tions. Therefore, agents within the same domain provide identical postconditions,
but the requirements (i.e., preconditions) and the concrete implementations are

Fig. 7. Interaction Agent - Architecture
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different. For instance, one agent requires an available secure shell service, while
another may require an available FTP service, but both may provide the in-
formation that file access is available on that host and share the same agent
domain. The detailed architecture of an agent is shown in Figure 7. Capability
Provider is the core element of each agent and realizes the concrete interaction.
To execute the interaction, the Capability Provider gets the required information
that is defined in the agent’s precondition set from the global Knowledge Base.
After a successful interaction the agent propagates additional information to the
global Knowledge Base, such as what have been defined in the agent’s set as
postconditions. The General Agent Interface is used by the Evaluation Engine
to determine if all of this agent’s preconditions are currently satisfied. Other
agents and the user can utilize the information by calling the domain specific
functionality through the Domain Specific Interface.

3.5 Evaluation Engine

The Evaluation Engine checks if the current set of information matches with
one or more sets of preconditions defined by interaction agents. Whenever the

Fig. 8. Precondition Evaluation
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preconditions of an agent are fulfilled, the agent is created and the corresponding
information generated by its interaction will be propagated to the global Knowl-
edge Base. Because this increased Knowledge Base may enable other agents, the
Evaluation Engine will repeat this step until no more information can be added.
To determine if an agent could be enabled, all information of the host are used
to match the preconditions of an agent. If preconditions are satisfied, the test
returns true and the postconditions of this agent will be added in the host’s
field in the Knowledge Base. This process can be simplified in two steps: Firstly,
only one single precondition is tested, not the whole set. Secondly, after new
information is added the evaluation process is repeated recursively to exclude
already tested agents rather than in an iterative way, such as the process shown
in Figure 8.

3.6 User Interface

The User Interface displays all available information extracted from the global
Knowledge Base. Attack Graphs are also expected to be drawn in this User
Interface to visualize the global Knowledge Base and help further security eval-
uation. Using an event-driven approach, the User Interface is updated whenever
the current state changes. The user can start or stop information gathering and
available interaction agents. Every important functionality can be accessed di-
rectly through the User Interface. Because the whole framework is extensible, the
User Interface adopts to the current setup at framework initialization. Menus and
dialogs could be adjusted, if new agents or collectors are added without changing
the source codes. To support this dynamic adoption, the User Interface contains
a dialog generator. As described earlier, every collector or agent comes with a

Fig. 9. User Interface
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configuration file. The configuration files contain information about what para-
meters a collector or an agent may understand, for instance, a packet sniffer may
filter certain ports or protocol types. Therefore, port and protocol are used as
parameters to setup this filter. The dialog generator reads all available config-
uration files and renders a specific configuration dialog that shows the possible
parameters during framework initialization (cf. Figure 9). These parameters will
be passed to the collectors and agents when they are invoked. The user interface
simply renders the current Knowledge Base. An observer is registered to be in-
formed whenever the Knowledge Base changes so that new information changes
can be rendered immediately.

3.7 SNAPP Implementation

The SNAPP (Smart Network Attack and Penetration Platform) is the imple-
mentation of the proposed security measurement framework. Main parts of the
framework are written in Perl (Practical Extraction and Report Language). The
graphical user interface (GUI) is implemented using the C++ library Qt [13].
The collectors and agents are either written in pure Perl or written in any other
language which can be accessed through a Perl wrapper. SNAPP works in an
Unix environment and is practically developed under SuSE Linux [14]. The GUI
provided by SNAPP comes with three generators for a dynamic generation of
dialogs at runtime, a global Knowledge Base and a gatherer object as a network
monitor. The gatherer holds a reference to the global Knowledge Base. The gen-
erated dialogs are used to manipulate the default settings of all available agents,
collector classes, information units, and SNAPP itself. Because the number of
agents, collectors, and information units may be enlarged by future extensions,
the dialog generators dynamically adjust to these changes at system start-up.

The gatherer consists of several collectors, each with its own local Knowledge
Base. A collector’s local Knowledge Base information will additionally be re-
ported to the global Knowledge Base. The collector class is an abstract class.
Specialized monitoring classes derive from the abstract collector and implement
their own information retrieval behavior. Currently, three different collectors are
realized, i.e. Pdump [15], Arpdiscover [16] and Nmap [17]. Pdump uses packet
sniffing to be aware of existing hosts and discover available services, such as
HTTP, e-mail, or Web Services. It is capable of discovering e-mail accounts or
passwords transmitted in plain texts. In addition, Web Service messages can
be intercepted and the available services extracted. Arpdiscover is able to detect
hosts by using ARP (Address Resolution Protocol) packet sniffing in case of new
hosts appear in the network. The well known fingerprinting and scanning tool,
Nmap, has also been integrated into SNAPP to perform in-depth host analysis
for service identification. Nmap is accessed by a special Perl interface that allows
direct usage of Nmap’s functionalities.

The Knowledge Base consists of host-based information units and a list of ac-
tivated agents. Whenever the information content of the global Knowledge Base
is changed, an associated evaluator will check the available agent implementa-
tions and create a new agent to perform a certain interaction with the available
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information of the global Knowledge Base. Currently, four different interaction
agents are implemented. Besides the assigned agent information, each host ob-
ject contains a list of host-related information. SNAPP implements information
units by creating specialized assurance objects, derived from the abstract class
assurance. The host contains information about available services, user account,
web services, and addresses. Each assurance class contains detailed information
about the host. This information will be accessed by the agents to perform their
interactions.

4 Experiments

In this section, several experiments are illustrated to demonstrate the applica-
bility of the proposed security measurement framework. Two testing scenarios
are proposed to compare the effectiveness of two different security solutions, i. e.
the packet-filtering firewall and the Lock-Keeper. Both mechanisms are intended
to secure an internal network, which exposes an e-mail service to the untrusted
external network. Two Attack Graphs are drawn according to the corresponding
Knowledge Base.

4.1 General Setup

The test environment consists of two separate networks. A trusted internal net-
work 192.168.1.0 and an untrusted external network 153.96.230.0. Both net-
works are separated by a certain security mechanism to protect the internal
network. Scenario I uses a packet-filtering firewall. Scenario II utilizes the Lock-
Keeper. In both scenarios the internal network consists of an e-mail server and
the external network consists of a host running the SNAPP application. This

(a) Scenario I: Firewall Protection (b) Scenario II: Lock-
Keeper Protection

Fig. 10. General Setup of Testing
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general setup is shown in Figure 10. The WMailserver [18] used as the e-mail
providing server, i.e. a mail server, is running on a Windows host (Win2000
SP4). The SNAPP application is running on a SuSE Linux operating system.

4.2 Scenario I

This scenario uses a packet-filtering firewall to protect the exposed e-mail service.
Thus, the firewall defines an iptables [19] rule to drop all kinds of packets that
are not arriving on port 25. All traffic on port 25 that emerges from an internal
address is allowed to pass through, as shown in Figure 11.

Fig. 11. Firewall Configuration

Figure 12 shows the attack progression of the SNAPP application. At the be-
ginning, the packet sniffer fetches the e-mail sent from the untrusted network to
the internal e-mail server. The new information will be added to the Knowledge
Base. The evaluation engine enables an agent that needs a host with open port
25 and a SMTP service running and commits a buffer overflow. The intercepted
e-mail indicates that the target host fulfills all preconditions. The agent is in-
voked and tries to exploit the e-mail service using a corrupted SMTP packet to
the e-mail server. The firewall will handle this packet as regular SMTP traffic.
The SMTP packet contains a special payload that produces a buffer overflow.
The payload contains an instruction to establish a reverse TCP connection over
port 25 to the SNAPP application. This connection is used by a VNC (Virtual
Network Computing) [20] server loaded into the memory of the windows host.
As indicated in Figure 12, the attack results in a VNC session with the rights of
the exploited e-mail service.

4.3 Scenario II

The second scenario uses the Lock-Keeper, instead of a firewall, to protect the in-
ternal e-mail server. The Lock-Keeper acts as a proxy. All e-mails are sent to the
Lock-Keeper and will be forwarded to the internal e-mail server. Again, SNAPP
intercepts an e-mail send to the e-mail server. Because the proxy is not trans-
parent to its environment, SNAPP discovers the Lock-Keeper and the available
e-mail deamon accepting e-mails and forwarding them to the internal network.
At this time, the escalation agent will be activated for the Lock-Keeper, because
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Fig. 12. Scenario I - VNC Session

the Lock-Keeper fulfills all required preconditions. The special crafted e-mail is
sent to the Lock-Keeper and forwarded into the internal network. The malicious
payload tries to establish a backward connection to the SNAPP application. The
connection establishment fails. The Lock-Keeper prevents a successful connec-
tion establishment, due to its inherent feature on TCP isolation. The exploitation
interaction fails.

4.4 Result Analysis

These two simple scenarios are designed to verify the applicability of the pro-
posed security measurement framework and the possibility to use Attack Graph
as a metric to represent the realtime Knowledge Base generated by SNAPP.

Figure 13(a) depicts the resulting graph for scenario I. The critical state is
sexploit, because it enlarges the current Knowledge Base with several dangerous
new capabilities. The successful exploit establishes a VNC session for direct
access and a root shell for listening on a specific port. In comparison, there is no
sexploit state in Figure 13(b) because the Lock-Keeper successfully prevents the
backward connection.

The above mentioned two experiments performed by SNAPP, have demon-
strated that our newly proposed security measurement framework is smart and
has the capability to evaluate complex attack sequences and execute real time
network monitoring to gather information during the attack progression.

The testing process of SNAPP shown in Figure 14, can make more thorough
measurement than the previously mentioned Nessus and Core Impact solution.
The simple User Interface makes it an easy-to-use tool to compare network archi-
tectures with different security mechanisms, such as firewalls and Lock-Keepers
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(a) Scenario I: Firewall Exploiting (b) Scenario II: Lock-Keeper Exploiting

Fig. 13. Attack Graphs Results

Fig. 14. Testing Process – SNAPP

in our experiments. Thanks to the clear structure of the Knowledge Base, Attack
Graphs can be easily constructed to help us make further theoretical analysis and
evaluation. Moreover, the flexible and comprehensible architecture makes it easy
to extend the framework, for example, introducing new Information Gatherer,
adding new atomic attack agents, etc.

5 Conclusions

This paper proposes a simple, smart, and extensible framework for network se-
curity measurement. Besides, an easy-to-use tool, SNAPP, is introduced as an
implementation of the proposed framework. Using this framework, all the in-
formation exploited from former executed attack can be added into the global
Knowledge Base at runtime so that new attacks can be performed based on
it. After such throughout auditing, the vulnerabilities of the target system or
network can easily represented by the Knowledge Base. With this complete and
well-structured Knowledge Base, formal attack graphs can be expressed to help
us make the security evaluation of the target system. However, there are still
some further works to be done around this framework. More information gath-
erers and attack agents, are always useful to extend the functionality and per-
formance of SNAPP. A graph-related module to visualize the global Knowledge
Base, for instance automatically constructing and analyzing an Attack Graph,
can be integrated into the framework. A security module, e.g. a user access
control system, to manage different levels of SNAPP users is also necessary.
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